mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-24 01:48:26 +08:00
tutorials are added
This commit is contained in:
79
tutorials/02 - Logistic Regression/main.py
Normal file
79
tutorials/02 - Logistic Regression/main.py
Normal file
@ -0,0 +1,79 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torchvision.datasets as dsets
|
||||
import torchvision.transforms as transforms
|
||||
from torch.autograd import Variable
|
||||
|
||||
|
||||
# Hyper Parameters
|
||||
input_size = 784
|
||||
num_classes = 10
|
||||
num_epochs = 5
|
||||
batch_size = 100
|
||||
learning_rate = 0.001
|
||||
|
||||
# MNIST Dataset (Images and Labels)
|
||||
train_dataset = dsets.MNIST(root='./data',
|
||||
train=True,
|
||||
transform=transforms.ToTensor(),
|
||||
download=True)
|
||||
|
||||
test_dataset = dsets.MNIST(root='./data',
|
||||
train=False,
|
||||
transform=transforms.ToTensor())
|
||||
|
||||
# Dataset Loader (Input Pipline)
|
||||
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True)
|
||||
|
||||
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=False)
|
||||
|
||||
# Model
|
||||
class LogisticRegression(nn.Module):
|
||||
def __init__(self, input_size, num_classes):
|
||||
super(LogisticRegression, self).__init__()
|
||||
self.linear = nn.Linear(input_size, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.linear(x)
|
||||
return out
|
||||
|
||||
model = LogisticRegression(input_size, num_classes)
|
||||
|
||||
# Loss and Optimizer
|
||||
# Softmax is internally computed.
|
||||
# Set parameters to be updated.
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
|
||||
|
||||
# Training the Model
|
||||
for epoch in range(num_epochs):
|
||||
for i, (images, labels) in enumerate(train_loader):
|
||||
images = Variable(images.view(-1, 28*28))
|
||||
labels = Variable(labels)
|
||||
|
||||
# Forward + Backward + Optimize
|
||||
optimizer.zero_grad()
|
||||
outputs = model(images)
|
||||
loss = criterion(outputs, labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
if (i+1) % 100 == 0:
|
||||
print ('Epoch: [%d/%d], Step: [%d/%d], Loss: %.4f'
|
||||
% (epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0]))
|
||||
|
||||
# Test the Model
|
||||
correct = 0
|
||||
total = 0
|
||||
for images, labels in test_loader:
|
||||
images = Variable(images.view(-1, 28*28))
|
||||
outputs = model(images)
|
||||
_, predicted = torch.max(outputs.data, 1)
|
||||
total += labels.size(0)
|
||||
correct += (predicted == labels).sum()
|
||||
|
||||
print('Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
|
Reference in New Issue
Block a user