mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-07-12 05:20:59 +08:00
Update
This commit is contained in:
@ -141,9 +141,9 @@
|
||||
|
||||
1. [字符串:344.反转字符串](./problems/0344.反转字符串.md)
|
||||
2. [字符串:541.反转字符串II](./problems/0541.反转字符串II.md)
|
||||
3. [字符串:替换数字](./problems/kama54.替换数字.md)
|
||||
3. [字符串:替换数字](./problems/kamacoder/0054.替换数字.md)
|
||||
4. [字符串:151.翻转字符串里的单词](./problems/0151.翻转字符串里的单词.md)
|
||||
5. [字符串:右旋字符串](./problems/kama55.右旋字符串.md)
|
||||
5. [字符串:右旋字符串](./problems/kamacoder/0055.右旋字符串.md)
|
||||
6. [帮你把KMP算法学个通透](./problems/0028.实现strStr.md)
|
||||
8. [字符串:459.重复的子字符串](./problems/0459.重复的子字符串.md)
|
||||
9. [字符串:总结篇!](./problems/字符串总结.md)
|
||||
@ -154,7 +154,7 @@
|
||||
|
||||
1. [数组:27.移除元素](./problems/0027.移除元素.md)
|
||||
2. [字符串:344.反转字符串](./problems/0344.反转字符串.md)
|
||||
3. [字符串:替换数字](./problems/kama54.替换数字.md)
|
||||
3. [字符串:替换数字](./problems/kamacoder/0054.替换数字.md)
|
||||
4. [字符串:151.翻转字符串里的单词](./problems/0151.翻转字符串里的单词.md)
|
||||
5. [链表:206.翻转链表](./problems/0206.翻转链表.md)
|
||||
6. [链表:19.删除链表的倒数第 N 个结点](./problems/0019.删除链表的倒数第N个节点.md)
|
||||
|
@ -341,7 +341,7 @@ impl Solution {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript:
|
||||
### JavaScript:
|
||||
|
||||
```javascript
|
||||
var twoSum = function (nums, target) {
|
||||
|
@ -34,7 +34,7 @@
|
||||
|
||||
### 哈希解法
|
||||
|
||||
两层for循环就可以确定 a 和b 的数值了,可以使用哈希法来确定 0-(a+b) 是否在 数组里出现过,其实这个思路是正确的,但是我们有一个非常棘手的问题,就是题目中说的不可以包含重复的三元组。
|
||||
两层for循环就可以确定 两个数值,可以使用哈希法来确定 第三个数 0-(a+b) 或者 0 - (a + c) 是否在 数组里出现过,其实这个思路是正确的,但是我们有一个非常棘手的问题,就是题目中说的不可以包含重复的三元组。
|
||||
|
||||
把符合条件的三元组放进vector中,然后再去重,这样是非常费时的,很容易超时,也是这道题目通过率如此之低的根源所在。
|
||||
|
||||
@ -48,35 +48,41 @@
|
||||
```CPP
|
||||
class Solution {
|
||||
public:
|
||||
// 在一个数组中找到3个数形成的三元组,它们的和为0,不能重复使用(三数下标互不相同),且三元组不能重复。
|
||||
// b(存储)== 0-(a+c)(检索)
|
||||
vector<vector<int>> threeSum(vector<int>& nums) {
|
||||
vector<vector<int>> result;
|
||||
sort(nums.begin(), nums.end());
|
||||
// 找出a + b + c = 0
|
||||
// a = nums[i], b = nums[j], c = -(a + b)
|
||||
|
||||
for (int i = 0; i < nums.size(); i++) {
|
||||
// 排序之后如果第一个元素已经大于零,那么不可能凑成三元组
|
||||
if (nums[i] > 0) {
|
||||
// 如果a是正数,a<b<c,不可能形成和为0的三元组
|
||||
if (nums[i] > 0)
|
||||
break;
|
||||
}
|
||||
if (i > 0 && nums[i] == nums[i - 1]) { //三元组元素a去重
|
||||
|
||||
// [a, a, ...] 如果本轮a和上轮a相同,那么找到的b,c也是相同的,所以去重a
|
||||
if (i > 0 && nums[i] == nums[i - 1])
|
||||
continue;
|
||||
}
|
||||
|
||||
// 这个set的作用是存储b
|
||||
unordered_set<int> set;
|
||||
for (int j = i + 1; j < nums.size(); j++) {
|
||||
if (j > i + 2
|
||||
&& nums[j] == nums[j-1]
|
||||
&& nums[j-1] == nums[j-2]) { // 三元组元素b去重
|
||||
|
||||
for (int k = i + 1; k < nums.size(); k++) {
|
||||
// 去重b=c时的b和c
|
||||
if (k > i + 2 && nums[k] == nums[k - 1] && nums[k - 1] == nums[k - 2])
|
||||
continue;
|
||||
|
||||
// a+b+c=0 <=> b=0-(a+c)
|
||||
int target = 0 - (nums[i] + nums[k]);
|
||||
if (set.find(target) != set.end()) {
|
||||
result.push_back({nums[i], target, nums[k]}); // nums[k]成为c
|
||||
set.erase(target);
|
||||
}
|
||||
int c = 0 - (nums[i] + nums[j]);
|
||||
if (set.find(c) != set.end()) {
|
||||
result.push_back({nums[i], nums[j], c});
|
||||
set.erase(c);// 三元组元素c去重
|
||||
} else {
|
||||
set.insert(nums[j]);
|
||||
else {
|
||||
set.insert(nums[k]); // nums[k]成为b
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
@ -58,7 +58,7 @@
|
||||
|
||||
* fast和slow同时移动,直到fast指向末尾,如题:
|
||||
<img src='https://code-thinking.cdn.bcebos.com/pics/19.%E5%88%A0%E9%99%A4%E9%93%BE%E8%A1%A8%E7%9A%84%E5%80%92%E6%95%B0%E7%AC%ACN%E4%B8%AA%E8%8A%82%E7%82%B92.png' width=600> </img></div>
|
||||
|
||||
//图片中有错别词:应该将“只到”改为“直到”
|
||||
* 删除slow指向的下一个节点,如图:
|
||||
<img src='https://code-thinking.cdn.bcebos.com/pics/19.%E5%88%A0%E9%99%A4%E9%93%BE%E8%A1%A8%E7%9A%84%E5%80%92%E6%95%B0%E7%AC%ACN%E4%B8%AA%E8%8A%82%E7%82%B93.png' width=600> </img></div>
|
||||
|
||||
|
@ -275,7 +275,7 @@ def is_valid(strs)
|
||||
end
|
||||
```
|
||||
|
||||
### Javascript:
|
||||
### JavaScript:
|
||||
|
||||
```javascript
|
||||
var isValid = function (s) {
|
||||
|
@ -286,7 +286,7 @@ func swapPairs(head *ListNode) *ListNode {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript:
|
||||
### JavaScript:
|
||||
|
||||
```javascript
|
||||
var swapPairs = function (head) {
|
||||
|
@ -131,7 +131,24 @@ public:
|
||||
## 其他语言版本
|
||||
|
||||
### Java:
|
||||
|
||||
```java
|
||||
class Solution {
|
||||
public int removeElement(int[] nums, int val) {
|
||||
// 暴力法
|
||||
int n = nums.length;
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (nums[i] == val) {
|
||||
for (int j = i + 1; j < n; j++) {
|
||||
nums[j - 1] = nums[j];
|
||||
}
|
||||
i--;
|
||||
n--;
|
||||
}
|
||||
}
|
||||
return n;
|
||||
}
|
||||
}
|
||||
```
|
||||
```java
|
||||
class Solution {
|
||||
public int removeElement(int[] nums, int val) {
|
||||
|
@ -1456,6 +1456,70 @@ public int[] GetNext(string needle)
|
||||
}
|
||||
```
|
||||
|
||||
### C:
|
||||
|
||||
> 前缀表统一右移和减一
|
||||
|
||||
```c
|
||||
|
||||
int *build_next(char* needle, int len) {
|
||||
|
||||
int *next = (int *)malloc(len * sizeof(int));
|
||||
assert(next); // 确保分配成功
|
||||
|
||||
// 初始化next数组
|
||||
next[0] = -1; // next[0] 设置为 -1,表示没有有效前缀匹配
|
||||
if (len <= 1) { // 如果模式串长度小于等于 1,直接返回
|
||||
return next;
|
||||
}
|
||||
next[1] = 0; // next[1] 设置为 0,表示第一个字符没有公共前后缀
|
||||
|
||||
// 构建next数组, i 从模式串的第三个字符开始, j 指向当前匹配的最长前缀长度
|
||||
int i = 2, j = 0;
|
||||
while (i < len) {
|
||||
if (needle[i - 1] == needle[j]) {
|
||||
j++;
|
||||
next[i] = j;
|
||||
i++;
|
||||
} else if (j > 0) {
|
||||
// 如果不匹配且 j > 0, 回退到次长匹配前缀的长度
|
||||
j = next[j];
|
||||
} else {
|
||||
next[i] = 0;
|
||||
i++;
|
||||
}
|
||||
}
|
||||
return next;
|
||||
}
|
||||
|
||||
int strStr(char* haystack, char* needle) {
|
||||
|
||||
int needle_len = strlen(needle);
|
||||
int haystack_len = strlen(haystack);
|
||||
|
||||
int *next = build_next(needle, needle_len);
|
||||
|
||||
int i = 0, j = 0; // i 指向主串的当前起始位置, j 指向模式串的当前匹配位置
|
||||
while (i <= haystack_len - needle_len) {
|
||||
if (haystack[i + j] == needle[j]) {
|
||||
j++;
|
||||
if (j == needle_len) {
|
||||
free(next);
|
||||
next = NULL
|
||||
return i;
|
||||
}
|
||||
} else {
|
||||
i += j - next[j]; // 调整主串的起始位置
|
||||
j = j > 0 ? next[j] : 0;
|
||||
}
|
||||
}
|
||||
|
||||
free(next);
|
||||
next = NULL;
|
||||
return -1;
|
||||
}
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
<img src="../pics/网站星球宣传海报.jpg" width="1000"/>
|
||||
|
@ -366,40 +366,56 @@ class Solution:
|
||||
"""
|
||||
Do not return anything, modify board in-place instead.
|
||||
"""
|
||||
self.backtracking(board)
|
||||
row_used = [set() for _ in range(9)]
|
||||
col_used = [set() for _ in range(9)]
|
||||
box_used = [set() for _ in range(9)]
|
||||
for row in range(9):
|
||||
for col in range(9):
|
||||
num = board[row][col]
|
||||
if num == ".":
|
||||
continue
|
||||
row_used[row].add(num)
|
||||
col_used[col].add(num)
|
||||
box_used[(row // 3) * 3 + col // 3].add(num)
|
||||
self.backtracking(0, 0, board, row_used, col_used, box_used)
|
||||
|
||||
def backtracking(self, board: List[List[str]]) -> bool:
|
||||
# 若有解,返回True;若无解,返回False
|
||||
for i in range(len(board)): # 遍历行
|
||||
for j in range(len(board[0])): # 遍历列
|
||||
# 若空格内已有数字,跳过
|
||||
if board[i][j] != '.': continue
|
||||
for k in range(1, 10):
|
||||
if self.is_valid(i, j, k, board):
|
||||
board[i][j] = str(k)
|
||||
if self.backtracking(board): return True
|
||||
board[i][j] = '.'
|
||||
# 若数字1-9都不能成功填入空格,返回False无解
|
||||
return False
|
||||
return True # 有解
|
||||
|
||||
def is_valid(self, row: int, col: int, val: int, board: List[List[str]]) -> bool:
|
||||
# 判断同一行是否冲突
|
||||
for i in range(9):
|
||||
if board[row][i] == str(val):
|
||||
return False
|
||||
# 判断同一列是否冲突
|
||||
for j in range(9):
|
||||
if board[j][col] == str(val):
|
||||
return False
|
||||
# 判断同一九宫格是否有冲突
|
||||
start_row = (row // 3) * 3
|
||||
start_col = (col // 3) * 3
|
||||
for i in range(start_row, start_row + 3):
|
||||
for j in range(start_col, start_col + 3):
|
||||
if board[i][j] == str(val):
|
||||
return False
|
||||
def backtracking(
|
||||
self,
|
||||
row: int,
|
||||
col: int,
|
||||
board: List[List[str]],
|
||||
row_used: List[List[int]],
|
||||
col_used: List[List[int]],
|
||||
box_used: List[List[int]],
|
||||
) -> bool:
|
||||
if row == 9:
|
||||
return True
|
||||
|
||||
next_row, next_col = (row, col + 1) if col < 8 else (row + 1, 0)
|
||||
if board[row][col] != ".":
|
||||
return self.backtracking(
|
||||
next_row, next_col, board, row_used, col_used, box_used
|
||||
)
|
||||
|
||||
for num in map(str, range(1, 10)):
|
||||
if (
|
||||
num not in row_used[row]
|
||||
and num not in col_used[col]
|
||||
and num not in box_used[(row // 3) * 3 + col // 3]
|
||||
):
|
||||
board[row][col] = num
|
||||
row_used[row].add(num)
|
||||
col_used[col].add(num)
|
||||
box_used[(row // 3) * 3 + col // 3].add(num)
|
||||
if self.backtracking(
|
||||
next_row, next_col, board, row_used, col_used, box_used
|
||||
):
|
||||
return True
|
||||
board[row][col] = "."
