mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-07-08 16:54:50 +08:00
Merge branch 'master' into master
This commit is contained in:
@ -363,6 +363,54 @@ Python:
|
||||
|
||||
Go:
|
||||
|
||||
```go
|
||||
/**
|
||||
* Definition for a binary tree node.
|
||||
* type TreeNode struct {
|
||||
* Val int
|
||||
* Left *TreeNode
|
||||
* Right *TreeNode
|
||||
* }
|
||||
*/
|
||||
// 递归
|
||||
func defs(left *TreeNode, right *TreeNode) bool {
|
||||
if left == nil && right == nil {
|
||||
return true;
|
||||
};
|
||||
if left == nil || right == nil {
|
||||
return false;
|
||||
};
|
||||
if left.Val != right.Val {
|
||||
return false;
|
||||
}
|
||||
return defs(left.Left, right.Right) && defs(right.Left, left.Right);
|
||||
}
|
||||
func isSymmetric(root *TreeNode) bool {
|
||||
return defs(root.Left, root.Right);
|
||||
}
|
||||
|
||||
// 迭代
|
||||
func isSymmetric(root *TreeNode) bool {
|
||||
var queue []*TreeNode;
|
||||
if root != nil {
|
||||
queue = append(queue, root.Left, root.Right);
|
||||
}
|
||||
for len(queue) > 0 {
|
||||
left := queue[0];
|
||||
right := queue[1];
|
||||
queue = queue[2:];
|
||||
if left == nil && right == nil {
|
||||
continue;
|
||||
}
|
||||
if left == nil || right == nil || left.Val != right.Val {
|
||||
return false;
|
||||
};
|
||||
queue = append(queue, left.Left, right.Right, right.Left, left.Right);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
JavaScript
|
||||
```javascript
|
||||
|
@ -284,6 +284,55 @@ Python:
|
||||
|
||||
Go:
|
||||
|
||||
```go
|
||||
/**
|
||||
* Definition for a binary tree node.
|
||||
* type TreeNode struct {
|
||||
* Val int
|
||||
* Left *TreeNode
|
||||
* Right *TreeNode
|
||||
* }
|
||||
*/
|
||||
func max (a, b int) int {
|
||||
if a > b {
|
||||
return a;
|
||||
}
|
||||
return b;
|
||||
}
|
||||
// 递归
|
||||
func maxDepth(root *TreeNode) int {
|
||||
if root == nil {
|
||||
return 0;
|
||||
}
|
||||
return max(maxDepth(root.Left), maxDepth(root.Right)) + 1;
|
||||
}
|
||||
|
||||
// 遍历
|
||||
func maxDepth(root *TreeNode) int {
|
||||
levl := 0;
|
||||
queue := make([]*TreeNode, 0);
|
||||
if root != nil {
|
||||
queue = append(queue, root);
|
||||
}
|
||||
for l := len(queue); l > 0; {
|
||||
for ;l > 0;l-- {
|
||||
node := queue[0];
|
||||
if node.Left != nil {
|
||||
queue = append(queue, node.Left);
|
||||
}
|
||||
if node.Right != nil {
|
||||
queue = append(queue, node.Right);
|
||||
}
|
||||
queue = queue[1:];
|
||||
}
|
||||
levl++;
|
||||
l = len(queue);
|
||||
}
|
||||
return levl;
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
|
||||
JavaScript
|
||||
```javascript
|
||||
|
@ -301,6 +301,64 @@ class Solution:
|
||||
|
||||
Go:
|
||||
|
||||
```go
|
||||
/**
|
||||
* Definition for a binary tree node.
