mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-07-06 15:09:40 +08:00
Merge branch 'youngyangyang04:master' into master
This commit is contained in:
@ -141,9 +141,9 @@
|
||||
|
||||
1. [字符串:344.反转字符串](./problems/0344.反转字符串.md)
|
||||
2. [字符串:541.反转字符串II](./problems/0541.反转字符串II.md)
|
||||
3. [字符串:替换数字](./problems/kama54.替换数字.md)
|
||||
3. [字符串:替换数字](./problems/kamacoder/0054.替换数字.md)
|
||||
4. [字符串:151.翻转字符串里的单词](./problems/0151.翻转字符串里的单词.md)
|
||||
5. [字符串:右旋字符串](./problems/kama55.右旋字符串.md)
|
||||
5. [字符串:右旋字符串](./problems/kamacoder/0055.右旋字符串.md)
|
||||
6. [帮你把KMP算法学个通透](./problems/0028.实现strStr.md)
|
||||
8. [字符串:459.重复的子字符串](./problems/0459.重复的子字符串.md)
|
||||
9. [字符串:总结篇!](./problems/字符串总结.md)
|
||||
@ -154,7 +154,7 @@
|
||||
|
||||
1. [数组:27.移除元素](./problems/0027.移除元素.md)
|
||||
2. [字符串:344.反转字符串](./problems/0344.反转字符串.md)
|
||||
3. [字符串:替换数字](./problems/kama54.替换数字.md)
|
||||
3. [字符串:替换数字](./problems/kamacoder/0054.替换数字.md)
|
||||
4. [字符串:151.翻转字符串里的单词](./problems/0151.翻转字符串里的单词.md)
|
||||
5. [链表:206.翻转链表](./problems/0206.翻转链表.md)
|
||||
6. [链表:19.删除链表的倒数第 N 个结点](./problems/0019.删除链表的倒数第N个节点.md)
|
||||
|
@ -81,7 +81,7 @@ if (root == NULL) return root;
|
||||
|
||||
3. 确定单层递归的逻辑
|
||||
|
||||
因为是先前序遍历,所以先进行交换左右孩子节点,然后反转左子树,反转右子树。
|
||||
因为是前序遍历,所以先进行交换左右孩子节点,然后反转左子树,反转右子树。
|
||||
|
||||
```cpp
|
||||
swap(root->left, root->right);
|
||||
@ -348,14 +348,13 @@ class Solution:
|
||||
while stack:
|
||||
node = stack.pop()
|
||||
node.left, node.right = node.right, node.left
|
||||
if node.left:
|
||||
stack.append(node.left)
|
||||
if node.right:
|
||||
stack.append(node.right)
|
||||
if node.left:
|
||||
stack.append(node.left)
|
||||
return root
|
||||
```
|
||||
|
||||
|
||||
递归法:中序遍历:
|
||||
```python
|
||||
# Definition for a binary tree node.
|
||||
@ -374,7 +373,7 @@ class Solution:
|
||||
return root
|
||||
```
|
||||
|
||||
迭代法:中序遍历:
|
||||
迭代法,伪中序遍历(结果是对的,看起来像是中序遍历,实际上它是前序遍历,只不过把中间节点处理逻辑放到了中间。还是要用'统一写法'才是真正的中序遍历):
|
||||
```python
|
||||
# Definition for a binary tree node.
|
||||
# class TreeNode:
|
||||
@ -389,15 +388,14 @@ class Solution:
|
||||
stack = [root]
|
||||
while stack:
|
||||
node = stack.pop()
|
||||
if node.left:
|
||||
stack.append(node.left)
|
||||
node.left, node.right = node.right, node.left
|
||||
if node.left:
|
||||
stack.append(node.left)
|
||||
if node.right:
|
||||
stack.append(node.right)
|
||||
node.left, node.right = node.right, node.left # 放到中间,依然是前序遍历
|
||||
if node.right:
|
||||
stack.append(node.right)
|
||||
return root
|
||||
```
|
||||
|
||||
|
||||
递归法:后序遍历:
|
||||
```python
|
||||
# Definition for a binary tree node.
|
||||
@ -416,7 +414,7 @@ class Solution:
|
||||
return root
|
||||
```
|
||||
|
||||
迭代法:后序遍历:
|
||||
迭代法,伪后序遍历(结果是对的,看起来像是后序遍历,实际上它是前序遍历,只不过把中间节点处理逻辑放到了最后。还是要用'统一写法'才是真正的后序遍历):
|
||||
```python
|
||||
# Definition for a binary tree node.
|
||||
# class TreeNode:
|
||||
@ -431,19 +429,15 @@ class Solution:
|
||||
stack = [root]
|
||||
while stack:
|
||||
node = stack.pop()
|
||||
if node.left:
|
||||
stack.append(node.left)
|
||||
if node.right:
|
||||
stack.append(node.right)
|
||||
if node.left:
|
||||
stack.append(node.left)
|
||||
node.left, node.right = node.right, node.left
|
||||
|
||||
return root
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
迭代法:广度优先遍历(层序遍历):
|
||||
```python
|
||||
# Definition for a binary tree node.
|
||||
|
@ -33,7 +33,7 @@
|
||||
|
||||
dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。
|
||||
|
||||
这里dp数组的定义有点点绕,大家要撸清思路。
|
||||
这里dp数组的定义有点点绕,大家要理清思路。
|
||||
|
||||
2. 确定递推公式
|
||||
|
||||
@ -255,6 +255,8 @@ class Solution(object):
|
||||
```
|
||||
### Go:
|
||||
|
||||
动态规划一
|
||||
|
||||
```go
|
||||
func minDistance(word1 string, word2 string) int {
|
||||
dp := make([][]int, len(word1)+1)
|
||||
@ -287,8 +289,40 @@ func min(a, b int) int {
|
||||
return b
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
动态规划二
|
||||
|
||||
```go
|
||||
func minDistance(word1 string, word2 string) int {
|
||||
dp := make([][]int, len(word1) + 1)
|
||||
for i := range dp {
|
||||
dp[i] = make([]int, len(word2) + 1)
|
||||
}
|
||||
for i := 1; i <= len(word1); i++ {
|
||||
for j := 1; j <= len(word2); j++ {
|
||||
if word1[i-1] == word2[j-1] {
|
||||
dp[i][j] = dp[i-1][j-1] + 1
|
||||
} else {
|
||||
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
|
||||
}
|
||||
}
|
||||
}
|
||||
return len(word1) + len(word2) - dp[len(word1)][len(word2)] * 2
|
||||
}
|
||||
|
||||
func max(x, y int) int {
|
||||
if x > y {
|
||||
return x
|
||||
}
|
||||
return y
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
### JavaScript:
|
||||
|
||||
|
||||
```javascript
|
||||
// 方法一
|
||||
var minDistance = (word1, word2) => {
|
||||
|
@ -240,14 +240,14 @@ class Solution {
|
||||
# 前序遍历-迭代-LC144_二叉树的前序遍历
|
||||
class Solution:
|
||||
def preorderTraversal(self, root: TreeNode) -> List[int]:
|
||||
# 根结点为空则返回空列表
|
||||
# 根节点为空则返回空列表
|
||||
if not root:
|
||||
return []
|
||||
stack = [root]
|
||||
result = []
|
||||
while stack:
|
||||
node = stack.pop()
|
||||
# 中结点先处理
|
||||
# 中节点先处理
|
||||
result.append(node.val)
|
||||
# 右孩子先入栈
|
||||
if node.right:
|
||||
@ -262,25 +262,27 @@ class Solution:
|
||||