|
||||
row_used[row].remove(num)
|
||||
col_used[col].remove(num)
|
||||
box_used[(row // 3) * 3 + col // 3].remove(num)
|
||||
return False
|
||||
```
|
||||
|
||||
### Go
|
||||
@ -460,7 +476,7 @@ func isvalid(row, col int, k byte, board [][]byte) bool {
|
||||
|
||||
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
```Javascript
|
||||
var solveSudoku = function(board) {
|
||||
|
@ -374,7 +374,7 @@ func max(a, b int) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
```Javascript
|
||||
var jump = function(nums) {
|
||||
|
@ -272,7 +272,7 @@ func dfs(nums []int, cur int) {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
```js
|
||||
|
||||
|
@ -283,7 +283,7 @@ func dfs(nums []int, cur int) {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
```javascript
|
||||
var permuteUnique = function (nums) {
|
||||
|
@ -451,7 +451,7 @@ func isValid(n, row, col int, chessboard [][]string) bool {
|
||||
```
|
||||
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
```Javascript
|
||||
/**
|
||||
* @param {number} n
|
||||
|
@ -326,7 +326,7 @@ pub fn max_sub_array(nums: Vec<i32>) -> i32 {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript:
|
||||
### JavaScript:
|
||||
|
||||
```Javascript
|
||||
var maxSubArray = function(nums) {
|
||||
|
@ -260,7 +260,7 @@ class Solution {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
```
|
||||
/**
|
||||
* @param {number[][]} matrix
|
||||
|
@ -183,7 +183,7 @@ func max(a, b int ) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
```Javascript
|
||||
var canJump = function(nums) {
|
||||
|
@ -215,7 +215,7 @@ func max56(a, b int) int {
|
||||
```
|
||||
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
```javascript
|
||||
var merge = function (intervals) {
|
||||
intervals.sort((a, b) => a[0] - b[0]);
|
||||
|
@ -411,7 +411,7 @@ func uniquePaths(m int, n int) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
```Javascript
|
||||
var uniquePaths = function(m, n) {
|
||||
|
@ -465,7 +465,7 @@ func uniquePathsWithObstacles(obstacleGrid [][]int) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
```Javascript
|
||||
var uniquePathsWithObstacles = function(obstacleGrid) {
|
||||
|
@ -327,7 +327,7 @@ func climbStairs(n int) int {
|
||||
return dp[n]
|
||||
}
|
||||
```
|
||||
### Javascript
|
||||
### JavaScript
|
||||
```Javascript
|
||||
var climbStairs = function(n) {
|
||||
// dp[i] 为第 i 阶楼梯有多少种方法爬到楼顶
|
||||
|
@ -313,7 +313,7 @@ func Min(args ...int) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript:
|
||||
### JavaScript:
|
||||
|
||||
```javascript
|
||||
const minDistance = (word1, word2) => {
|
||||
|
@ -468,7 +468,7 @@ func dfs(n int, k int, start int) {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
未剪枝:
|
||||
|
||||
```js
|
||||
|
@ -246,7 +246,7 @@ func dfs(nums []int, start int) {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
```Javascript
|
||||
var subsets = function(nums) {
|
||||
|
@ -474,7 +474,128 @@ class Solution:
|
||||
|
||||
### Go:
|
||||
|
||||
> 单调栈
|
||||
暴力解法
|
||||
|
||||
```go
|
||||
func largestRectangleArea(heights []int) int {
|
||||
sum := 0
|
||||
for i := 0; i < len(heights); i++ {
|
||||
left, right := i, i
|
||||
for left >= 0 {
|
||||
if heights[left] < heights[i] {
|
||||
break
|
||||
}
|
||||
left--
|
||||
}
|
||||
for right < len(heights) {
|
||||
if heights[right] < heights[i] {
|
||||
break
|
||||
}
|
||||
right++
|
||||
}
|
||||
w := right - left - 1
|
||||
h := heights[i]
|
||||
sum = max(sum, w * h)
|
||||
}
|
||||
return sum
|
||||
}
|
||||
|
||||
func max(x, y int) int {
|
||||
if x > y {
|
||||
return x
|
||||
}
|
||||
return y
|
||||
}
|
||||
```
|
||||
|
||||
双指针解法
|
||||
|
||||
```go
|
||||
func largestRectangleArea(heights []int) int {
|
||||
size := len(heights)
|
||||
minLeftIndex := make([]int, size)
|
||||
minRightIndex := make([]int, size)
|
||||
|
||||
// 记录每个柱子 左边第一个小于该柱子的下标
|
||||
minLeftIndex[0] = -1 // 注意这里初始化,防止下面while死循环
|
||||
for i := 1; i < size; i++ {
|
||||
t := i - 1
|
||||
// 这里不是用if,而是不断向左寻找的过程
|
||||
for t >= 0 && heights[t] >= heights[i] {
|
||||
t = minLeftIndex[t]
|
||||
}
|
||||
minLeftIndex[i] = t
|
||||
}
|
||||
// 记录每个柱子 右边第一个小于该柱子的下标
|
||||
minRightIndex[size - 1] = size; // 注意这里初始化,防止下面while死循环
|
||||
for i := size - 2; i >= 0; i-- {
|
||||
t := i + 1
|
||||
// 这里不是用if,而是不断向右寻找的过程
|
||||
for t < size && heights[t] >= heights[i] {
|
||||
t = minRightIndex[t]
|
||||
}
|
||||
minRightIndex[i] = t
|
||||
}
|
||||
// 求和
|
||||
result := 0
|
||||
for i := 0; i < size; i++ {
|
||||
sum := heights[i] * (minRightIndex[i] - minLeftIndex[i] - 1)
|
||||
result = max(sum, result)
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
func max(x, y int) int {
|
||||
if x > y {
|
||||
return x
|
||||
}
|
||||
return y
|
||||
}
|
||||
```
|
||||
|
||||
单调栈
|
||||
|
||||
```go
|
||||
func largestRectangleArea(heights []int) int {
|
||||
result := 0
|
||||
heights = append([]int{0}, heights...) // 数组头部加入元素0
|
||||
heights = append(heights, 0) // 数组尾部加入元素0
|
||||
st := []int{0}
|
||||
|
||||
// 第一个元素已经入栈,从下标1开始
|
||||
for i := 1; i < len(heights); i++ {
|
||||
if heights[i] > heights[st[len(st)-1]] {
|
||||
st = append(st, i)
|
||||
} else if heights[i] == heights[st[len(st)-1]] {
|
||||
st = st[:len(st)-1]
|
||||
st = append(st, i)
|
||||
} else {
|
||||
for len(st) > 0 && heights[i] < heights[st[len(st)-1]] {
|
||||
mid := st[len(st)-1]
|
||||
st = st[:len(st)-1]
|
||||
if len(st) > 0 {
|
||||
left := st[len(st)-1]
|
||||
right := i
|
||||
w := right - left - 1
|
||||
h := heights[mid]
|
||||
result = max(result, w * h)
|
||||
}
|
||||
}
|
||||
st = append(st, i)
|
||||
}
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
func max(x, y int) int {
|
||||
if x > y {
|
||||
return x
|
||||
}
|
||||
return y
|
||||
}
|
||||
```
|
||||
|
||||
单调栈精简
|
||||
|
||||
```go
|
||||
func largestRectangleArea(heights []int) int {
|
||||
|
@ -376,7 +376,7 @@ func dfs(nums []int, start int) {
|
||||
```
|
||||
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
```Javascript
|
||||
|
||||
|
@ -221,7 +221,7 @@ func numTrees(n int)int{
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
```Javascript
|
||||
const numTrees =(n) => {
|
||||
|
@ -22,7 +22,7 @@
|
||||
|
||||
## 算法公开课
|
||||
|
||||
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[你对二叉搜索树了解的还不够! | LeetCode:98.验证二叉搜索树](https://www.bilibili.com/video/BV18P411n7Q4),相信结合视频在看本篇题解,更有助于大家对本题的理解**。
|
||||
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[你对二叉搜索树了解的还不够! | LeetCode:98.验证二叉搜索树](https://www.bilibili.com/video/BV18P411n7Q4),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
|
||||
|
||||
|
||||
## 思路
|
||||
|
@ -356,7 +356,7 @@ func levelOrder(root *TreeNode) (res [][]int) {
|
||||
}
|
||||
```
|
||||
|
||||
#### Javascript:
|
||||
#### JavaScript:
|
||||
|
||||
```javascript
|
||||
var levelOrder = function(root) {
|
||||
@ -759,7 +759,7 @@ func levelOrderBottom(root *TreeNode) [][]int {
|
||||
}
|
||||
```
|
||||
|
||||
#### Javascript:
|
||||
#### JavaScript:
|
||||
|
||||
```javascript
|
||||
var levelOrderBottom = function (root) {
|
||||
@ -1101,7 +1101,7 @@ func rightSideView(root *TreeNode) []int {
|
||||
}
|
||||
```
|
||||
|
||||
#### Javascript:
|
||||
#### JavaScript:
|
||||
|
||||
```javascript
|
||||
var rightSideView = function(root) {
|
||||
@ -1421,7 +1421,7 @@ func averageOfLevels(root *TreeNode) []float64 {
|
||||
}
|
||||
```
|
||||
|
||||
#### Javascript:
|
||||
#### JavaScript:
|
||||
|
||||
```javascript
|
||||
var averageOfLevels = function(root) {
|
||||
@ -2109,7 +2109,7 @@ func largestValues(root *TreeNode) []int {
|
||||
}
|
||||
```
|
||||
|
||||
#### Javascript:
|
||||
#### JavaScript:
|
||||
|
||||
```javascript
|
||||
var largestValues = function (root) {
|
||||
|
@ -604,7 +604,7 @@ func maxDepth(root *Node) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript :
|
||||
### JavaScript :
|
||||
|
||||
104.二叉树的最大深度
|
||||
|
||||
|
@ -830,7 +830,7 @@ func traverse(node *TreeNode, result *[][]int, currPath *[]int, targetSum int) {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
0112.路径总和
|
||||
|
||||
|
@ -265,7 +265,7 @@ func numDistinct(s string, t string) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript:
|
||||
### JavaScript:
|
||||
|
||||
```javascript
|
||||
const numDistinct = (s, t) => {
|
||||
|
@ -249,7 +249,7 @@ func max(a, b int) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript:
|
||||
### JavaScript:
|
||||
|
||||
贪心
|
||||
|
||||
|
@ -316,8 +316,9 @@ class Solution:
|
||||
|
||||
### Go:
|
||||
|
||||
> 版本一
|
||||
|
||||
```go
|
||||
// 版本一
|
||||
func maxProfit(prices []int) int {
|
||||
dp := make([][]int, len(prices))
|
||||
for i := 0; i < len(prices); i++ {
|
||||
@ -345,8 +346,9 @@ func max(a, b int) int {
|
||||
}
|
||||
```
|
||||
|
||||
> 版本二
|
||||
|
||||
```go
|
||||
// 版本二
|
||||
func maxProfit(prices []int) int {
|
||||
if len(prices) == 0 {
|
||||
return 0
|
||||
@ -371,8 +373,9 @@ func max(x, y int) int {
|
||||
}
|
||||
```
|
||||
|
||||
> 版本三
|
||||
|
||||
```go
|
||||
// 版本三
|
||||
func maxProfit(prices []int) int {
|
||||
if len(prices) == 0 {
|
||||
return 0
|
||||
@ -397,6 +400,26 @@ func max(x, y int) int {
|
||||
}
|
||||
```
|
||||
|
||||
> 版本四:一维 dp 易懂版本
|
||||
|
||||
```go
|
||||
func maxProfit(prices []int) int {
|
||||
dp := make([]int, 4)
|
||||
dp[0] = -prices[0]
|
||||
dp[2] = -prices[0]
|
||||
|
||||
for _, price := range prices[1:] {
|
||||
dc := slices.Clone(dp) // 这句话是关键,把前一天的 dp 状态保存下来,防止被覆盖掉,后面只用它,不用 dp,逻辑简单易懂
|
||||
dp[0] = max(dc[0], -price)
|
||||
dp[1] = max(dc[1], dc[0] + price)
|
||||
dp[2] = max(dc[2], dc[1] - price)
|
||||
dp[3] = max(dc[3], dc[2] + price)
|
||||
}
|
||||
|
||||
return dp[3]
|
||||
}
|
||||
```
|
||||
|
||||
### JavaScript:
|
||||
|
||||
> 版本一:
|
||||
|
@ -396,7 +396,7 @@ func canCompleteCircuit(gas []int, cost []int) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
暴力:
|
||||
```js
|
||||
var canCompleteCircuit = function(gas, cost) {
|
||||
|
@ -233,7 +233,7 @@ func findMax(num1 int, num2 int) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
```Javascript
|
||||
var candy = function(ratings) {
|
||||
let candys = new Array(ratings.length).fill(1)
|
||||
|
@ -38,7 +38,7 @@ public:
|
||||
cur = head;
|
||||
int i = 1;
|
||||
int j = vec.size() - 1; // i j为之前前后的双指针
|
||||
int count = 0; // 计数,偶数去后面,奇数取前面
|
||||
int count = 0; // 计数,偶数取后面,奇数取前面
|
||||
while (i <= j) {
|
||||
if (count % 2 == 0) {
|
||||
cur->next = vec[j];
|
||||
@ -73,7 +73,7 @@ public:
|
||||
}
|
||||
|
||||
cur = head;
|
||||
int count = 0; // 计数,偶数去后面,奇数取前面
|
||||
int count = 0; // 计数,偶数取后面,奇数取前面
|
||||
ListNode* node;
|
||||
while(que.size()) {
|
||||
if (count % 2 == 0) {
|
||||
@ -338,8 +338,85 @@ class Solution:
|
||||
return pre
|
||||
```
|
||||
### Go
|
||||
|
||||
```go
|
||||
# 方法三 分割链表
|
||||
// 方法一 数组模拟
|
||||
/**
|
||||
* Definition for singly-linked list.