|
||||
* type TreeNode struct {
|
||||
* Val int
|
||||
* Left *TreeNode
|
||||
* Right *TreeNode
|
||||
* }
|
||||
*/
|
||||
func min(a, b int) int {
|
||||
if a < b {
|
||||
return a;
|
||||
}
|
||||
return b;
|
||||
}
|
||||
// 递归
|
||||
func minDepth(root *TreeNode) int {
|
||||
if root == nil {
|
||||
return 0;
|
||||
}
|
||||
if root.Left == nil && root.Right != nil {
|
||||
return 1 + minDepth(root.Right);
|
||||
}
|
||||
if root.Right == nil && root.Left != nil {
|
||||
return 1 + minDepth(root.Left);
|
||||
}
|
||||
return min(minDepth(root.Left), minDepth(root.Right)) + 1;
|
||||
}
|
||||
|
||||
// 迭代
|
||||
|
||||
func minDepth(root *TreeNode) int {
|
||||
dep := 0;
|
||||
queue := make([]*TreeNode, 0);
|
||||
if root != nil {
|
||||
queue = append(queue, root);
|
||||
}
|
||||
for l := len(queue); l > 0; {
|
||||
dep++;
|
||||
for ; l > 0; l-- {
|
||||
node := queue[0];
|
||||
if node.Left == nil && node.Right == nil {
|
||||
return dep;
|
||||
}
|
||||
if node.Left != nil {
|
||||
queue = append(queue, node.Left);
|
||||
}
|
||||
if node.Right != nil {
|
||||
queue = append(queue, node.Right);
|
||||
}
|
||||
queue = queue[1:];
|
||||
}
|
||||
l = len(queue);
|
||||
}
|
||||
return dep;
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
JavaScript:
|
||||
|
||||
|
@ -263,6 +263,41 @@ class Solution {
|
||||
```
|
||||
|
||||
Python:
|
||||
```python
|
||||
class MyQueue: #单调队列(从大到小
|
||||
def __init__(self):
|
||||
self.queue = [] #使用list来实现单调队列
|
||||
|
||||
#每次弹出的时候,比较当前要弹出的数值是否等于队列出口元素的数值,如果相等则弹出。
|
||||
#同时pop之前判断队列当前是否为空。
|
||||
def pop(self, value):
|
||||
if self.queue and value == self.queue[0]:
|
||||
self.queue.pop(0)#list.pop()时间复杂度为O(n),这里可以使用collections.deque()
|
||||
|
||||
#如果push的数值大于入口元素的数值,那么就将队列后端的数值弹出,直到push的数值小于等于队列入口元素的数值为止。
|
||||
#这样就保持了队列里的数值是单调从大到小的了。
|
||||
def push(self, value):
|
||||
while self.queue and value > self.queue[-1]:
|
||||
self.queue.pop()
|
||||
self.queue.append(value)
|
||||
|
||||
#查询当前队列里的最大值 直接返回队列前端也就是front就可以了。
|
||||
def front(self):
|
||||
return self.queue[0]
|
||||
|
||||
class Solution:
|
||||
def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
|
||||
que = MyQueue()
|
||||
result = []
|
||||
for i in range(k): #先将前k的元素放进队列
|
||||
que.push(nums[i])
|
||||
result.append(que.front()) #result 记录前k的元素的最大值
|
||||
for i in range(k, len(nums)):
|
||||
que.pop(nums[i - k]) #滑动窗口移除最前面元素
|
||||
que.push(nums[i]) #滑动窗口前加入最后面的元素
|
||||
result.append(que.front()) #记录对应的最大值
|
||||
return result
|
||||
```
|
||||
|
||||
|
||||
Go:
|
||||
|
@ -163,64 +163,33 @@ class Solution {
|
||||
|
||||
Python:
|
||||
```python
|
||||
#时间复杂度:O(nlogk)
|
||||
#空间复杂度:O(n)
|
||||
import heapq
|
||||
class Solution:
|
||||
def sift(self, alist, low, high):
|
||||
'''小根堆构建'''
|
||||
i = low
|
||||
j = 2 * i + 1
|
||||
tmp = alist[low]
|
||||
while j <= high:
|
||||
if j + 1 <= high and alist[j+1] <= alist[j]:
|
||||
j += 1
|
||||
if alist[j] < tmp:
|
||||
alist[i] = alist[j]
|
||||
i = j
|
||||
j = 2 * i + 1
|
||||
else:
|
||||
alist[i] = tmp
|
||||
break
|
||||
else:
|
||||
alist[i] = tmp
|
||||
|
||||
|
||||
def topK(self, nums, k):
|
||||
# 建立小根堆
|
||||
heap = nums[:k]
|
||||
for i in range((k-2)//2, -1, -1):
|
||||
self.sift(heap, i, k-1)
|
||||
|
||||
# 把后续的k到len(nums)填充到小根堆里
|
||||
for i in range(k, len(nums)):
|
||||
if nums[i] >= heap[0]:
|
||||
heap[0] = nums[i]
|
||||
self.sift(heap, 0, k-1)
|
||||
|
||||
# 排序
|
||||
for i in range(k-1, -1, -1):
|
||||
heap[0], heap[i]= heap[i], heap[0]
|
||||
self.sift(heap, 0, i-1)
|
||||
return heap
|
||||
|
||||
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
|
||||
dict1 = dict()
|
||||
for val in nums:
|
||||
if val not in dict1:
|
||||
dict1[val] = 1
|
||||
else:
|
||||
dict1[val] += 1
|
||||
res = list()
|
||||
ind = list()
|
||||
for item in dict1:
|
||||
res.append([dict1[item], item])
