mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-25 11:04:25 +08:00
model code added
This commit is contained in:
58
tutorials/09 - Image Captioning/model.py
Normal file
58
tutorials/09 - Image Captioning/model.py
Normal file
@ -0,0 +1,58 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torchvision.models as models
|
||||
import torch.nn.utils.rnn as rnn_utils
|
||||
from torch.autograd import Variable
|
||||
|
||||
|
||||
class EncoderCNN(nn.Module):
|
||||
def __init__(self, embed_size):
|
||||
"""Load pretrained ResNet-152 and replace top fc layer."""
|
||||
super(EncoderCNN, self).__init__()
|
||||
self.resnet = models.resnet152(pretrained=True)
|
||||
self.resnet.fc = nn.Linear(self.resnet.fc.in_features, embed_size)
|
||||
for param in self.resnet.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def forward(self, images):
|
||||
"""Extract image feature vectors."""
|
||||
features = self.resnet(images)
|
||||
return features
|
||||
|
||||
|
||||
class DecoderRNN(nn.Module):
|
||||
def __init__(self, embed_size, hidden_size, vocab_size, num_layers):
|
||||
"""Set hyper-parameters and build layers."""
|
||||
super(DecoderRNN, self).__init__()
|
||||
self.embed_size = embed_size
|
||||
self.hidden_size = hidden_size
|
||||
self.vocab_size = vocab_size
|
||||
self.embed = nn.Embedding(vocab_size, embed_size)
|
||||
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers)
|
||||
self.linear = nn.Linear(hidden_size, vocab_size)
|
||||
|
||||
def init_weights(self):
|
||||
pass
|
||||
|
||||
def forward(self, features, captions, lengths):
|
||||
"""Decode image feature vectors and generate caption."""
|
||||
embeddings = self.embed(captions)
|
||||
embeddings = torch.cat((features.unsqueeze(1), embeddings), 1)
|
||||
packed = rnn_utils.pack_padded_sequence(embeddings, lengths, batch_first=True) # lengths is ok
|
||||
hiddens, _ = self.lstm(packed)
|
||||
outputs = self.linear(hiddens[0])
|
||||
return outputs
|
||||
|
||||
def sample(self, feature, state):
|
||||
"""Sample a caption for given a image feature."""
|
||||
# (batch_size, seq_length, embed_size)
|
||||
# features: (1, 128)
|
||||
sampled_ids = []
|
||||
input = feature.unsqueeze(1)
|
||||
for i in range(20):
|
||||
hidden, state = self.lstm(input, state) # (1, 1, 512)
|
||||
output = self.linear(hidden.view(-1, self.hidden_size)) # (1, 10000)
|
||||
predicted = output.max(1)[1]
|
||||
sampled_ids.append(predicted)
|
||||
input = self.embed(predicted)
|
||||
return sampled_ids
|
@ -55,7 +55,7 @@ def build_vocab(json, threshold):
|
||||
return vocab
|
||||
|
||||
def main():
|
||||
vocab = create_vocab(json='./data/annotations/captions_train2014.json',
|
||||
vocab = build_vocab(json='./data/annotations/captions_train2014.json',
|
||||
threshold=4)
|
||||
with open('./data/vocab.pkl', 'wb') as f:
|
||||
pickle.dump(vocab, f, pickle.HIGHEST_PROTOCOL)
|
||||
|
Reference in New Issue
Block a user