|
||||
* type ListNode struct {
|
||||
* Val int
|
||||
* Next *ListNode
|
||||
* }
|
||||
*/
|
||||
func reorderList(head *ListNode) {
|
||||
vec := make([]*ListNode, 0)
|
||||
cur := head
|
||||
if cur == nil {
|
||||
return
|
||||
}
|
||||
for cur != nil {
|
||||
vec = append(vec, cur)
|
||||
cur = cur.Next
|
||||
}
|
||||
cur = head
|
||||
i := 1
|
||||
j := len(vec) - 1 // i j为前后的双指针
|
||||
count := 0 // 计数,偶数取后面,奇数取前面
|
||||
for i <= j {
|
||||
if count % 2 == 0 {
|
||||
cur.Next = vec[j]
|
||||
j--
|
||||
} else {
|
||||
cur.Next = vec[i]
|
||||
i++
|
||||
}
|
||||
cur = cur.Next
|
||||
count++
|
||||
}
|
||||
cur.Next = nil // 注意结尾
|
||||
}
|
||||
```
|
||||
|
||||
```go
|
||||
// 方法二 双向队列模拟
|
||||
/**
|
||||
* Definition for singly-linked list.
|
||||
* type ListNode struct {
|
||||
* Val int
|
||||
* Next *ListNode
|
||||
* }
|
||||
*/
|
||||
func reorderList(head *ListNode) {
|
||||
que := make([]*ListNode, 0)
|
||||
cur := head
|
||||
if cur == nil {
|
||||
return
|
||||
}
|
||||
|
||||
for cur.Next != nil {
|
||||
que = append(que, cur.Next)
|
||||
cur = cur.Next
|
||||
}
|
||||
|
||||
cur = head
|
||||
count := 0 // 计数,偶数取后面,奇数取前面
|
||||
for len(que) > 0 {
|
||||
if count % 2 == 0 {
|
||||
cur.Next = que[len(que)-1]
|
||||
que = que[:len(que)-1]
|
||||
} else {
|
||||
cur.Next = que[0]
|
||||
que = que[1:]
|
||||
}
|
||||
count++
|
||||
cur = cur.Next
|
||||
}
|
||||
cur.Next = nil // 注意结尾
|
||||
}
|
||||
```
|
||||
|
||||
```go
|
||||
// 方法三 分割链表
|
||||
func reorderList(head *ListNode) {
|
||||
var slow=head
|
||||
var fast=head
|
||||
|
@ -188,34 +188,21 @@ class Solution(object):
|
||||
return stack.pop()
|
||||
```
|
||||
|
||||
另一种可行,但因为使用eval相对较慢的方法:
|
||||
另一种可行,但因为使用eval()相对较慢的方法:
|
||||
```python
|
||||
from operator import add, sub, mul
|
||||
|
||||
def div(x, y):
|
||||
# 使用整数除法的向零取整方式
|
||||
return int(x / y) if x * y > 0 else -(abs(x) // abs(y))
|
||||
|
||||
class Solution(object):
|
||||
op_map = {'+': add, '-': sub, '*': mul, '/': div}
|
||||
|
||||
def evalRPN(self, tokens):
|
||||
"""
|
||||
:type tokens: List[str]
|
||||
:rtype: int
|
||||
"""
|
||||
def evalRPN(self, tokens: List[str]) -> int:
|
||||
stack = []
|
||||
for token in tokens:
|
||||
if token in self.op_map:
|
||||
op1 = stack.pop()
|
||||
op2 = stack.pop()
|
||||
operation = self.op_map[token]
|
||||
stack.append(operation(op2, op1))
|
||||
# 判断是否为数字,因为isdigit()不识别负数,故需要排除第一位的符号
|
||||
if token.isdigit() or (len(token)>1 and token[1].isdigit()):
|
||||
stack.append(token)
|
||||
else:
|
||||
stack.append(int(token))
|
||||
return stack.pop()
|
||||
|
||||
|
||||
op2 = stack.pop()
|
||||
op1 = stack.pop()
|
||||
# 由题意"The division always truncates toward zero",所以使用int()可以天然取整
|
||||
stack.append(str(int(eval(op1 + token + op2))))
|
||||
return int(stack.pop())
|
||||
```
|
||||
|
||||
### Go:
|
||||
|
@ -513,6 +513,29 @@ class Solution:
|
||||
|
||||
return "".join(result)
|
||||
```
|
||||
|
||||
(版本五) 遇到空格就说明前面的是一个单词,把它加入到一个数组中。
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def reverseWords(self, s: str) -> str:
|
||||
words = []
|
||||
word = ''
|
||||
s += ' ' # 帮助处理最后一个字词
|
||||
|
||||
for char in s:
|
||||
if char == ' ': # 遇到空格就说明前面的可能是一个单词
|
||||
if word != '': # 确认是单词,把它加入到一个数组中
|
||||
words.append(word)
|
||||
word = '' # 清空当前单词
|
||||
continue
|
||||
|
||||
word += char # 收集单词的字母
|
||||
|
||||
words.reverse()
|
||||
return ' '.join(words)
|
||||
```
|
||||
|
||||
### Go:
|
||||
|
||||
版本一:
|
||||
|
@ -297,8 +297,7 @@ class Solution {
|
||||
|
||||
### Python:
|
||||
|
||||
版本一
|
||||
|
||||
> 版本一
|
||||
```python
|
||||
class Solution:
|
||||
def maxProfit(self, k: int, prices: List[int]) -> int:
|
||||
@ -313,7 +312,8 @@ class Solution:
|
||||
dp[i][j+2] = max(dp[i-1][j+2], dp[i-1][j+1] + prices[i])
|
||||
return dp[-1][2*k]
|
||||
```
|
||||
版本二
|
||||
|
||||
> 版本二
|
||||
```python
|
||||
class Solution:
|
||||
def maxProfit(self, k: int, prices: List[int]) -> int:
|
||||
@ -329,9 +329,31 @@ class Solution:
|
||||
dp[j] = max(dp[j],dp[j-1]+prices[i])
|
||||
return dp[2*k]
|
||||
```
|
||||
|
||||
> 版本三: 一维 dp 数组(易理解版本)
|
||||
```python
|
||||
class Solution:
|
||||
def maxProfit(self, k: int, prices: List[int]) -> int:
|
||||
dp = [0] * k * 2
|
||||
for i in range(k):
|
||||
dp[i * 2] = -prices[0]
|
||||
|
||||
for price in prices[1:]:
|
||||
dc = dp.copy() # 这句话是关键,把前一天的 dp 状态保存下来,防止被覆盖掉,后面只用它,不用 dp,逻辑简单易懂
|
||||
|
||||
for i in range(2 * k):
|
||||
if i % 2 == 1:
|
||||
dp[i] = max(dc[i], dc[i - 1] + price)
|
||||
else:
|
||||
pre = 0 if i == 0 else dc[i - 1]
|
||||
dp[i] = max(dc[i], pre - price)
|
||||
|
||||
return dp[-1]
|
||||
```
|
||||
|
||||
### Go:
|
||||
|
||||
版本一:
|
||||
> 版本一:
|
||||
|
||||
```go
|
||||
// 买卖股票的最佳时机IV 动态规划
|
||||
@ -368,7 +390,7 @@ func max(a, b int) int {
|
||||
}
|
||||
```
|
||||
|
||||
版本二: 三维 dp数组
|
||||
> 版本二: 三维 dp数组
|
||||
```go
|
||||
func maxProfit(k int, prices []int) int {
|
||||
length := len(prices)
|
||||
@ -443,7 +465,31 @@ func max(a, b int) int {
|
||||
}
|
||||
```
|
||||
|
||||
> 版本四:一维 dp 数组(易理解版本)
|
||||
|
||||
```go
|
||||
func maxProfit(k int, prices []int) int {
|
||||
dp := make([]int, 2 * k)
|
||||
for i := range k {
|
||||
dp[i * 2] = -prices[0]
|
||||
}
|
||||
|
||||
for j := 1; j < len(prices); j++ {
|
||||
dc := slices.Clone(dp) // 这句话是关键,把前一天的 dp 状态保存下来,防止被覆盖掉,后面只用它,不用 dp,逻辑简单易懂
|
||||
|
||||
for i := range k * 2 {
|
||||
if i % 2 == 1 {
|
||||
dp[i] = max(dc[i], dc[i - 1] + prices[j])
|
||||
} else {
|
||||
pre := 0; if i >= 1 { pre = dc[i - 1] }
|
||||
dp[i] = max(dc[i], pre - prices[j])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return dp[2 * k - 1]
|
||||
}
|
||||
```
|
||||
|
||||
### JavaScript:
|
||||
|
||||
|
@ -337,6 +337,37 @@ public ListNode removeElements(ListNode head, int val) {
|
||||
|
||||
```
|
||||
|
||||
递归
|
||||
|
||||
```java
|
||||
/**
|
||||
* 时间复杂度 O(n)
|
||||
* 空间复杂度 O(n)
|
||||
* @param head
|
||||
* @param val
|
||||
* @return
|
||||
*/
|
||||
class Solution {
|
||||
public ListNode removeElements(ListNode head, int val) {
|
||||
if (head == null) {
|
||||
return head;
|
||||
}
|
||||
|
||||
// 假设 removeElements() 返回后面完整的已经去掉val节点的子链表
|
||||
// 在当前递归层用当前节点接住后面的子链表
|
||||
// 随后判断当前层的node是否需要被删除,如果是,就返回
|
||||
// 也可以先判断是否需要删除当前node,但是这样条件语句会比较不好想
|
||||
head.next = removeElements(head.next, val);
|
||||
if (head.val == val) {
|
||||
return head.next;
|
||||
}
|
||||
return head;
|
||||
|
||||
// 实际上就是还原一个从尾部开始重新构建链表的过程
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Python:
|
||||
|
||||
```python
|
||||
@ -737,7 +768,45 @@ public class Solution
|
||||
}
|
||||
}
|
||||
```
|
||||
### Ruby#
|
||||
|
||||
```ruby
|
||||
# 定义链表节点
|
||||
class ListNode
|
||||
attr_accessor :val, :next
|
||||
def initialize(val = 0, _next = nil)
|
||||
@val = val
|
||||
@next = _next
|
||||
end
|
||||
end
|
||||
|
||||
# 删除链表中值为 val 的节点
|
||||
def remove_elements(head, val)
|
||||
# 创建一个虚拟头节点,这样可以简化删除头节点的处理
|
||||
# 虚拟头节点的值为 0,指向当前链表的头节点
|
||||
dummy = ListNode.new(0)
|
||||
dummy.next = head
|
||||
|
||||
# 初始化当前节点为虚拟头节点
|
||||
current = dummy
|
||||
|
||||
# 遍历链表,直到当前节点的下一个节点为空
|
||||
while current.next
|
||||
# 如果当前节点的下一个节点的值等于 val
|
||||
if current.next.val == val
|
||||
# 跳过该节点,即将当前节点的 next 指向下一个节点的 next
|
||||
current.next = current.next.next
|
||||
else
|
||||
# 否则继续遍历,当前节点向前移动
|
||||
current = current.next
|
||||
end
|
||||
end
|
||||
|
||||
# 返回删除 val 后的新链表的头节点,虚拟头节点的 next 就是新的头节点
|
||||
dummy.next
|
||||
end
|
||||
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
|
@ -266,7 +266,7 @@ var minSubArrayLen = function(target, nums) {
|
||||
};
|
||||
```
|
||||
|
||||
### Typescript:
|
||||
### TypeScript:
|
||||
|
||||
```typescript
|
||||
function minSubArrayLen(target: number, nums: number[]): number {
|
||||
|
@ -81,7 +81,7 @@ if (root == NULL) return root;
|
||||
|
||||
3. 确定单层递归的逻辑
|
||||
|
||||
因为是先前序遍历,所以先进行交换左右孩子节点,然后反转左子树,反转右子树。
|
||||
因为是前序遍历,所以先进行交换左右孩子节点,然后反转左子树,反转右子树。
|
||||
|
||||
```cpp
|
||||
swap(root->left, root->right);
|
||||
@ -348,14 +348,13 @@ class Solution:
|
||||
while stack:
|
||||
node = stack.pop()
|
||||
node.left, node.right = node.right, node.left
|
||||
if node.left:
|
||||
stack.append(node.left)
|
||||
if node.right:
|
||||
stack.append(node.right)
|
||||
if node.left:
|
||||
stack.append(node.left)
|
||||
return root
|
||||
```
|
||||
|
||||
|
||||
递归法:中序遍历:
|
||||
```python
|
||||
# Definition for a binary tree node.
|
||||
@ -374,7 +373,7 @@ class Solution:
|
||||
return root
|
||||
```
|
||||
|
||||
迭代法:中序遍历:
|
||||
迭代法,伪中序遍历(结果是对的,看起来像是中序遍历,实际上它是前序遍历,只不过把中间节点处理逻辑放到了中间。还是要用'统一写法'才是真正的中序遍历):
|
||||
```python
|
||||
# Definition for a binary tree node.
|
||||
# class TreeNode:
|
||||
@ -389,15 +388,14 @@ class Solution:
|
||||
stack = [root]
|
||||
while stack:
|
||||
node = stack.pop()
|
||||
if node.left:
|
||||
stack.append(node.left)
|
||||
node.left, node.right = node.right, node.left
|
||||
if node.left:
|
||||
stack.append(node.left)
|
||||
if node.right:
|
||||
stack.append(node.right)
|
||||
node.left, node.right = node.right, node.left # 放到中间,依然是前序遍历
|
||||
if node.right:
|
||||
stack.append(node.right)
|
||||
return root
|
||||
```
|
||||
|
||||
|
||||
递归法:后序遍历:
|
||||
```python
|
||||
# Definition for a binary tree node.
|
||||
@ -416,7 +414,7 @@ class Solution:
|
||||
return root
|
||||
```
|
||||
|
||||
迭代法:后序遍历:
|
||||
迭代法,伪后序遍历(结果是对的,看起来像是后序遍历,实际上它是前序遍历,只不过把中间节点处理逻辑放到了最后。还是要用'统一写法'才是真正的后序遍历):
|
||||
```python
|
||||
# Definition for a binary tree node.
|
||||
# class TreeNode:
|
||||
@ -431,19 +429,15 @@ class Solution:
|
||||
stack = [root]
|
||||
while stack:
|
||||
node = stack.pop()
|
||||
if node.left:
|
||||
stack.append(node.left)
|
||||
if node.right:
|
||||
stack.append(node.right)
|
||||
if node.left:
|
||||
stack.append(node.left)
|
||||
node.left, node.right = node.right, node.left
|
||||
|
||||
return root
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
迭代法:广度优先遍历(层序遍历):
|
||||
```python
|
||||
# Definition for a binary tree node.
|
||||
|
@ -113,7 +113,7 @@ public:
|
||||
|
||||
```
|
||||
|
||||
* 时间复杂度: push和empty为O(1), pop和peek为O(n)
|
||||
* 时间复杂度: 都为O(1)。pop和peek看起来像O(n),实际上一个循环n会被使用n次,最后还是O(1)。
|
||||
* 空间复杂度: O(n)
|
||||
|
||||
|
||||
|
@ -38,7 +38,7 @@
|
||||
|
||||
## 算法公开课
|
||||
|
||||
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[二叉搜索树找祖先就有点不一样了!| 235. 二叉搜索树的最近公共祖先](https://www.bilibili.com/video/BV1Zt4y1F7ww?share_source=copy_web),相信结合视频在看本篇题解,更有助于大家对本题的理解**。
|
||||
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[二叉搜索树找祖先就有点不一样了!| 235. 二叉搜索树的最近公共祖先](https://www.bilibili.com/video/BV1Zt4y1F7ww?share_source=copy_web),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
|
||||
|
||||
## 思路
|
||||
|
||||
|
@ -36,7 +36,7 @@
|
||||
|
||||
## 算法公开课
|
||||
|
||||
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[自底向上查找,有点难度! | LeetCode:236. 二叉树的最近公共祖先](https://www.bilibili.com/video/BV1jd4y1B7E2),相信结合视频在看本篇题解,更有助于大家对本题的理解**。
|
||||
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[自底向上查找,有点难度! | LeetCode:236. 二叉树的最近公共祖先](https://www.bilibili.com/video/BV1jd4y1B7E2),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
|
||||
|
||||
|
||||
## 思路
|
||||
@ -45,7 +45,7 @@
|
||||
|
||||
那么二叉树如何可以自底向上查找呢?
|
||||
|
||||
回溯啊,二叉树回溯的过程就是从低到上。
|
||||
回溯啊,二叉树回溯的过程就是从底到上。
|
||||
|
||||
后序遍历(左右中)就是天然的回溯过程,可以根据左右子树的返回值,来处理中节点的逻辑。
|
||||
|
||||
|
@ -299,7 +299,7 @@ class Solution {
|
||||
```
|
||||
|
||||
### Python:
|
||||
|
||||
#### 解法一:使用自定义的单调队列类
|
||||
```python
|
||||
from collections import deque
|
||||
|
||||
@ -339,6 +339,35 @@ class Solution:
|
||||
return result
|
||||
```
|
||||
|
||||
|
||||
#### 解法二:直接用单调队列
|
||||
```python
|
||||
from collections import deque
|
||||
class Solution:
|
||||
def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
|
||||
max_list = [] # 结果集合
|
||||
kept_nums = deque() # 单调队列
|
||||
|
||||
for i in range(len(nums)):
|
||||
update_kept_nums(kept_nums, nums[i]) # 右侧新元素加入
|
||||
|
||||
if i >= k and nums[i - k] == kept_nums[0]: # 左侧旧元素如果等于单调队列头元素,需要移除头元素
|
||||
kept_nums.popleft()
|
||||
|
||||
if i >= k - 1:
|
||||
max_list.append(kept_nums[0])
|
||||
|
||||
return max_list
|
||||
|
||||
def update_kept_nums(kept_nums, num): # num 是新加入的元素
|
||||
# 所有小于新元素的队列尾部元素,在新元素出现后,都是没有价值的,都需要被移除
|
||||
while kept_nums and num > kept_nums[-1]:
|
||||
kept_nums.pop()
|
||||
|
||||
kept_nums.append(num)
|
||||
|
||||
```
|
||||
|
||||
### Go:
|
||||
|
||||
```go
|
||||
@ -401,7 +430,7 @@ func maxSlidingWindow(nums []int, k int) []int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript:
|
||||
### JavaScript:
|
||||
|
||||
```javascript
|
||||
/**
|
||||
|
@ -346,7 +346,7 @@ func min(a, b int) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript:
|
||||
### JavaScript:
|
||||
|
||||
```Javascript
|
||||
// 先遍历物品,再遍历背包
|
||||
|
@ -248,7 +248,7 @@ func lengthOfLIS(nums []int ) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript:
|
||||
### JavaScript:
|
||||
|
||||
```javascript
|
||||
const lengthOfLIS = (nums) => {
|
||||
|
@ -274,7 +274,7 @@ class Solution {
|
||||
```
|
||||
|
||||
### Python:
|
||||
版本一
|
||||
> 版本一
|
||||
|
||||
```python
|
||||
from typing import List
|
||||
@ -294,7 +294,8 @@ class Solution:
|
||||
return max(dp[n-1][3], dp[n-1][1], dp[n-1][2]) # 返回最后一天不持有股票的最大利润
|
||||
|
||||
```
|
||||
版本二
|
||||
|
||||
> 版本二
|
||||
```python
|
||||
class Solution:
|
||||
def maxProfit(self, prices: List[int]) -> int:
|
||||
@ -320,6 +321,36 @@ class Solution:
|
||||
return max(dp[-1][1], dp[-1][2])
|
||||
|
||||
```
|
||||
|
||||
> 版本三
|
||||
```python
|
||||
class Solution:
|
||||
def maxProfit(self, prices: List[int]) -> int:
|
||||
# 0: holding stocks
|
||||
# (1) keep holding stocks: dp[i][0] = dp[i - 1][0]
|
||||
# (2) buy stocks: dp[i][0] = dp[i - 1][1] - price, or dp[i - 1][3] - price
|
||||
# 1: keep no stocks: dp[i][1] = dp[i - 1][1]
|
||||
# 2: sell stocks: dp[i][2] = dp[i - 1][0] + price
|
||||
# 3: cooldown day: dp[i][3] = dp[i - 1][2]
|
||||
dp = [-prices[0], 0, 0, 0]
|
||||
|
||||
for price in prices[1:]:
|
||||
dc = dp.copy() # 这句话是关键,把前一天的 dp 状态保存下来,防止被覆盖掉,后面只用它,不用 dp,逻辑简单易懂
|
||||
dp[0] = max(
|
||||
dc[0],
|
||||
dc[1] - price,
|
||||
dc[3] - price
|
||||
)
|
||||
dp[1] = max(
|
||||
dc[1],
|
||||
dc[3]
|
||||
)
|
||||
dp[2] = dc[0] + price
|
||||
dp[3] = dc[2]
|
||||
|
||||
return max(dp)
|
||||
```
|
||||
|
||||
### Go:
|
||||
|
||||
```go
|
||||
@ -393,7 +424,7 @@ func max(a, b int) int {
|
||||
|
||||
|
||||
|
||||
### Javascript:
|
||||
### JavaScript:
|
||||
|
||||
> 不同的状态定义 感觉更容易理解些
|
||||
```javascript
|
||||
|
@ -427,7 +427,7 @@ impl Solution {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript:
|
||||
### JavaScript:
|
||||
|
||||
```javascript
|
||||
// 遍历物品
|
||||
|
@ -172,7 +172,7 @@ if (result.size() == ticketNum + 1) {
|
||||
|
||||
回溯的过程中,如何遍历一个机场所对应的所有机场呢?
|
||||
|
||||
这里刚刚说过,在选择映射函数的时候,不能选择`unordered_map<string, multiset<string>> targets`, 因为一旦有元素增删multiset的迭代器就会失效,当然可能有牛逼的容器删除元素迭代器不会失效,这里就不在讨论了。
|
||||
这里刚刚说过,在选择映射函数的时候,不能选择`unordered_map<string, multiset<string>> targets`, 因为一旦有元素增删multiset的迭代器就会失效,当然可能有牛逼的容器删除元素迭代器不会失效,这里就不再讨论了。
|
||||
|
||||
**可以说本题既要找到一个对数据进行排序的容器,而且还要容易增删元素,迭代器还不能失效**。
|
||||
|
||||
@ -535,7 +535,7 @@ func findItinerary(tickets [][]string) []string {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
```Javascript
|
||||
|
||||
|
@ -477,14 +477,7 @@ func max(x, y int) int {
|
||||
```go
|
||||
func rob(root *TreeNode) int {
|
||||
res := robTree(root)
|
||||
return max(res[0], res[1])
|
||||
}
|
||||
|
||||
func max(a, b int) int {
|
||||
if a > b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
return slices.Max(res)
|
||||
}
|
||||
|
||||
func robTree(cur *TreeNode) []int {
|
||||
@ -498,7 +491,7 @@ func robTree(cur *TreeNode) []int {
|
||||
// 考虑去偷当前的屋子
|
||||
robCur := cur.Val + left[0] + right[0]
|
||||
// 考虑不去偷当前的屋子
|
||||
notRobCur := max(left[0], left[1]) + max(right[0], right[1])
|
||||
notRobCur := slices.Max(left) + slices.Max(right)
|
||||
|
||||
// 注意顺序:0:不偷,1:去偷
|
||||
return []int{notRobCur, robCur}
|
||||
|
@ -385,7 +385,7 @@ func integerBreak(n int) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
```Javascript
|
||||
var integerBreak = function(n) {
|
||||
let dp = new Array(n + 1).fill(0)
|
||||
|
@ -72,7 +72,7 @@
|
||||
|
||||
#### 情况一:上下坡中有平坡
|
||||
|
||||
例如 [1,2,2,2,1]这样的数组,如图:
|
||||
例如 [1,2,2,2,2,1]这样的数组,如图:
|
||||
|
||||

|
||||
|
||||
@ -466,7 +466,7 @@ func max(a, b int) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
**贪心**
|
||||
|
||||
|
@ -254,7 +254,7 @@ func combinationSum4(nums []int, target int) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript:
|
||||
### JavaScript:
|
||||
|
||||
```javascript
|
||||
const combinationSum4 = (nums, target) => {
|
||||
|
@ -270,7 +270,7 @@ func reconstructQueue(people [][]int) [][]int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
```Javascript
|
||||
var reconstructQueue = function(people) {
|
||||
|
@ -311,7 +311,7 @@ func min(a, b int) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
- 按右边界排序
|
||||
```Javascript
|
||||
var eraseOverlapIntervals = function(intervals) {
|
||||
|
@ -801,6 +801,40 @@ impl Solution {
|
||||
}
|
||||
```
|
||||
|
||||
### Ruby
|
||||
> 递归法:
|
||||
```ruby
|
||||
# @param {TreeNode} root
|
||||
# @param {Integer} key
|
||||
# @return {TreeNode}
|
||||
def delete_node(root, key)
|
||||
return nil if root.nil?
|
||||
|
||||
right = root.right
|
||||
left = root.left
|
||||
|
||||
if root.val == key
|
||||
return right if left.nil?
|
||||
return left if right.nil?
