perf:封装成类,理解起来更容易

This commit is contained in:
Jasonyou
2024-10-07 06:29:20 +08:00
parent 9c7131e253
commit d3804674e4

View File

@ -250,105 +250,131 @@ int main() {
## 其他语言版本
### Java
```java
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
import java.util.*;
/*
* 冗余连接II。主要问题是存在入度为2或者成环也可能两个问题同时存在。
* 1.判断入度为2的边
* 2.判断是否成环(并查集)
*/
public class Main {
static int n;
static int[] father = new int[1001]; // 并查集数组
/**
* 并查集模板
*/
static class Disjoint {
// 并查集初始化
public static void init() {
for (int i = 1; i <= n; ++i) {
father[i] = i;
}
}
private final int[] father;
// 并查集里寻根的过程
public static int find(int u) {
if (u == father[u]) return u;
return father[u] = find(father[u]); // 路径压缩
}
// 将 v->u 这条边加入并查集
public static void join(int u, int v) {
u = find(u);
v = find(v);
if (u != v) {
father[v] = u; // 合并两棵树
}
}
// 判断 u 和 v 是否有同一个根
public static boolean same(int u, int v) {
return find(u) == find(v);
}
// 在有向图里找到删除的那条边,使其变成树
public static void getRemoveEdge(List<int[]> edges) {
init(); // 初始化并查集
for (int i = 0; i < n; i++) { // 遍历所有的边
if (same(edges.get(i)[0], edges.get(i)[1])) { // 如果构成有向环了,就是要删除的边
System.out.println(edges.get(i)[0] + " " + edges.get(i)[1]);
return;
} else {
join(edges.get(i)[0], edges.get(i)[1]);
public Disjoint(int n) {
father = new int[n];
for (int i = 0; i < n; i++) {
father[i] = i;
}
}
public void join(int n, int m) {
n = find(n);
m = find(m);
if (n == m) return;
father[n] = m;
}
public int find(int n) {
return father[n] == n ? n : (father[n] = find(father[n]));
}
public boolean isSame(int n, int m) {
return find(n) == find(m);
}
}
// 删一条边之后判断是不是树
public static boolean isTreeAfterRemoveEdge(List<int[]> edges, int deleteEdge) {
init(); // 初始化并查集
static class Edge {
int s;
int t;
public Edge(int s, int t) {
this.s = s;
this.t = t;
}
}
static class Node {
int id;
int in;
int out;
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
List<Edge> edges = new ArrayList<>();
Node[] nodeMap = new Node[n + 1];
for (int i = 1; i <= n; i++) {
nodeMap[i] = new Node();
}
Integer doubleIn = null;
for (int i = 0; i < n; i++) {
if (i == deleteEdge) continue;
if (same(edges.get(i)[0], edges.get(i)[1])) { // 如果构成有向环了,一定不是树
int s = scanner.nextInt();
int t = scanner.nextInt();
//记录入度
nodeMap[t].in++;
if (!(nodeMap[t].in < 2)) doubleIn = t;
Edge edge = new Edge(s, t);
edges.add(edge);
}
Edge result = null;
//存在入度为2的节点既要消除入度为2的问题同时解除可能存在的环
if (doubleIn != null) {
List<Edge> doubleInEdges = new ArrayList<>();
for (Edge edge : edges) {
if (edge.t == doubleIn) doubleInEdges.add(edge);
if (doubleInEdges.size() == 2) break;
}
Edge edge = doubleInEdges.get(1);
if (isTreeWithExclude(edges, edge, nodeMap)) {
result = edge;
} else {
result = doubleInEdges.get(0);
}
} else {
//不存在入度为2的节点,则只需要解除环即可
result = getRemoveEdge(edges, nodeMap);
}
System.out.println(result.s + " " + result.t);
}
public static boolean isTreeWithExclude(List<Edge> edges, Edge exculdEdge, Node[] nodeMap) {
Disjoint disjoint = new Disjoint(nodeMap.length + 1);
for (Edge edge : edges) {
if (edge == exculdEdge) continue;
//成环则不是树
if (disjoint.isSame(edge.s, edge.t)) {
return false;
}
join(edges.get(i)[0], edges.get(i)[1]);
disjoint.join(edge.s, edge.t);
}
return true;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
List<int[]> edges = new ArrayList<>(); // 存储所有的边
public static Edge getRemoveEdge(List<Edge> edges, Node[] nodeMap) {
int length = nodeMap.length;
Disjoint disjoint = new Disjoint(length);
n = sc.nextInt(); // 顶点数
int[] inDegree = new int[n + 1]; // 记录每个节点的入度
for (int i = 0; i < n; i++) {
int s = sc.nextInt(); // 边的起点
int t = sc.nextInt(); // 边的终点
inDegree[t]++;
edges.add(new int[]{s, t}); // 将边加入列表
for (Edge edge : edges) {
if (disjoint.isSame(edge.s, edge.t)) return edge;
disjoint.join(edge.s, edge.t);
}
List<Integer> vec = new ArrayList<>(); // 记录入度为2的边如果有的话就两条边
// 找入度为2的节点所对应的边注意要倒序因为优先删除最后出现的一条边
for (int i = n - 1; i >= 0; i--) {
if (inDegree[edges.get(i)[1]] == 2) {
vec.add(i);
}
}
// 情况一、情况二
if (vec.size() > 0) {
// vec里的边已经按照倒叙放的所以优先删 vec.get(0) 这条边
if (isTreeAfterRemoveEdge(edges, vec.get(0))) {
System.out.println(edges.get(vec.get(0))[0] + " " + edges.get(vec.get(0))[1]);
} else {
System.out.println(edges.get(vec.get(1))[0] + " " + edges.get(vec.get(1))[1]);
}
return;
}
// 处理情况三明确没有入度为2的情况一定有有向环找到构成环的边返回即可
getRemoveEdge(edges);
return null;
}
}
```
### Python
```python