|
||||
result = list()
|
||||
heap = self.topK(res, k)
|
||||
print(heap)
|
||||
for val in heap:
|
||||
result.append(val[1])
|
||||
#要统计元素出现频率
|
||||
map_ = {} #nums[i]:对应出现的次数
|
||||
for i in range(len(nums)):
|
||||
map_[nums[i]] = map_.get(nums[i], 0) + 1
|
||||
|
||||
#对频率排序
|
||||
#定义一个小顶堆,大小为k
|
||||
pri_que = [] #小顶堆
|
||||
|
||||
#用固定大小为k的小顶堆,扫面所有频率的数值
|
||||
for key, freq in map_.items():
|
||||
heapq.heappush(pri_que, (freq, key))
|
||||
if len(pri_que) > k: #如果堆的大小大于了K,则队列弹出,保证堆的大小一直为k
|
||||
heapq.heappop(pri_que)
|
||||
|
||||
#找出前K个高频元素,因为小顶堆先弹出的是最小的,所以倒叙来输出到数组
|
||||
result = [0] * k
|
||||
for i in range(k-1, -1, -1):
|
||||
result[i] = heapq.heappop(pri_que)[1]
|
||||
return result
|
||||
```
|
||||
|
||||
|
||||
Go:
|
||||
|
||||
|
||||
|
@ -184,6 +184,55 @@ class Solution {
|
||||
|
||||
Python:
|
||||
|
||||
这里使用了前缀表统一减一的实现方式
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def repeatedSubstringPattern(self, s: str) -> bool:
|
||||
if len(s) == 0:
|
||||
return False
|
||||
nxt = [0] * len(s)
|
||||
self.getNext(nxt, s)
|
||||
if nxt[-1] != -1 and len(s) % (len(s) - (nxt[-1] + 1)) == 0:
|
||||
return True
|
||||
return False
|
||||
|
||||
def getNext(self, nxt, s):
|
||||
nxt[0] = -1
|
||||
j = -1
|
||||
for i in range(1, len(s)):
|
||||
while j >= 0 and s[i] != s[j+1]:
|
||||
j = nxt[j]
|
||||
if s[i] == s[j+1]:
|
||||
j += 1
|
||||
nxt[i] = j
|
||||
return nxt
|
||||
```
|
||||
|
||||
前缀表(不减一)的代码实现
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def repeatedSubstringPattern(self, s: str) -> bool:
|
||||
if len(s) == 0:
|
||||
return False
|
||||
nxt = [0] * len(s)
|
||||
self.getNext(nxt, s)
|
||||
if nxt[-1] != 0 and len(s) % (len(s) - nxt[-1]) == 0:
|
||||
return True
|
||||
return False
|
||||
|
||||
def getNext(self, nxt, s):
|
||||
nxt[0] = 0
|
||||
j = 0
|
||||
for i in range(1, len(s)):
|
||||
while j > 0 and s[i] != s[j]:
|
||||
j = nxt[j - 1]
|
||||
if s[i] == s[j]:
|
||||
j += 1
|
||||
nxt[i] = j
|
||||
return nxt
|
||||
```
|
||||
|
||||
Go:
|
||||
|
||||
|
@ -239,7 +239,78 @@ Java:
|
||||
|
||||
```
|
||||
Python:
|
||||
> 迭代法前序遍历
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def preorderTraversal(self, root: TreeNode) -> List[int]:
|
||||
result = []
|
||||
st= []
|
||||
if root:
|
||||
st.append(root)
|
||||
while st:
|
||||
node = st.pop()
|
||||
if node != None:
|
||||
if node.right: #右
|
||||
st.append(node.right)
|
||||
if node.left: #左
|
||||
st.append(node.left)
|
||||
st.append(node) #中
|
||||
st.append(None)
|
||||
else:
|
||||
node = st.pop()
|
||||
result.append(node.val)
|
||||
return result
|
||||
```
|
||||
|
||||
> 迭代法中序遍历
|
||||
```python
|
||||
class Solution:
|
||||
def inorderTraversal(self, root: TreeNode) -> List[int]:
|
||||
result = []
|
||||
st = []
|
||||
if root:
|
||||
st.append(root)
|
||||
while st:
|
||||
node = st.pop()
|
||||
if node != None:
|
||||
if node.right: #添加右节点(空节点不入栈)
|
||||
st.append(node.right)
|
||||
|
||||
st.append(node) #添加中节点
|
||||
st.append(None) #中节点访问过,但是还没有处理,加入空节点做为标记。
|
||||
|
||||
if node.left: #添加左节点(空节点不入栈)
|
||||
st.append(node.left)
|
||||
else: #只有遇到空节点的时候,才将下一个节点放进结果集
|
||||
node = st.pop() #重新取出栈中元素
|
||||
result.append(node.val) #加入到结果集
|
||||
return result
|
||||
```
|
||||
|
||||
> 迭代法后序遍历
|
||||
```python
|
||||
class Solution:
|
||||
def postorderTraversal(self, root: TreeNode) -> List[int]:
|
||||
result = []
|
||||
st = []
|
||||
if root:
|
||||
st.append(root)
|
||||
while st:
|
||||
node = st.pop()
|
||||
if node != None:
|
||||
st.append(node) #中
|
||||
st.append(None)
|
||||
|
||||
if node.right: #右
|
||||
st.append(node.right)
|
||||
if node.left: #左
|
||||
st.append(node.left)
|
||||
else:
|
||||
node = st.pop()
|
||||
result.append(node.val)
|
||||
return result
|
||||
```
|
||||
|
||||
Go:
|
||||
> 前序遍历统一迭代法
|
||||
|
Reference in New Issue
Block a user