|
||||
|
||||
node = right
|
||||
while node.left
|
||||
node = node.left
|
||||
end
|
||||
node.left = left
|
||||
|
||||
return right
|
||||
end
|
||||
|
||||
if root.val > key
|
||||
root.left = delete_node(left, key)
|
||||
else
|
||||
root.right = delete_node(right, key)
|
||||
end
|
||||
|
||||
return root
|
||||
end
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
|
@ -226,7 +226,7 @@ func min(a, b int) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
```Javascript
|
||||
var findMinArrowShots = function(points) {
|
||||
points.sort((a, b) => {
|
||||
|
@ -278,7 +278,7 @@ pub fn find_content_children(mut children: Vec<i32>, mut cookies: Vec<i32>) -> i
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
```js
|
||||
var findContentChildren = function (g, s) {
|
||||
|
@ -362,7 +362,7 @@ func max(a,b int) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
```javascript
|
||||
const findMaxForm = (strs, m, n) => {
|
||||
const dp = Array.from(Array(m+1), () => Array(n+1).fill(0));
|
||||
|
@ -375,7 +375,7 @@ func dfs(nums []int, start int) {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
```Javascript
|
||||
|
||||
|
@ -705,6 +705,31 @@ class Solution:
|
||||
```
|
||||
|
||||
### Go
|
||||
回溯法思路
|
||||
```go
|
||||
func findTargetSumWays(nums []int, target int) int {
|
||||
var result int
|
||||
var backtracking func(nums []int, target int, index int, currentSum int)
|
||||
|
||||
backtracking = func(nums []int, target int, index int, currentSum int) {
|
||||
if index == len(nums) {
|
||||
if currentSum == target {
|
||||
result++
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// 选择加上当前数字
|
||||
backtracking(nums, target, index+1, currentSum+nums[index])
|
||||
|
||||
// 选择减去当前数字
|
||||
backtracking(nums, target, index+1, currentSum-nums[index])
|
||||
}
|
||||
|
||||
backtracking(nums, target, 0, 0)
|
||||
return result
|
||||
}
|
||||
```
|
||||
二维dp
|
||||
```go
|
||||
func findTargetSumWays(nums []int, target int) int {
|
||||
@ -790,7 +815,7 @@ func abs(x int) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
```javascript
|
||||
const findTargetSumWays = (nums, target) => {
|
||||
|
||||
|
@ -195,6 +195,62 @@ public:
|
||||
建议大家把情况一二三想清楚了,先写出版本一的代码,然后在其基础上在做精简!
|
||||
|
||||
## 其他语言版本
|
||||
|
||||
### C
|
||||
|
||||
``` C
|
||||
/* 先用单调栈的方法计算出结果,再根据nums1中的元素去查找对应的结果 */
|
||||
/**
|
||||
* Note: The returned array must be malloced, assume caller calls free().
|
||||
*/
|
||||
int* nextGreaterElement(int* nums1, int nums1Size, int* nums2, int nums2Size, int* returnSize) {
|
||||
|
||||
/* stcak */
|
||||
int top = -1;
|
||||
int stack_len = nums2Size;
|
||||
int stack[stack_len];
|
||||
//memset(stack, 0x00, sizeof(stack));
|
||||
|
||||
/* nums2 result */
|
||||
int* result_nums2 = (int *)malloc(sizeof(int) * nums2Size);
|
||||
//memset(result_nums2, 0x00, sizeof(int) * nums2Size);
|
||||
|
||||
/* result */
|
||||
int* result = (int *)malloc(sizeof(int) * nums1Size);
|
||||
//memset(result, 0x00, sizeof(int) * nums1Size);
|
||||
*returnSize = nums1Size;
|
||||
|
||||
/* init */
|
||||
stack[++top] = 0; /* stack loaded with array subscripts */
|
||||
|
||||
for (int i = 0; i < nums2Size; i++) {
|
||||
result_nums2[i] = -1;
|
||||
}
|
||||
|
||||
/* get the result_nums2 */
|
||||
for (int i = 1; i < nums2Size; i++) {
|
||||
if (nums2[i] <= nums2[stack[top]]) {
|
||||
stack[++top] = i; /* push */
|
||||
} else {
|
||||
while ((top >= 0) && (nums2[i] > nums2[stack[top]])) {
|
||||
result_nums2[stack[top]] = nums2[i];
|
||||
top--; /* pop */
|
||||
}
|
||||
stack[++top] = i;
|
||||
}
|
||||
}
|
||||
|
||||
/* get the result */
|
||||
for (int i = 0; i < nums1Size; i++) {
|
||||
for (int j = 0; j < nums2Size; j++) {
|
||||
if (nums1[i] == nums2[j]) {
|
||||
result[i] = result_nums2[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
```
|
||||
### Java
|
||||
|
||||
```java
|
||||
|
@ -35,7 +35,7 @@
|
||||
|
||||
## 算法公开课
|
||||
|
||||
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[不仅双指针,还有代码技巧可以惊艳到你! | LeetCode:501.二叉搜索树中的众数](https://www.bilibili.com/video/BV1fD4y117gp),相信结合视频在看本篇题解,更有助于大家对本题的理解**。
|
||||
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[不仅双指针,还有代码技巧可以惊艳到你! | LeetCode:501.二叉搜索树中的众数](https://www.bilibili.com/video/BV1fD4y117gp),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
|
||||
|
||||
|
||||
## 思路
|
||||
|
@ -185,7 +185,7 @@ class Solution:
|
||||
|
||||
> 版本二:针对版本一的优化
|
||||
|
||||
```python3
|
||||
```python
|
||||
class Solution:
|
||||
def nextGreaterElements(self, nums: List[int]) -> List[int]:
|
||||
res = [-1] * len(nums)
|
||||
@ -213,6 +213,40 @@ class Solution:
|
||||
### Go:
|
||||
|
||||
```go
|
||||
// 版本一
|
||||
func nextGreaterElements(nums []int) []int {
|
||||
// 拼接一个新的nums
|
||||
numsNew := make([]int, len(nums) * 2)
|
||||
copy(numsNew, nums)
|
||||
copy(numsNew[len(nums):], nums)
|
||||
// 用新的nums大小来初始化result
|
||||
result := make([]int, len(numsNew))
|
||||
for i := range result {
|
||||
result[i] = -1
|
||||
}
|
||||
|
||||
// 开始单调栈
|
||||
st := []int{0}
|
||||
for i := 1; i < len(numsNew); i++ {
|
||||
if numsNew[i] < numsNew[st[len(st)-1]] {
|
||||
st = append(st, i)
|
||||
} else if numsNew[i] == numsNew[st[len(st)-1]] {
|
||||
st = append(st, i)
|
||||
} else {
|
||||
for len(st) > 0 && numsNew[i] > numsNew[st[len(st)-1]] {
|
||||
result[st[len(st)-1]] = numsNew[i]
|
||||
st = st[:len(st)-1]
|
||||
}
|
||||
st = append(st, i)
|
||||
}
|
||||
}
|
||||
result = result[:len(result)/2]
|
||||
return result
|
||||
}
|
||||
```
|
||||
|
||||
```go
|
||||
// 版本二
|
||||
func nextGreaterElements(nums []int) []int {
|
||||
length := len(nums)
|
||||
result := make([]int,length)
|
||||
|
@ -292,7 +292,7 @@ func fib(n int) int {
|
||||
return c
|
||||
}
|
||||
```
|
||||
### Javascript
|
||||
### JavaScript
|
||||
解法一
|
||||
```Javascript
|
||||
var fib = function(n) {
|
||||
|
@ -224,7 +224,7 @@ func longestPalindromeSubseq(s string) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript:
|
||||
### JavaScript:
|
||||
|
||||
```javascript
|
||||
const longestPalindromeSubseq = (s) => {
|
||||
|
@ -498,7 +498,7 @@ impl Solution {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript:
|
||||
### JavaScript:
|
||||
|
||||
```javascript
|
||||
const change = (amount, coins) => {
|
||||
|
@ -21,7 +21,7 @@
|
||||
|
||||
## 算法公开课
|
||||
|
||||
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[二叉搜索树中,需要掌握如何双指针遍历!| LeetCode:530.二叉搜索树的最小绝对差](https://www.bilibili.com/video/BV1DD4y11779),相信结合视频在看本篇题解,更有助于大家对本题的理解**。
|
||||
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[二叉搜索树中,需要掌握如何双指针遍历!| LeetCode:530.二叉搜索树的最小绝对差](https://www.bilibili.com/video/BV1DD4y11779),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
|
||||
|
||||
|
||||
## 思路
|
||||
|
@ -282,7 +282,7 @@ class Solution:
|
||||
return ''.join(res)
|
||||
```
|
||||
|
||||
### Python3 (v2):
|
||||
#### Python3 (v2):
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
@ -297,6 +297,21 @@ class Solution:
|
||||
return s
|
||||
```
|
||||
|
||||
#### Python3 (v3):
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def reverseStr(self, s: str, k: int) -> str:
|
||||
i = 0
|
||||
chars = list(s)
|
||||
|
||||
while i < len(chars):
|
||||
chars[i:i + k] = chars[i:i + k][::-1] # 反转后,更改原值为反转后值
|
||||
i += k * 2
|
||||
|
||||
return ''.join(chars)
|
||||
```
|
||||
|
||||
### Go:
|
||||
|
||||
```go
|
||||
|
@ -33,7 +33,7 @@
|
||||
|
||||
dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。
|
||||
|
||||
这里dp数组的定义有点点绕,大家要撸清思路。
|
||||
这里dp数组的定义有点点绕,大家要理清思路。
|
||||
|
||||
2. 确定递推公式
|
||||
|
||||
@ -255,6 +255,8 @@ class Solution(object):
|
||||
```
|
||||
### Go:
|
||||
|
||||
动态规划一
|
||||
|
||||
```go
|
||||
func minDistance(word1 string, word2 string) int {
|
||||
dp := make([][]int, len(word1)+1)
|
||||
@ -287,7 +289,39 @@ func min(a, b int) int {
|
||||
return b
|
||||
}
|
||||
```
|
||||
### Javascript:
|
||||
|
||||
|
||||
动态规划二
|
||||
|
||||
```go
|
||||
func minDistance(word1 string, word2 string) int {
|
||||
dp := make([][]int, len(word1) + 1)
|
||||
for i := range dp {
|
||||
dp[i] = make([]int, len(word2) + 1)
|
||||
}
|
||||
for i := 1; i <= len(word1); i++ {
|
||||
for j := 1; j <= len(word2); j++ {
|
||||
if word1[i-1] == word2[j-1] {
|
||||
dp[i][j] = dp[i-1][j-1] + 1
|
||||
} else {
|
||||
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
|
||||
}
|
||||
}
|
||||
}
|
||||
return len(word1) + len(word2) - dp[len(word1)][len(word2)] * 2
|
||||
}
|
||||
|
||||
func max(x, y int) int {
|
||||
if x > y {
|
||||
return x
|
||||
}
|
||||
return y
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
### JavaScript:
|
||||
|
||||
|
||||
```javascript
|
||||
// 方法一
|
||||
|
@ -102,7 +102,7 @@ dp[i][j]可以初始化为true么? 当然不行,怎能刚开始就全都匹
|
||||
|
||||
4. 确定遍历顺序
|
||||
|
||||
遍历顺序可有有点讲究了。
|
||||
遍历顺序可就有点讲究了。
|
||||
|
||||
首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的。
|
||||
|
||||
@ -465,7 +465,7 @@ func countSubstrings(s string) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript:
