mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-25 02:52:50 +08:00
tutorials are added
This commit is contained in:
89
tutorials/00 - PyTorch Basics/main.py
Normal file
89
tutorials/00 - PyTorch Basics/main.py
Normal file
@ -0,0 +1,89 @@
|
||||
import torch
|
||||
import torchvision
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
import torch.utils.data as data
|
||||
import torchvision.transforms as transforms
|
||||
import torchvision.datasets as dsets
|
||||
from torch.autograd import Variable
|
||||
|
||||
|
||||
# Create a torch tensor with random normal.
|
||||
x = torch.randn(5, 3)
|
||||
print (x)
|
||||
|
||||
# Build a layer.
|
||||
linear = nn.Linear(3, 2)
|
||||
print (linear.weight)
|
||||
print (linear.bias)
|
||||
|
||||
# Forward propagate.
|
||||
y = linear(Variable(x))
|
||||
print (y)
|
||||
|
||||
# Convert numpy array to torch tensor.
|
||||
a = np.array([[1,2], [3,4]])
|
||||
b = torch.from_numpy(a)
|
||||
print (b)
|
||||
|
||||
# Download and load cifar10 dataset .
|
||||
train_dataset = dsets.CIFAR10(root='./data/',
|
||||
train=True,
|
||||
transform=transforms.ToTensor(),
|
||||
download=True)
|
||||
|
||||
# Select one data pair.
|
||||
image, label = train_dataset[0]
|
||||
print (image.size())
|
||||
print (label)
|
||||
|
||||
# Input pipeline (this provides queue and thread in a very simple way).
|
||||
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
|
||||
batch_size=100,
|
||||
shuffle=True,
|
||||
num_workers=2)
|
||||
|
||||
# When iteration starts, queue and thread start to load dataset.
|
||||
data_iter = iter(train_loader)
|
||||
|
||||
# Mini-batch images and labels.
|
||||
images, labels = data_iter.next()
|
||||
|
||||
# Actual usage of data loader is as below.
|
||||
for images, labels in train_loader:
|
||||
# Your training code will be written here
|
||||
pass
|
||||
|
||||
# Build custom dataset.
|
||||
class CustomDataset(data.Dataset):
|
||||
def __init__(self):
|
||||
pass
|
||||
def __getitem__(self, index):
|
||||
# TODO
|
||||
# 1. Read one data from file (e.g. using np.fromfile, PIL.Image.open).
|
||||
# 2. Return a data pair (e.g. image and label).
|
||||
pass
|
||||
def __len__(self):
|
||||
# You should change 0 to the total size of your dataset.
|
||||
return 0
|
||||
|
||||
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
|
||||
batch_size=100,
|
||||
shuffle=True,
|
||||
num_workers=2)
|
||||
|
||||
|
||||
# Download and load pretrained model.
|
||||
resnet = torchvision.models.resnet18(pretrained=True)
|
||||
|
||||
# Detach top layer for finetuning.
|
||||
sub_model = nn.Sequential(*list(resnet.children())[:-1])
|
||||
|
||||
# For test
|
||||
images = Variable(torch.randn(10, 3, 256, 256))
|
||||
print (resnet(images).size())
|
||||
print (sub_model(images).size())
|
||||
|
||||
# Save and load the model.
|
||||
torch.save(sub_model, 'model.pkl')
|
||||
model = torch.load('model.pkl')
|
Reference in New Issue
Block a user