参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

# 子集问题(二) ## 90.子集II [力扣题目链接](https://leetcode-cn.com/problems/subsets-ii/) 给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。 说明:解集不能包含重复的子集。 示例: * 输入: [1,2,2] * 输出: [ [2], [1], [1,2,2], [2,2], [1,2], [] ] ## 思路 做本题之前一定要先做[78.子集](https://programmercarl.com/0078.子集.html)。 这道题目和[78.子集](https://programmercarl.com/0078.子集.html)区别就是集合里有重复元素了,而且求取的子集要去重。 那么关于回溯算法中的去重问题,**在[40.组合总和II](https://programmercarl.com/0040.组合总和II.html)中已经详细讲解过了,和本题是一个套路**。 **剧透一下,后期要讲解的排列问题里去重也是这个套路,所以理解“树层去重”和“树枝去重”非常重要**。 用示例中的[1, 2, 2] 来举例,如图所示: (**注意去重需要先对集合排序**) ![90.子集II](https://img-blog.csdnimg.cn/20201124195411977.png) 从图中可以看出,同一树层上重复取2 就要过滤掉,同一树枝上就可以重复取2,因为同一树枝上元素的集合才是唯一子集! 本题就是其实就是[回溯算法:求子集问题!](https://programmercarl.com/0078.子集.html)的基础上加上了去重,去重我们在[回溯算法:求组合总和(三)](https://programmercarl.com/0040.组合总和II.html)也讲过了,所以我就直接给出代码了: C++代码如下: ```CPP class Solution { private: vector> result; vector path; void backtracking(vector& nums, int startIndex, vector& used) { result.push_back(path); for (int i = startIndex; i < nums.size(); i++) { // used[i - 1] == true,说明同一树枝candidates[i - 1]使用过 // used[i - 1] == false,说明同一树层candidates[i - 1]使用过 // 而我们要对同一树层使用过的元素进行跳过 if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) { continue; } path.push_back(nums[i]); used[i] = true; backtracking(nums, i + 1, used); used[i] = false; path.pop_back(); } } public: vector> subsetsWithDup(vector& nums) { result.clear(); path.clear(); vector used(nums.size(), false); sort(nums.begin(), nums.end()); // 去重需要排序 backtracking(nums, 0, used); return result; } }; ``` 使用set去重的版本。 ```CPP class Solution { private: vector> result; vector path; void backtracking(vector& nums, int startIndex, vector& used) { result.push_back(path); unordered_set uset; for (int i = startIndex; i < nums.size(); i++) { if (uset.find(nums[i]) != uset.end()) { continue; } uset.insert(nums[i]); path.push_back(nums[i]); backtracking(nums, i + 1, used); path.pop_back(); } } public: vector> subsetsWithDup(vector& nums) { result.clear(); path.clear(); vector used(nums.size(), false); sort(nums.begin(), nums.end()); // 去重需要排序 backtracking(nums, 0, used); return result; } }; ``` ## 补充 本题也可以不使用used数组来去重,因为递归的时候下一个startIndex是i+1而不是0。 如果要是全排列的话,每次要从0开始遍历,为了跳过已入栈的元素,需要使用used。 代码如下: ```CPP class Solution { private: vector> result; vector path; void backtracking(vector& nums, int startIndex) { result.push_back(path); for (int i = startIndex; i < nums.size(); i++) { // 而我们要对同一树层使用过的元素进行跳过 if (i > startIndex && nums[i] == nums[i - 1] ) { // 注意这里使用i > startIndex continue; } path.push_back(nums[i]); backtracking(nums, i + 1); path.pop_back(); } } public: vector> subsetsWithDup(vector& nums) { result.clear(); path.clear(); sort(nums.begin(), nums.end()); // 去重需要排序 backtracking(nums, 0); return result; } }; ``` ## 总结 其实这道题目的知识点,我们之前都讲过了,如果之前讲过的子集问题和去重问题都掌握的好,这道题目应该分分钟AC。 当然本题去重的逻辑,也可以这么写 ```cpp if (i > startIndex && nums[i] == nums[i - 1] ) { continue; } ``` ## 其他语言版本 ### Java 使用used数组 ```java class Solution { List> result = new ArrayList<>();// 存放符合条件结果的集合 LinkedList path = new LinkedList<>();// 用来存放符合条件结果 boolean[] used; public List> subsetsWithDup(int[] nums) { if (nums.length == 0){ result.add(path); return result; } Arrays.sort(nums); used = new boolean[nums.length]; subsetsWithDupHelper(nums, 0); return result; } private void subsetsWithDupHelper(int[] nums, int startIndex){ result.add(new ArrayList<>(path)); if (startIndex >= nums.length){ return; } for (int i = startIndex; i < nums.length; i++){ if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]){ continue; } path.add(nums[i]); used[i] = true; subsetsWithDupHelper(nums, i + 1); path.removeLast(); used[i] = false; } } } ``` 不使用used数组 ```java class Solution { List> res = new ArrayList<>(); LinkedList path = new