|
||||
### JavaScript:
|
||||
|
||||
> 动态规划
|
||||
```javascript
|
||||
|
@ -22,7 +22,7 @@
|
||||
|
||||
## 算法公开课
|
||||
|
||||
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[你修剪的方式不对,我来给你纠正一下!| LeetCode:669. 修剪二叉搜索树](https://www.bilibili.com/video/BV17P41177ud?share_source=copy_web),相信结合视频在看本篇题解,更有助于大家对本题的理解**。
|
||||
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[你修剪的方式不对,我来给你纠正一下!| LeetCode:669. 修剪二叉搜索树](https://www.bilibili.com/video/BV17P41177ud?share_source=copy_web),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
|
||||
|
||||
## 思路
|
||||
|
||||
|
@ -359,7 +359,7 @@ impl Solution {
|
||||
```
|
||||
|
||||
|
||||
### Javascript:
|
||||
### JavaScript:
|
||||
|
||||
> 动态规划:
|
||||
```javascript
|
||||
|
@ -422,38 +422,38 @@ void myLinkedListFree(MyLinkedList* obj) {
|
||||
|
||||
```Java
|
||||
//单链表
|
||||
class ListNode {
|
||||
class MyLinkedList {
|
||||
|
||||
class ListNode {
|
||||
int val;
|
||||
ListNode next;
|
||||
ListNode(){}
|
||||
ListNode(int val) {
|
||||
this.val=val;
|
||||
}
|
||||
}
|
||||
class MyLinkedList {
|
||||
}
|
||||
//size存储链表元素的个数
|
||||
int size;
|
||||
//虚拟头结点
|
||||
ListNode head;
|
||||
private int size;
|
||||
//注意这里记录的是虚拟头结点
|
||||
private ListNode head;
|
||||
|
||||
//初始化链表
|
||||
public MyLinkedList() {
|
||||
size = 0;
|
||||
head = new ListNode(0);
|
||||
this.size = 0;
|
||||
this.head = new ListNode(0);
|
||||
}
|
||||
|
||||
//获取第index个节点的数值,注意index是从0开始的,第0个节点就是头结点
|
||||
//获取第index个节点的数值,注意index是从0开始的,第0个节点就是虚拟头结点
|
||||
public int get(int index) {
|
||||
//如果index非法,返回-1
|
||||
if (index < 0 || index >= size) {
|
||||
return -1;
|
||||
}
|
||||
ListNode currentNode = head;
|
||||
//包含一个虚拟头节点,所以查找第 index+1 个节点
|
||||
ListNode cur = head;
|
||||
//第0个节点是虚拟头节点,所以查找第 index+1 个节点
|
||||
for (int i = 0; i <= index; i++) {
|
||||
currentNode = currentNode.next;
|
||||
cur = cur.next;
|
||||
}
|
||||
return currentNode.val;
|
||||
return cur.val;
|
||||
}
|
||||
|
||||
public void addAtHead(int val) {
|
||||
@ -473,7 +473,6 @@ class MyLinkedList {
|
||||
while (cur.next != null) {
|
||||
cur = cur.next;
|
||||
}
|
||||
|
||||
cur.next = newNode;
|
||||
size++;
|
||||
|
||||
@ -485,55 +484,53 @@ class MyLinkedList {
|
||||
// 如果 index 等于链表的长度,则说明是新插入的节点为链表的尾结点
|
||||
// 如果 index 大于链表的长度,则返回空
|
||||
public void addAtIndex(int index, int val) {
|
||||
if (index > size) {
|
||||
if (index < 0 || index > size) {
|
||||
return;
|
||||
}
|
||||
if (index < 0) {
|
||||
index = 0;
|
||||
}
|
||||
size++;
|
||||
|
||||
//找到要插入节点的前驱
|
||||
ListNode pred = head;
|
||||
ListNode pre = head;
|
||||
for (int i = 0; i < index; i++) {
|
||||
pred = pred.next;
|
||||
pre = pre.next;
|
||||
}
|
||||
ListNode toAdd = new ListNode(val);
|
||||
toAdd.next = pred.next;
|
||||
pred.next = toAdd;
|
||||
ListNode newNode = new ListNode(val);
|
||||
newNode.next = pre.next;
|
||||
pre.next = newNode;
|
||||
size++;
|
||||
}
|
||||
|
||||
//删除第index个节点
|
||||
public void deleteAtIndex(int index) {
|
||||
if (index < 0 || index >= size) {
|
||||
return;
|
||||
}
|
||||
size--;
|
||||
//因为有虚拟头节点,所以不用对Index=0的情况进行特殊处理
|
||||
ListNode pred = head;
|
||||
|
||||
//因为有虚拟头节点,所以不用对index=0的情况进行特殊处理
|
||||
ListNode pre = head;
|
||||
for (int i = 0; i < index ; i++) {
|
||||
pred = pred.next;
|
||||
pre = pre.next;
|
||||
}
|
||||
pred.next = pred.next.next;
|
||||
pre.next = pre.next.next;
|
||||
size--;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
```Java
|
||||
//双链表
|
||||
class ListNode{
|
||||
class MyLinkedList {
|
||||
|
||||
class ListNode{
|
||||
int val;
|
||||
ListNode next,prev;
|
||||
ListNode() {};
|
||||
ListNode next, prev;
|
||||
ListNode(int val){
|
||||
this.val = val;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
class MyLinkedList {
|
||||
}
|
||||
|
||||
//记录链表中元素的数量
|
||||
int size;
|
||||
private int size;
|
||||
//记录链表的虚拟头结点和尾结点
|
||||
ListNode head,tail;
|
||||
private ListNode head, tail;
|
||||
|
||||
public MyLinkedList() {
|
||||
//初始化操作
|
||||
@ -541,25 +538,25 @@ class MyLinkedList {
|
||||
this.head = new ListNode(0);
|
||||
this.tail = new ListNode(0);
|
||||
//这一步非常关键,否则在加入头结点的操作中会出现null.next的错误!!!
|
||||
head.next=tail;
|
||||
tail.prev=head;
|
||||
this.head.next = tail;
|
||||
this.tail.prev = head;
|
||||
}
|
||||
|
||||
public int get(int index) {
|
||||
//判断index是否有效
|
||||
if(index>=size){
|
||||
if(index < 0 || index >= size){
|
||||
return -1;
|
||||
}
|
||||
ListNode cur = this.head;
|
||||
ListNode cur = head;
|
||||
//判断是哪一边遍历时间更短
|
||||
if(index >= size / 2){
|
||||
//tail开始
|
||||
cur = tail;
|
||||
for(int i=0; i< size-index; i++){
|
||||
for(int i = 0; i < size - index; i++){
|
||||
cur = cur.prev;
|
||||
}
|
||||
}else{
|
||||
for(int i=0; i<= index; i++){
|
||||
for(int i = 0; i <= index; i++){
|
||||
cur = cur.next;
|
||||
}
|
||||
}
|
||||
@ -568,24 +565,23 @@ class MyLinkedList {
|
||||
|
||||
public void addAtHead(int val) {
|
||||
//等价于在第0个元素前添加
|
||||
addAtIndex(0,val);
|
||||
addAtIndex(0, val);
|
||||
}
|
||||
|
||||
public void addAtTail(int val) {
|
||||
//等价于在最后一个元素(null)前添加
|
||||
addAtIndex(size,val);
|
||||
addAtIndex(size, val);
|
||||
}
|
||||
|
||||
public void addAtIndex(int index, int val) {
|
||||
//index大于链表长度
|
||||
if(index>size){
|
||||
//判断index是否有效
|
||||
if(index < 0 || index > size){
|
||||
return;
|
||||
}
|
||||
|
||||
size++;
|
||||
//找到前驱
|
||||
ListNode pre = this.head;
|
||||
for(int i=0; i<index; i++){
|
||||
ListNode pre = head;
|
||||
for(int i = 0; i < index; i++){
|
||||
pre = pre.next;
|
||||
}
|
||||
//新建结点
|
||||
@ -594,22 +590,24 @@ class MyLinkedList {
|
||||
pre.next.prev = newNode;
|
||||
newNode.prev = pre;
|
||||
pre.next = newNode;
|
||||
size++;
|
||||
|
||||
}
|
||||
|
||||
public void deleteAtIndex(int index) {
|
||||
//判断索引是否有效
|
||||
if(index>=size){
|
||||
//判断index是否有效
|
||||
if(index < 0 || index >= size){
|
||||
return;
|
||||
}
|
||||
|
||||
//删除操作
|
||||
size--;
|
||||
ListNode pre = this.head;
|
||||
for(int i=0; i<index; i++){
|
||||
ListNode pre = head;
|
||||
for(int i = 0; i < index; i++){
|
||||
pre = pre.next;
|
||||
}
|
||||
pre.next.next.prev = pre;
|
||||
pre.next = pre.next.next;
|
||||
size--;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -243,7 +243,7 @@ func maxProfit(prices []int, fee int) int {
|
||||
return res
|
||||
}
|
||||
```
|
||||
### Javascript
|
||||
### JavaScript
|
||||
```Javascript
|
||||
// 贪心思路
|
||||
var maxProfit = function(prices, fee) {
|
||||
|
@ -226,7 +226,7 @@ func max(a, b int) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript:
|
||||
### JavaScript:
|
||||
|
||||
```javascript
|
||||
const maxProfit = (prices,fee) => {
|
||||
|
@ -190,9 +190,9 @@ class Solution:
|
||||
贪心(版本一)
|
||||
```python
|
||||
class Solution:
|
||||
def monotoneIncreasingDigits(self, N: int) -> int:
|
||||
def monotoneIncreasingDigits(self, n: int) -> int:
|
||||
# 将整数转换为字符串
|
||||
strNum = str(N)
|
||||
strNum = str(n)
|
||||
# flag用来标记赋值9从哪里开始
|
||||
# 设置为字符串长度,为了防止第二个for循环在flag没有被赋值的情况下执行
|
||||
flag = len(strNum)
|
||||
@ -216,9 +216,9 @@ class Solution:
|
||||
贪心(版本二)
|
||||
```python
|
||||
class Solution:
|
||||
def monotoneIncreasingDigits(self, N: int) -> int:
|
||||
def monotoneIncreasingDigits(self, n: int) -> int:
|
||||
# 将整数转换为字符串
|
||||
strNum = list(str(N))
|
||||
strNum = list(str(n))
|
||||
|
||||
# 从右往左遍历字符串
|
||||
for i in range(len(strNum) - 1, 0, -1):
|
||||
@ -238,9 +238,9 @@ class Solution:
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def monotoneIncreasingDigits(self, N: int) -> int:
|
||||
def monotoneIncreasingDigits(self, n: int) -> int:
|
||||
# 将整数转换为字符串
|
||||
strNum = list(str(N))
|
||||
strNum = list(str(n))
|
||||
|
||||
# 从右往左遍历字符串
|
||||
for i in range(len(strNum) - 1, 0, -1):
|
||||
@ -258,8 +258,8 @@ class Solution:
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def monotoneIncreasingDigits(self, N: int) -> int:
|
||||
strNum = str(N)
|
||||
def monotoneIncreasingDigits(self, n: int) -> int:
|
||||
strNum = str(n)
|
||||
for i in range(len(strNum) - 1, 0, -1):
|
||||
# 如果当前字符比前一个字符小,说明需要修改前一个字符
|
||||
if strNum[i - 1] > strNum[i]:
|
||||
@ -272,12 +272,12 @@ class Solution:
|
||||
```
|
||||
### Go
|
||||
```go
|
||||
func monotoneIncreasingDigits(N int) int {
|
||||
func monotoneIncreasingDigits(n int) int {
|
||||
s := strconv.Itoa(N)//将数字转为字符串,方便使用下标
|
||||
ss := []byte(s)//将字符串转为byte数组,方便更改。
|
||||
n := len(ss)
|
||||
if n <= 1 {
|
||||
return N
|
||||
return n
|
||||
}
|
||||
for i := n-1; i > 0; i-- {
|
||||
if ss[i-1] > ss[i] { //前一个大于后一位,前一位减1,后面的全部置为9
|
||||
@ -292,7 +292,7 @@ func monotoneIncreasingDigits(N int) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
```Javascript
|
||||
var monotoneIncreasingDigits = function(n) {
|
||||
n = n.toString()
|
||||
|
@ -215,6 +215,38 @@ public:
|
||||
|
||||
## 其他语言版本
|
||||
|
||||
### C:
|
||||
|
||||
```C
|
||||
/**
|
||||
* Note: The returned array must be malloced, assume caller calls free().
