model code added

This commit is contained in:
yunjey
2017-03-11 17:16:36 +09:00
parent 65de9095ff
commit 3afd026f93
2 changed files with 59 additions and 1 deletions

View File

@ -0,0 +1,58 @@
import torch
import torch.nn as nn
import torchvision.models as models
import torch.nn.utils.rnn as rnn_utils
from torch.autograd import Variable
class EncoderCNN(nn.Module):
def __init__(self, embed_size):
"""Load pretrained ResNet-152 and replace top fc layer."""
super(EncoderCNN, self).__init__()
self.resnet = models.resnet152(pretrained=True)
self.resnet.fc = nn.Linear(self.resnet.fc.in_features, embed_size)
for param in self.resnet.parameters():
param.requires_grad = False
def forward(self, images):
"""Extract image feature vectors."""
features = self.resnet(images)
return features
class DecoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers):
"""Set hyper-parameters and build layers."""
super(DecoderRNN, self).__init__()
self.embed_size = embed_size
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.embed = nn.Embedding(vocab_size, embed_size)
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers)
self.linear = nn.Linear(hidden_size, vocab_size)
def init_weights(self):
pass
def forward(self, features, captions, lengths):
"""Decode image feature vectors and generate caption."""
embeddings = self.embed(captions)
embeddings = torch.cat((features.unsqueeze(1), embeddings), 1)
packed = rnn_utils.pack_padded_sequence(embeddings, lengths, batch_first=True) # lengths is ok
hiddens, _ = self.lstm(packed)
outputs = self.linear(hiddens[0])
return outputs
def sample(self, feature, state):
"""Sample a caption for given a image feature."""
# (batch_size, seq_length, embed_size)
# features: (1, 128)
sampled_ids = []
input = feature.unsqueeze(1)
for i in range(20):
hidden, state = self.lstm(input, state) # (1, 1, 512)
output = self.linear(hidden.view(-1, self.hidden_size)) # (1, 10000)
predicted = output.max(1)[1]
sampled_ids.append(predicted)
input = self.embed(predicted)
return sampled_ids

View File

@ -55,7 +55,7 @@ def build_vocab(json, threshold):
return vocab
def main():
vocab = create_vocab(json='./data/annotations/captions_train2014.json',
vocab = build_vocab(json='./data/annotations/captions_train2014.json',
threshold=4)
with open('./data/vocab.pkl', 'wb') as f:
pickle.dump(vocab, f, pickle.HIGHEST_PROTOCOL)