mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-06 17:44:12 +08:00
delete
This commit is contained in:
@ -1,122 +0,0 @@
|
||||
import argparse
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
import os
|
||||
import pickle
|
||||
from data_loader import get_loader
|
||||
from build_vocab import Vocabulary
|
||||
from model import EncoderCNN, DecoderRNN
|
||||
from torch.autograd import Variable
|
||||
from torch.nn.utils.rnn import pack_padded_sequence
|
||||
from torchvision import transforms
|
||||
|
||||
def to_var(x, volatile=False):
|
||||
if torch.cuda.is_available():
|
||||
x = x.cuda()
|
||||
return Variable(x, volatile=volatile)
|
||||
|
||||
def main(args):
|
||||
# Create model directory
|
||||
if not os.path.exists(args.model_path):
|
||||
os.makedirs(args.model_path)
|
||||
|
||||
# Image preprocessing
|
||||
# For normalization, see https://github.com/pytorch/vision#models
|
||||
transform = transforms.Compose([
|
||||
transforms.RandomCrop(args.crop_size),
|
||||
transforms.RandomHorizontalFlip(),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.485, 0.456, 0.406),
|
||||
(0.229, 0.224, 0.225))])
|
||||
|
||||
# Load vocabulary wrapper.
|
||||
with open(args.vocab_path, 'rb') as f:
|
||||
vocab = pickle.load(f)
|
||||
|
||||
# Build data loader
|
||||
data_loader = get_loader(args.image_dir, args.caption_path, vocab,
|
||||
transform, args.batch_size,
|
||||
shuffle=True, num_workers=args.num_workers)
|
||||
|
||||
# Build the models
|
||||
encoder = EncoderCNN(args.embed_size)
|
||||
decoder = DecoderRNN(args.embed_size, args.hidden_size,
|
||||
len(vocab), args.num_layers)
|
||||
|
||||
if torch.cuda.is_available():
|
||||
encoder.cuda()
|
||||
decoder.cuda()
|
||||
|
||||
# Loss and Optimizer
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
params = list(decoder.parameters()) + list(encoder.linear.parameters()) + list(encoder.bn.parameters())
|
||||
optimizer = torch.optim.Adam(params, lr=args.learning_rate)
|
||||
|
||||
# Train the Models
|
||||
total_step = len(data_loader)
|
||||
for epoch in range(args.num_epochs):
|
||||
for i, (images, captions, lengths) in enumerate(data_loader):
|
||||
|
||||
# Set mini-batch dataset
|
||||
images = to_var(images, volatile=True)
|
||||
captions = to_var(captions)
|
||||
targets = pack_padded_sequence(captions, lengths, batch_first=True)[0]
|
||||
|
||||
# Forward, Backward and Optimize
|
||||
decoder.zero_grad()
|
||||
encoder.zero_grad()
|
||||
features = encoder(images)
|
||||
outputs = decoder(features, captions, lengths)
|
||||
loss = criterion(outputs, targets)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# Print log info
|
||||
if i % args.log_step == 0:
|
||||
print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
|
||||
%(epoch, args.num_epochs, i, total_step,
|
||||
loss.data[0], np.exp(loss.data[0])))
|
||||
|
||||
# Save the models
|
||||
if (i+1) % args.save_step == 0:
|
||||
torch.save(decoder.state_dict(),
|
||||
os.path.join(args.model_path,
|
||||
'decoder-%d-%d.pkl' %(epoch+1, i+1)))
|
||||
torch.save(encoder.state_dict(),
|
||||
os.path.join(args.model_path,
|
||||
'encoder-%d-%d.pkl' %(epoch+1, i+1)))
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--model_path', type=str, default='./models/' ,
|
||||
help='path for saving trained models')
|
||||
parser.add_argument('--crop_size', type=int, default=224 ,
|
||||
help='size for randomly cropping images')
|
||||
parser.add_argument('--vocab_path', type=str, default='./data/vocab.pkl',
|
||||
help='path for vocabulary wrapper')
|
||||
parser.add_argument('--image_dir', type=str, default='./data/resized2014' ,
|
||||
help='directory for resized images')
|
||||
parser.add_argument('--caption_path', type=str,
|
||||
default='./data/annotations/captions_train2014.json',
|
||||
help='path for train annotation json file')
|
||||
parser.add_argument('--log_step', type=int , default=10,
|
||||
help='step size for prining log info')
|
||||
parser.add_argument('--save_step', type=int , default=1000,
|
||||
help='step size for saving trained models')
|
||||
|
||||
# Model parameters
|
||||
parser.add_argument('--embed_size', type=int , default=256 ,
|
||||
help='dimension of word embedding vectors')
|
||||
parser.add_argument('--hidden_size', type=int , default=512 ,
|
||||
help='dimension of lstm hidden states')
|
||||
parser.add_argument('--num_layers', type=int , default=1 ,
|
||||
help='number of layers in lstm')
|
||||
|
||||
parser.add_argument('--num_epochs', type=int, default=5)
|
||||
parser.add_argument('--batch_size', type=int, default=128)
|
||||
parser.add_argument('--num_workers', type=int, default=2)
|
||||
parser.add_argument('--learning_rate', type=float, default=0.001)
|
||||
args = parser.parse_args()
|
||||
print(args)
|
||||
main(args)
|
Reference in New Issue
Block a user