|
||||
*/
|
||||
int* dailyTemperatures(int* temperatures, int temperaturesSize, int* returnSize) {
|
||||
int len = temperaturesSize;
|
||||
*returnSize = len;
|
||||
|
||||
int *result = (int *)malloc(sizeof(int) * len);
|
||||
memset(result, 0x00, sizeof(int) * len);
|
||||
|
||||
int stack[len];
|
||||
memset(stack, 0x00, sizeof(stack));
|
||||
int top = 0;
|
||||
|
||||
for (int i = 1; i < len; i++) {
|
||||
if (temperatures[i] <= temperatures[stack[top]]) { /* push */
|
||||
stack[++top] = i;
|
||||
} else {
|
||||
while (top >= 0 && temperatures[i] > temperatures[stack[top]]) { /* stack not empty */
|
||||
result[stack[top]] = i - stack[top];
|
||||
top--; /* pop */
|
||||
}
|
||||
stack[++top] = i; /* push */
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
```
|
||||
|
||||
### Java:
|
||||
|
||||
```java
|
||||
|
@ -312,7 +312,7 @@ func max(a, b int) int {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
```Javascript
|
||||
var partitionLabels = function(s) {
|
||||
let hash = {}
|
||||
|
@ -226,7 +226,7 @@ func lemonadeChange(bills []int) bool {
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
```Javascript
|
||||
var lemonadeChange = function(bills) {
|
||||
let fiveCount = 0
|
||||
|
@ -11,9 +11,9 @@
|
||||
|
||||
[力扣题目链接](https://leetcode.cn/problems/sort-array-by-parity-ii/)
|
||||
|
||||
给定一个非负整数数组 A, A 中一半整数是奇数,一半整数是偶数。
|
||||
给定一个非负整数数组 nums, nums 中一半整数是奇数,一半整数是偶数。
|
||||
|
||||
对数组进行排序,以便当 A[i] 为奇数时,i 也是奇数;当 A[i] 为偶数时, i 也是偶数。
|
||||
对数组进行排序,以便当 nums[i] 为奇数时,i 也是奇数;当 nums[i] 为偶数时, i 也是偶数。
|
||||
|
||||
你可以返回任何满足上述条件的数组作为答案。
|
||||
|
||||
@ -35,17 +35,17 @@
|
||||
```CPP
|
||||
class Solution {
|
||||
public:
|
||||
vector<int> sortArrayByParityII(vector<int>& A) {
|
||||
vector<int> even(A.size() / 2); // 初始化就确定数组大小,节省开销
|
||||
vector<int> odd(A.size() / 2);
|
||||
vector<int> result(A.size());
|
||||
vector<int> sortArrayByParityII(vector<int>& nums) {
|
||||
vector<int> even(nums.size() / 2); // 初始化就确定数组大小,节省开销
|
||||
vector<int> odd(nums.size() / 2);
|
||||
vector<int> result(nums.size());
|
||||
int evenIndex = 0;
|
||||
int oddIndex = 0;
|
||||
int resultIndex = 0;
|
||||
// 把A数组放进偶数数组,和奇数数组
|
||||
for (int i = 0; i < A.size(); i++) {
|
||||
if (A[i] % 2 == 0) even[evenIndex++] = A[i];
|
||||
else odd[oddIndex++] = A[i];
|
||||
// 把nums数组放进偶数数组,和奇数数组
|
||||
for (int i = 0; i < nums.size(); i++) {
|
||||
if (nums[i] % 2 == 0) even[evenIndex++] = nums[i];
|
||||
else odd[oddIndex++] = nums[i];
|
||||
}
|
||||
// 把偶数数组,奇数数组分别放进result数组中
|
||||
for (int i = 0; i < evenIndex; i++) {
|
||||
@ -62,22 +62,22 @@ public:
|
||||
|
||||
### 方法二
|
||||
|
||||
以上代码我是建了两个辅助数组,而且A数组还相当于遍历了两次,用辅助数组的好处就是思路清晰,优化一下就是不用这两个辅助树,代码如下:
|
||||
以上代码我是建了两个辅助数组,而且nums数组还相当于遍历了两次,用辅助数组的好处就是思路清晰,优化一下就是不用这两个辅助数组,代码如下:
|
||||
|
||||
```CPP
|
||||
class Solution {
|
||||
public:
|
||||
vector<int> sortArrayByParityII(vector<int>& A) {
|
||||
vector<int> result(A.size());
|
||||
vector<int> sortArrayByParityII(vector<int>& nums) {
|
||||
vector<int> result(nums.size());
|
||||
int evenIndex = 0; // 偶数下标
|
||||
int oddIndex = 1; // 奇数下标
|
||||
for (int i = 0; i < A.size(); i++) {
|
||||
if (A[i] % 2 == 0) {
|
||||
result[evenIndex] = A[i];
|
||||
for (int i = 0; i < nums.size(); i++) {
|
||||
if (nums[i] % 2 == 0) {
|
||||
result[evenIndex] = nums[i];
|
||||
evenIndex += 2;
|
||||
}
|
||||
else {
|
||||
result[oddIndex] = A[i];
|
||||
result[oddIndex] = nums[i];
|
||||
oddIndex += 2;
|
||||
}
|
||||
}
|
||||
@ -96,15 +96,15 @@ public:
|
||||
```CPP
|
||||
class Solution {
|
||||
public:
|
||||
vector<int> sortArrayByParityII(vector<int>& A) {
|
||||
vector<int> sortArrayByParityII(vector<int>& nums) {
|
||||
int oddIndex = 1;
|
||||
for (int i = 0; i < A.size(); i += 2) {
|
||||
if (A[i] % 2 == 1) { // 在偶数位遇到了奇数
|
||||
while(A[oddIndex] % 2 != 0) oddIndex += 2; // 在奇数位找一个偶数
|
||||
swap(A[i], A[oddIndex]); // 替换
|
||||
for (int i = 0; i < nums.size(); i += 2) {
|
||||
if (nums[i] % 2 == 1) { // 在偶数位遇到了奇数
|
||||
while(nums[oddIndex] % 2 != 0) oddIndex += 2; // 在奇数位找一个偶数
|
||||
swap(nums[i], nums[oddIndex]); // 替换
|
||||
}
|
||||
}
|
||||
return A;
|
||||
return nums;
|
||||
}
|
||||
};
|
||||
```
|
||||
@ -253,6 +253,37 @@ func sortArrayByParityII(nums []int) []int {
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// 方法二
|
||||
func sortArrayByParityII(nums []int) []int {
|
||||
result := make([]int, len(nums))
|
||||
evenIndex := 0 // 偶数下标
|
||||
oddIndex := 1 // 奇数下标
|
||||
for _, v := range nums {
|
||||
if v % 2 == 0 {
|
||||
result[evenIndex] = v
|
||||
evenIndex += 2
|
||||
} else {
|
||||
result[oddIndex] = v
|
||||
oddIndex += 2
|
||||
}
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
// 方法三
|
||||
func sortArrayByParityII(nums []int) []int {
|
||||
oddIndex := 1
|
||||
for i := 0; i < len(nums); i += 2 {
|
||||
if nums[i] % 2 == 1 { // 在偶数位遇到了奇数
|
||||
for nums[oddIndex] % 2 != 0 {
|
||||
oddIndex += 2 // 在奇数位找一个偶数
|
||||
}
|
||||
nums[i], nums[oddIndex] = nums[oddIndex], nums[i]
|
||||
}
|
||||
}
|
||||
return nums
|
||||
}
|
||||
```
|
||||
|
||||
### JavaScript
|
||||
|
@ -536,7 +536,7 @@ func min(a, b int) int {
|
||||
|
||||
```
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
```Javascript
|
||||
var minCameraCover = function(root) {
|
||||
|
@ -301,7 +301,7 @@ impl Solution {
|
||||
}
|
||||
}
|
||||
```
|
||||
### Javascript:
|
||||
### JavaScript:
|
||||
|
||||
```Javascript
|
||||
/**
|
||||
@ -327,7 +327,7 @@ var sortedSquares = function(nums) {
|
||||
};
|
||||
```
|
||||
|
||||
### Typescript:
|
||||
### TypeScript:
|
||||
|
||||
双指针法:
|
||||
|
||||
|
@ -207,7 +207,7 @@ func largestSumAfterKNegations(nums []int, K int) int {
|
||||
```
|
||||
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
```Javascript
|
||||
var largestSumAfterKNegations = function(nums, k) {
|
||||
|
||||
|
@ -8,11 +8,16 @@
|
||||
|
||||
[力扣题目链接](https://leetcode.cn/problems/uncrossed-lines/)
|
||||
|
||||
我们在两条独立的水平线上按给定的顺序写下 A 和 B 中的整数。
|
||||
在两条独立的水平线上按给定的顺序写下 nums1 和 nums2 中的整数。
|
||||
|
||||
现在,我们可以绘制一些连接两个数字 A[i] 和 B[j] 的直线,只要 A[i] == B[j],且我们绘制的直线不与任何其他连线(非水平线)相交。
|
||||
现在,可以绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,这些直线需要同时满足:
|
||||
|
||||
以这种方法绘制线条,并返回我们可以绘制的最大连线数。
|
||||
* nums1[i] == nums2[j]
|
||||
* 且绘制的直线不与任何其他连线(非水平线)相交。
|
||||
|
||||
请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。
|
||||
|
||||
以这种方法绘制线条,并返回可以绘制的最大连线数。
|
||||
|
||||
|
||||

|
||||
@ -26,16 +31,16 @@
|
||||
|
||||
相信不少录友看到这道题目都没啥思路,我们来逐步分析一下。
|
||||
|
||||
绘制一些连接两个数字 A[i] 和 B[j] 的直线,只要 A[i] == B[j],且直线不能相交!
|
||||
绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,只要 nums1[i] == nums2[j],且直线不能相交!
|
||||
|
||||
直线不能相交,这就是说明在字符串A中 找到一个与字符串B相同的子序列,且这个子序列不能改变相对顺序,只要相对顺序不改变,链接相同数字的直线就不会相交。
|
||||
直线不能相交,这就是说明在字符串nums1中 找到一个与字符串nums2相同的子序列,且这个子序列不能改变相对顺序,只要相对顺序不改变,连接相同数字的直线就不会相交。
|
||||
|
||||
拿示例一A = [1,4,2], B = [1,2,4]为例,相交情况如图:
|
||||
拿示例一nums1 = [1,4,2], nums2 = [1,2,4]为例,相交情况如图:
|
||||
|
||||
|
||||

|
||||
|
||||
其实也就是说A和B的最长公共子序列是[1,4],长度为2。 这个公共子序列指的是相对顺序不变(即数字4在字符串A中数字1的后面,那么数字4也应该在字符串B数字1的后面)
|
||||
其实也就是说nums1和nums2的最长公共子序列是[1,4],长度为2。 这个公共子序列指的是相对顺序不变(即数字4在字符串nums1中数字1的后面,那么数字4也应该在字符串nums2数字1的后面)
|
||||
|
||||
这么分析完之后,大家可以发现:**本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!**
|
||||
|
||||
@ -52,18 +57,18 @@
|
||||
```CPP
|
||||
class Solution {
|
||||
public:
|
||||
int maxUncrossedLines(vector<int>& A, vector<int>& B) {
|
||||
vector<vector<int>> dp(A.size() + 1, vector<int>(B.size() + 1, 0));
|
||||
for (int i = 1; i <= A.size(); i++) {
|
||||
for (int j = 1; j <= B.size(); j++) {
|
||||
if (A[i - 1] == B[j - 1]) {
|
||||
int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
|
||||
vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
|
||||
for (int i = 1; i <= nums1.size(); i++) {
|
||||
for (int j = 1; j <= nums2.size(); j++) {
|
||||
if (nums1[i - 1] == nums2[j - 1]) {
|
||||
dp[i][j] = dp[i - 1][j - 1] + 1;
|
||||
} else {
|
||||
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[A.size()][B.size()];
|
||||
return dp[nums1.size()][nums2.size()];
|
||||
}
|
||||
};
|
||||
```
|
||||
@ -110,11 +115,11 @@ public:
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def maxUncrossedLines(self, A: List[int], B: List[int]) -> int:
|
||||
dp = [[0] * (len(B)+1) for _ in range(len(A)+1)]
|
||||
for i in range(1, len(A)+1):
|
||||
for j in range(1, len(B)+1):
|
||||
if A[i-1] == B[j-1]:
|
||||
def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int:
|
||||
dp = [[0] * (len(nums2)+1) for _ in range(len(nums1)+1)]
|
||||
for i in range(1, len(nums1)+1):
|
||||
for j in range(1, len(nums2)+1):
|
||||
if nums1[i-1] == nums2[j-1]:
|
||||
dp[i][j] = dp[i-1][j-1] + 1
|
||||
else:
|
||||
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
|
||||
@ -124,23 +129,22 @@ class Solution:
|
||||
### Go:
|
||||
|
||||
```go
|
||||
func maxUncrossedLines(A []int, B []int) int {
|
||||
m, n := len(A), len(B)
|
||||
dp := make([][]int, m+1)
|
||||
func maxUncrossedLines(nums1 []int, nums2 []int) int {
|
||||
dp := make([][]int, len(nums1) + 1)
|
||||
for i := range dp {
|
||||
dp[i] = make([]int, n+1)
|
||||
dp[i] = make([]int, len(nums2) + 1)
|
||||
}
|
||||
|
||||
for i := 1; i <= len(A); i++ {
|
||||
for j := 1; j <= len(B); j++ {
|
||||
if (A[i - 1] == B[j - 1]) {
|
||||
for i := 1; i <= len(nums1); i++ {
|
||||
for j := 1; j <= len(nums2); j++ {
|
||||
if (nums1[i - 1] == nums2[j - 1]) {
|
||||
dp[i][j] = dp[i - 1][j - 1] + 1
|
||||
} else {
|
||||
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[m][n]
|
||||
return dp[len(nums1)][len(nums2)]
|
||||
|
||||
}
|
||||
|
||||
|
@ -80,7 +80,7 @@ if (text1[i - 1] == text2[j - 1]) {
|
||||
|
||||
先看看dp[i][0]应该是多少呢?