# 中序遍历-迭代-LC94_二叉树的中序遍历
|
||||
class Solution:
|
||||
def inorderTraversal(self, root: TreeNode) -> List[int]:
|
||||
|
||||
if not root:
|
||||
return []
|
||||
stack = [] # 不能提前将root结点加入stack中
|
||||
stack = [] # 不能提前将root节点加入stack中
|
||||
|
||||
result = []
|
||||
cur = root
|
||||
while cur or stack:
|
||||
# 先迭代访问最底层的左子树结点
|
||||
# 先迭代访问最底层的左子树节点
|
||||
if cur:
|
||||
stack.append(cur)
|
||||
cur = cur.left
|
||||
# 到达最左结点后处理栈顶结点
|
||||
# 到达最左节点后处理栈顶节点
|
||||
else:
|
||||
cur = stack.pop()
|
||||
result.append(cur.val)
|
||||
# 取栈顶元素右结点
|
||||
# 取栈顶元素右节点
|
||||
cur = cur.right
|
||||
return result
|
||||
```
|
||||
```python
|
||||
```python
|
||||
|
||||
# 后序遍历-迭代-LC145_二叉树的后序遍历
|
||||
class Solution:
|
||||
@ -291,7 +293,7 @@ class Solution:
|
||||
result = []
|
||||
while stack:
|
||||
node = stack.pop()
|
||||
# 中结点先处理
|
||||
# 中节点先处理
|
||||
result.append(node.val)
|
||||
# 左孩子先入栈
|
||||
if node.left:
|
||||
@ -303,6 +305,44 @@ class Solution:
|
||||
return result[::-1]
|
||||
```
|
||||
|
||||
#### Python 后序遍历的迭代新解法:
|
||||
* 本解法不同于前文介绍的`逆转前序遍历调整后的结果`,而是采用了对每个节点直接处理。这个实现方法在面试中不容易写出来,在下一节,我将改造本代码,奉上代码更简洁、更套路化、更容易实现的统一方法。
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
|
||||
values = []
|
||||
stack = []
|
||||
popped_nodes = set() # 记录值已经被收割了的 nodes,这是关键,已经被收割的节点还在树中,还会被访问到,但逻辑上已经等同于 null 节点。
|
||||
current = root
|
||||
|
||||
while current or stack:
|
||||
if current: # 一次处理完一个节点和他的左右儿子节点,不处理孙子节点,孙子节点由左右儿子等会分别处理。
|
||||
stack.append(current) # 入栈自己
|
||||
|
||||
if current.right:
|
||||
stack.append(current.right) # 入栈右儿子
|
||||
|
||||
if current.left: # 因为栈是后进先出,后序是‘左右中’,所以后加左儿子
|
||||
stack.append(current.left) # 入栈左儿子
|
||||
|
||||
current = None # 会导致后面A处出栈
|
||||
continue
|
||||
|
||||
node = stack.pop() # A处,出的是左儿子,如果无左儿子,出的就是右儿子,如果连右儿子也没有,出的就是自己了。
|
||||
|
||||
# 如果 node 是叶子节点,就可以收割了;如果左右儿子都已经被收割了,也可以收割
|
||||
if (node.left is None or node.left in popped_nodes) and \
|
||||
(node.right is None or node.right in popped_nodes):
|
||||
popped_nodes.add(node)
|
||||
values.append(node.val)
|
||||
continue
|
||||
|
||||
current = node # 不符合收割条件,说明 node 下还有未入栈的儿子,就去入栈
|
||||
|
||||
return values
|
||||
```
|
||||
|
||||
### Go:
|
||||
|
||||
> 迭代法前序遍历
|
||||
|
@ -107,7 +107,7 @@ cd a/b/c/../../
|
||||
设计单调队列的时候,pop,和push操作要保持如下规则:
|
||||
|
||||
1. pop(value):如果窗口移除的元素value等于单调队列的出口元素,那么队列弹出元素,否则不用任何操作
|
||||
2. push(value):如果push的元素value大于入口元素的数值,那么就将队列出口的元素弹出,直到push元素的数值小于等于队列入口元素的数值为止
|
||||
2. push(value):如果push的元素value大于入口元素的数值,那么就将队列入口的元素弹出,直到push元素的数值小于等于队列入口元素的数值为止
|
||||
|
||||
保持如上规则,每次窗口移动的时候,只要问que.front()就可以返回当前窗口的最大值。
|
||||
|
||||
|
Reference in New Issue
Block a user