captioning modules are edited

This commit is contained in:
yunjey
2017-03-21 01:05:47 +09:00
parent 247de2da86
commit 4fc2b1fa8a
5 changed files with 128 additions and 109 deletions

View File

@ -7,43 +7,44 @@ from torch.autograd import Variable
class EncoderCNN(nn.Module):
def __init__(self, embed_size):
"""Load pretrained ResNet-152 and replace top fc layer."""
"""Loads the pretrained ResNet-152 and replace top fc layer."""
super(EncoderCNN, self).__init__()
self.resnet = models.resnet152(pretrained=True)
# For efficient memory usage.
for param in self.resnet.parameters():
param.requires_grad = False
self.resnet.fc = nn.Linear(self.resnet.fc.in_features, embed_size)
self.bn = nn.BatchNorm1d(embed_size, momentum=0.01)
self.init_weights()
def init_weights(self):
self.resnet.fc.weight.data.uniform_(-0.1, 0.1)
"""Initialize weights."""
self.resnet.fc.weight.data.normal_(0.0, 0.02)
self.resnet.fc.bias.data.fill_(0)
def forward(self, images):
"""Extract image feature vectors."""
"""Extracts the image feature vectors."""
features = self.resnet(images)
features = self.bn(features)
return features
class DecoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers):
"""Set hyper-parameters and build layers."""
"""Set the hyper-parameters and build the layers."""
super(DecoderRNN, self).__init__()
self.embed_size = embed_size
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.embed = nn.Embedding(vocab_size, embed_size)
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers)
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
self.linear = nn.Linear(hidden_size, vocab_size)
self.init_weights()
def init_weights(self):
"""Initialize weights."""
self.embed.weight.data.uniform_(-0.1, 0.1)
self.linear.weigth.data.uniform_(-0.1, 0.1)
self.linear.weight.data.uniform_(-0.1, 0.1)
self.linear.bias.data.fill_(0)
def forward(self, features, captions, lengths):
"""Decode image feature vectors and generate caption."""
"""Decodes image feature vectors and generates captions."""
embeddings = self.embed(captions)
embeddings = torch.cat((features.unsqueeze(1), embeddings), 1)
packed = pack_padded_sequence(embeddings, lengths, batch_first=True)
@ -51,14 +52,15 @@ class DecoderRNN(nn.Module):
outputs = self.linear(hiddens[0])
return outputs
def sample(self, feature, state):
"""Sample a caption for given a image feature."""
def sample(self, features, states):
"""Samples captions for given image features."""
sampled_ids = []
input = feature.unsqueeze(1)
inputs = features.unsqueeze(1)
for i in range(20):
hidden, state = self.lstm(input, state) # (1, 1, hidden_size)
output = self.linear(hidden.view(-1, self.hidden_size)) # (1, vocab_size)
predicted = output.max(1)[1]
hiddens, states = self.lstm(inputs, states) # (batch_size, 1, hidden_size)
outputs = self.linear(hiddens.unsqueeze()) # (batch_size, vocab_size)
predicted = outputs.max(1)[1]
sampled_ids.append(predicted)
input = self.embed(predicted)
inputs = self.embed(predicted)
sampled_ids = torch.cat(sampled_ids, 1) # (batch_size, 20)
return sampled_ids