LinkedList<>(); public List> subsetsWithDup( int[] nums ) { Arrays.sort( nums ); subsetsWithDupHelper( nums, 0 ); return res; } private void subsetsWithDupHelper( int[] nums, int start ) { res.add( new ArrayList<>( path ) ); for ( int i = start; i < nums.length; i++ ) { // 跳过当前树层使用过的、相同的元素 if ( i > start && nums[i - 1] == nums[i] ) { continue; } path.add( nums[i] ); subsetsWithDupHelper( nums, i + 1 ); path.removeLast(); } } } ``` ### Python ```python class Solution: def __init__(self): self.paths = [] self.path = [] def subsetsWithDup(self, nums: List[int]) -> List[List[int]]: nums.sort() self.backtracking(nums, 0) return self.paths def backtracking(self, nums: List[int], start_index: int) -> None: # ps.空集合仍符合要求 self.paths.append(self.path[:]) # Base Case if start_index == len(nums): return # 单层递归逻辑 for i in range(start_index, len(nums)): if i > start_index and nums[i] == nums[i-1]: # 当前后元素值相同时,跳入下一个循环,去重 continue self.path.append(nums[i]) self.backtracking(nums, i+1) self.path.pop() ``` ### Go ```Go var res[][]int func subsetsWithDup(nums []int)[][]int { res=make([][]int,0) sort.Ints(nums) dfs([]int{},nums,0) return res } func dfs(temp, num []int, start int) { tmp:=make([]int,len(temp)) copy(tmp,temp) res=append(res,tmp) for i:=start;istart&&num[i]==num[i-1]{ continue } temp=append(temp,num[i]) dfs(temp,num,i+1) temp=temp[:len(temp)-1] } } ``` ### Javascript ```Javascript var subsetsWithDup = function(nums) { let result = [] let path = [] let sortNums = nums.sort((a, b) => { return a - b }) function backtracing(startIndex, sortNums) { result.push(path.slice(0)) if(startIndex > nums.length - 1) { return } for(let i = startIndex; i < nums.length; i++) { if(i > startIndex && nums[i] === nums[i - 1]) { continue } path.push(nums[i]) backtracing(i + 1, sortNums) path.pop() } } backtracing(0, sortNums) return result }; ``` ### C ```c int* path; int pathTop; int** ans; int ansTop; //负责存放二维数组中每个数组的长度 int* lengths; //快排cmp函数 int cmp(const void* a, const void* b) { return *((int*)a) - *((int*)b); } //复制函数,将当前path中的元素复制到ans中。同时记录path长度 void copy() { int* tempPath = (int*)malloc(sizeof(int) * pathTop); int i; for(i = 0; i < pathTop; i++) { tempPath[i] = path[i]; } ans = (int**)realloc(ans, sizeof(int*) * (ansTop + 1)); lengths[ansTop] = pathTop; ans[ansTop++] = tempPath; } void backTracking(int* nums, int numsSize, int startIndex, int* used) { //首先将当前path复制 copy(); //若startIndex大于数组最后一位元素的位置,返回 if(startIndex >= numsSize) return ; int i; for(i = startIndex; i < numsSize; i++) { //对同一树层使用过的元素进行跳过 if(i > 0 && nums[i] == nums[i-1] && used[i-1] == false) continue; path[pathTop++] = nums[i]; used[i] = true; backTracking(nums, numsSize, i + 1, used); used[i] = false; pathTop--; } } int** subsetsWithDup(int* nums, int numsSize, int* returnSize, int** returnColumnSizes){ //声明辅助变量 path = (int*)malloc(sizeof(int) * numsSize); ans = (int**)malloc(0); lengths = (int*)malloc(sizeof(int) * 1500); int* used = (int*)malloc(sizeof(int) * numsSize); pathTop = ansTop = 0; //排序后查重才能生效 qsort(nums, numsSize, sizeof(int), cmp); backTracking(nums, numsSize, 0, used); //设置一维数组和二维数组的返回大小 *returnSize = ansTop; *returnColumnSizes = (int*)malloc(sizeof(int) * ansTop); int i; for(i = 0; i < ansTop; i++) { (*returnColumnSizes)[i] = lengths[i]; } return ans; } ``` ## Swift ```swift func subsetsWithDup(_ nums: [Int]) -> [[Int]] { let nums = nums.sorted() var result = [[Int]]() var path = [Int]() func backtracking(startIndex: Int) { // 直接收集结果 result.append(path) let end = nums.count guard startIndex < end else { return } // 终止条件 for i in startIndex ..< end { if i > startIndex, nums[i] == nums[i - 1] { continue } // 跳过重复元素 path.append(nums[i]) // 处理:收集元素 backtracking(startIndex: i + 1) // 元素不重复访问 path.removeLast() // 回溯 } } backtracking(startIndex: 0) return result } ``` -----------------------