From 37d12a168cfa59e0ae44203f5aa8234d588f23fd Mon Sep 17 00:00:00 2001 From: ZerenZhang2022 <118794589+ZerenZhang2022@users.noreply.github.com> Date: Wed, 22 Mar 2023 18:22:15 -0400 Subject: [PATCH 1/2] =?UTF-8?q?Update=200530.=E4=BA=8C=E5=8F=89=E6=90=9C?= =?UTF-8?q?=E7=B4=A2=E6=A0=91=E7=9A=84=E6=9C=80=E5=B0=8F=E7=BB=9D=E5=AF=B9?= =?UTF-8?q?=E5=B7=AE.md?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit 增加python - 双指针法,不用数组 (同Carl写法) - 更快 --- .../0530.二叉搜索树的最小绝对差.md | 19 +++++++++++++++++++ 1 file changed, 19 insertions(+) diff --git a/problems/0530.二叉搜索树的最小绝对差.md b/problems/0530.二叉搜索树的最小绝对差.md index 203add39..fa1430de 100644 --- a/problems/0530.二叉搜索树的最小绝对差.md +++ b/problems/0530.二叉搜索树的最小绝对差.md @@ -221,8 +221,27 @@ class Solution: for i in range(len(res)-1): // 统计有序数组的最小差值 r = min(abs(res[i]-res[i+1]),r) return r + + +class Solution: # 双指针法,不用数组 (同Carl写法) - 更快 + def getMinimumDifference(self, root: Optional[TreeNode]) -> int: + global pre,minval + pre = None + minval = 10**5 + self.traversal(root) + return minval + + def traversal(self,root): + global pre,minval + if not root: return None + self.traversal(root.left) + if pre and root.val-pre.val Date: Sun, 26 Mar 2023 18:36:13 +0800 Subject: [PATCH 2/2] =?UTF-8?q?Update=20=E8=83=8C=E5=8C=85=E7=90=86?= =?UTF-8?q?=E8=AE=BA=E5=9F=BA=E7=A1=8001=E8=83=8C=E5=8C=85-1.md?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- problems/背包理论基础01背包-1.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/problems/背包理论基础01背包-1.md b/problems/背包理论基础01背包-1.md index ff0b6aba..c45fc3d3 100644 --- a/problems/背包理论基础01背包-1.md +++ b/problems/背包理论基础01背包-1.md @@ -87,7 +87,7 @@ leetcode上没有纯01背包的问题,都是01背包应用方面的题目, 那么可以有两个方向推出来dp[i][j], -* **不放物品i**:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以被背包内的价值依然和前面相同。) +* **不放物品i**:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。) * **放物品i**:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值 所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);