|
||||
|
||||
test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;
|
||||
text1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;
|
||||
|
||||
同理dp[0][j]也是0。
|
||||
|
||||
|
@ -138,18 +138,51 @@ public int[] smallerNumbersThanCurrent(int[] nums) {
|
||||
|
||||
### Python:
|
||||
|
||||
```python
|
||||
> 暴力法:
|
||||
|
||||
```python3
|
||||
class Solution:
|
||||
def smallerNumbersThanCurrent(self, nums: List[int]) -> List[int]:
|
||||
res = [0 for _ in range(len(nums))]
|
||||
for i in range(len(nums)):
|
||||
cnt = 0
|
||||
for j in range(len(nums)):
|
||||
if j == i:
|
||||
continue
|
||||
if nums[i] > nums[j]:
|
||||
cnt += 1
|
||||
res[i] = cnt
|
||||
return res
|
||||
```
|
||||
|
||||
> 排序+hash:
|
||||
|
||||
```python3
|
||||
class Solution:
|
||||
# 方法一:使用字典
|
||||
def smallerNumbersThanCurrent(self, nums: List[int]) -> List[int]:
|
||||
res = nums[:]
|
||||
hash = dict()
|
||||
hash_dict = dict()
|
||||
res.sort() # 从小到大排序之后,元素下标就是小于当前数字的数字
|
||||
for i, num in enumerate(res):
|
||||
if num not in hash.keys(): # 遇到了相同的数字,那么不需要更新该 number 的情况
|
||||
hash[num] = i
|
||||
if num not in hash_dict.keys(): # 遇到了相同的数字,那么不需要更新该 number 的情况
|
||||
hash_dict[num] = i
|
||||
for i, num in enumerate(nums):
|
||||
res[i] = hash[num]
|
||||
res[i] = hash_dict[num]
|
||||
return res
|
||||
|
||||
# 方法二:使用数组
|
||||
def smallerNumbersThanCurrent(self, nums: List[int]) -> List[int]:
|
||||
# 同步进行排序和创建新数组的操作,这样可以减少一次冗余的数组复制操作,以减少一次O(n) 的复制时间开销
|
||||
sort_nums = sorted(nums)
|
||||
# 题意中 0 <= nums[i] <= 100,故range的参数设为101
|
||||
hash_lst = [0 for _ in range(101)]
|
||||
# 从后向前遍历,这样hash里存放的就是相同元素最左面的数值和下标了
|
||||
for i in range(len(sort_nums)-1,-1,-1):
|
||||
hash_lst[sort_nums[i]] = i
|
||||
for i in range(len(nums)):
|
||||
nums[i] = hash_lst[nums[i]]
|
||||
return nums
|
||||
```
|
||||
|
||||
### Go:
|
||||
@ -220,7 +253,7 @@ var smallerNumbersThanCurrent = function(nums) {
|
||||
};
|
||||
```
|
||||
|
||||
### TypeScript:
|
||||
### TypeScript:
|
||||
|
||||
> 暴力法:
|
||||
|
||||
@ -241,7 +274,7 @@ function smallerNumbersThanCurrent(nums: number[]): number[] {
|
||||
};
|
||||
```
|
||||
|
||||
> 排序+hash
|
||||
> 排序+hash:
|
||||
|
||||
```typescript
|
||||
function smallerNumbersThanCurrent(nums: number[]): number[] {
|
||||
@ -260,7 +293,7 @@ function smallerNumbersThanCurrent(nums: number[]): number[] {
|
||||
};
|
||||
```
|
||||
|
||||
### rust
|
||||
### Rust:
|
||||
```rust
|
||||
use std::collections::HashMap;
|
||||
impl Solution {
|
||||
|
@ -213,7 +213,7 @@ class Solution:
|
||||
return find(source) == find(destination)
|
||||
```
|
||||
|
||||
### Javascript:
|
||||
### JavaScript:
|
||||
|
||||
Javascript 并查集解法如下:
|
||||
|
||||
|
@ -388,6 +388,62 @@ if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
```
|
||||
|
||||
### JavaScript
|
||||
|
||||
前缀和
|
||||
```js
|
||||
function func() {
|
||||
const readline = require('readline')
|
||||
const rl = readline.createInterface({
|
||||
input: process.stdin,
|
||||
output: process.stdout
|
||||
})
|
||||
let inputLines = []
|
||||
rl.on('line', function (line) {
|
||||
inputLines.push(line.trim())
|
||||
})
|
||||
|
||||
rl.on('close', function () {
|
||||
let [n, m] = inputLines[0].split(" ").map(Number)
|
||||
let c = new Array(n).fill(0)
|
||||
let r = new Array(m).fill(0)
|
||||
let arr = new Array(n)
|
||||
let sum = 0//数组总和
|
||||
let min = Infinity//设置最小值的初始值为无限大
|
||||
//定义数组
|
||||
for (let s = 0; s < n; s++) {
|
||||
arr[s] = inputLines[s + 1].split(" ").map(Number)
|
||||
}
|
||||
//每一行的和
|
||||
for (let i = 0; i < n; i++) {
|
||||
for (let j = 0; j < m; j++) {
|
||||
c[i] += arr[i][j]
|
||||
sum += arr[i][j]
|
||||
}
|
||||
}
|
||||
//每一列的和
|
||||
for (let i = 0; i < n; i++) {
|
||||
for (let j = 0; j < m; j++) {
|
||||
r[j] += arr[i][j]
|
||||
}
|
||||
}
|
||||
let sum1 = 0, sum2 = 0
|
||||
//横向切割
|
||||
for (let i = 0; i < n; i++) {
|
||||
sum1 += c[i]
|
||||
min = min < Math.abs(sum - 2 * sum1) ? min : Math.abs(sum - 2 * sum1)
|
||||
}
|
||||
//纵向切割
|
||||
for (let j = 0; j < m; j++) {
|
||||
sum2 += r[j]
|
||||
min = min < Math.abs(sum - 2 * sum2) ? min : Math.abs(sum - 2 * sum2)
|
||||
}
|
||||
console.log(min);
|
||||
})
|
||||
}
|
||||
```
|
||||
|
||||
### C
|
||||
|
||||
前缀和
|
||||
|
@ -911,7 +911,7 @@ func main() {
|
||||
|
||||
### Rust
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
### TypeScript
|
||||
|
||||
|
@ -867,7 +867,7 @@ if __name__ == "__main__":
|
||||
|
||||
### Rust
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
```js
|
||||
function dijkstra(grid, start, end) {
|
||||
|
@ -547,7 +547,7 @@ if __name__ == "__main__":
|
||||
|
||||
### Rust
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
```js
|
||||
function kruskal(v, edges) {
|
||||
|
@ -692,7 +692,7 @@ if __name__ == "__main__":
|
||||
|
||||
### Rust
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
```js
|
||||
function prim(v, edges) {
|
||||
const grid = Array.from({ length: v + 1 }, () => new Array(v + 1).fill(10001)); // Fixed grid initialization
|
||||
|
@ -350,7 +350,29 @@ function reverseStr(s, start, end) {
|
||||
|
||||
|
||||
### Swift:
|
||||
```swift
|
||||
func rotateWords(_ s: String, _ k: Int) -> String {
|
||||
var chars = Array(s)
|
||||
// 先反转整体
|
||||
reverseWords(&chars, start: 0, end: s.count - 1)
|
||||
// 反转前半段
|
||||
reverseWords(&chars, start: 0, end: k - 1)
|
||||
// 反转后半段
|
||||
reverseWords(&chars, start: k, end: s.count - 1)
|
||||
return String(chars)
|
||||
}
|
||||
|
||||
// 反转start...end 的字符数组
|
||||
func reverseWords(_ chars: inout [Character], start: Int, end: Int) {
|
||||
var left = start
|
||||
var right = end
|
||||
while left < right, right < chars.count {
|
||||
(chars[left], chars[right]) = (chars[right], chars[left])
|
||||
left += 1
|
||||
right -= 1
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
### PHP:
|
||||
|
@ -462,7 +462,7 @@ if __name__ == "__main__":
|
||||
|
||||
### Rust
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
```js
|
||||
async function main() {
|
||||
|
@ -483,7 +483,7 @@ if __name__ == "__main__":
|
||||
|
||||
### Rust
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
```js
|
||||
async function main() {
|
||||
|
@ -333,6 +333,8 @@ public class Main {
|
||||
|
||||
### Python
|
||||
|
||||
Bellman-Ford方法求解含有负回路的最短路问题
|
||||
|
||||
```python
|
||||
import sys
|
||||
|
||||
@ -388,11 +390,57 @@ if __name__ == "__main__":
|
||||
|
||||
```
|
||||
|
||||
SPFA方法求解含有负回路的最短路问题
|
||||
|
||||
```python
|
||||
from collections import deque
|
||||
from math import inf
|
||||
|
||||
def main():
|
||||
n, m = [int(i) for i in input().split()]
|
||||
graph = [[] for _ in range(n+1)]
|
||||
min_dist = [inf for _ in range(n+1)]
|
||||
count = [0 for _ in range(n+1)] # 记录节点加入队列的次数
|
||||
for _ in range(m):
|
||||
s, t, v = [int(i) for i in input().split()]
|
||||
graph[s].append([t, v])
|
||||
|
||||
min_dist[1] = 0 # 初始化
|
||||
count[1] = 1
|
||||
d = deque([1])
|
||||
flag = False
|
||||
|
||||
while d: # 主循环
|
||||
cur_node = d.popleft()
|
||||
for next_node, val in graph[cur_node]:
|
||||
if min_dist[next_node] > min_dist[cur_node] + val:
|
||||
min_dist[next_node] = min_dist[cur_node] + val
|
||||
count[next_node] += 1
|
||||
if next_node not in d:
|
||||
d.append(next_node)
|
||||
if count[next_node] == n: # 如果某个点松弛了n次,说明有负回路
|
||||
flag = True
|
||||
if flag:
|
||||
break
|
||||
|
||||
if flag:
|
||||
print("circle")
|
||||
else:
|
||||
if min_dist[-1] == inf:
|
||||
print("unconnected")
|
||||
else:
|
||||
print(min_dist[-1])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
```
|
||||
|
||||
### Go
|
||||
|
||||
### Rust
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
### TypeScript
|
||||
|
||||
|
@ -702,7 +702,129 @@ public class Main {
|
||||
|
||||
```
|
||||
|
||||
```java
|
||||
class Edge {
|
||||
public int u; // 边的端点1
|
||||
public int v; // 边的端点2
|
||||
public int val; // 边的权值
|
||||
|
||||
public Edge() {
|
||||
}
|
||||
|
||||
public Edge(int u, int v) {
|
||||
this.u = u;
|
||||
this.v = v;
|
||||
this.val = 0;
|
||||
}
|
||||
|
||||
public Edge(int u, int v, int val) {
|
||||
this.u = u;
|
||||
this.v = v;
|
||||
this.val = val;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* SPFA算法(版本3):处理含【负权回路】的有向图的最短路径问题
|
||||
* bellman_ford(版本3) 的队列优化算法版本
|
||||
* 限定起点、终点、至多途径k个节点
|
||||
*/
|
||||
public class SPFAForSSSP {
|
||||
|
||||
/**
|
||||
* SPFA算法
|
||||
*
|
||||
* @param n 节点个数[1,n]
|
||||
* @param graph 邻接表
|
||||
* @param startIdx 开始节点(源点)
|
||||
*/
|
||||
public static int[] spfa(int n, List<List<Edge>> graph, int startIdx, int k) {
|
||||
// 定义最大范围
|
||||
int maxVal = Integer.MAX_VALUE;
|
||||
// minDist[i] 源点到节点i的最短距离
|
||||
int[] minDist = new int[n + 1]; // 有效节点编号范围:[1,n]
|
||||
Arrays.fill(minDist, maxVal); // 初始化为maxVal
|
||||
minDist[startIdx] = 0; // 设置源点到源点的最短路径为0
|
||||
|
||||
// 定义queue记录每一次松弛更新的节点
|
||||
Queue<Integer> queue = new LinkedList<>();
|
||||
queue.offer(startIdx); // 初始化:源点开始(queue和minDist的更新是同步的)
|
||||
|
||||
|
||||
// SPFA算法核心:只对上一次松弛的时候更新过的节点关联的边进行松弛操作
|
||||
while (k + 1 > 0 && !queue.isEmpty()) { // 限定松弛 k+1 次
|
||||
int curSize = queue.size(); // 记录当前队列节点个数(上一次松弛更新的节点个数,用作分层统计)
|
||||
while (curSize-- > 0) { //分层控制,限定本次松弛只针对上一次松弛更新的节点,不对新增的节点做处理
|
||||
// 记录当前minDist状态,作为本次松弛的基础
|
||||
int[] minDist_copy = Arrays.copyOfRange(minDist, 0, minDist.length);
|
||||
|
||||
// 取出节点
|
||||
int cur = queue.poll();
|
||||
// 获取cur节点关联的边,进行松弛操作
|
||||
List<Edge> relateEdges = graph.get(cur);
|
||||
for (Edge edge : relateEdges) {
|
||||
int u = edge.u; // 与`cur`对照
|
||||
int v = edge.v;
|
||||
int weight = edge.val;
|
||||
if (minDist_copy[u] + weight < minDist[v]) {
|
||||
minDist[v] = minDist_copy[u] + weight; // 更新
|
||||
// 队列同步更新(此处有一个针对队列的优化:就是如果已经存在于队列的元素不需要重复添加)
|
||||
if (!queue.contains(v)) {
|
||||
queue.offer(v); // 与minDist[i]同步更新,将本次更新的节点加入队列,用做下一个松弛的参考基础
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// 当次松弛结束,次数-1
|
||||
k--;
|
||||
}
|
||||
|
||||
// 返回minDist
|
||||
return minDist;
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
// 输入控制
|
||||
Scanner sc = new Scanner(System.in);
|
||||
System.out.println("1.输入N个节点、M条边(u v weight)");
|
||||
int n = sc.nextInt();
|
||||
int m = sc.nextInt();
|
||||
|
||||
System.out.println("2.输入M条边");
|
||||
List<List<Edge>> graph = new ArrayList<>(); // 构建邻接表
|
||||
for (int i = 0; i <= n; i++) {
|
||||
graph.add(new ArrayList<>());
|
||||
}
|
||||
while (m-- > 0) {
|
||||
int u = sc.nextInt();
|
||||
int v = sc.nextInt();
|
||||
int weight = sc.nextInt();
|
||||
graph.get(u).add(new Edge(u, v, weight));
|
||||
}
|
||||
|
||||
System.out.println("3.输入src dst k(起点、终点、至多途径k个点)");
|
||||
int src = sc.nextInt();
|
||||
int dst = sc.nextInt();
|
||||
int k = sc.nextInt();
|
||||
|
||||
// 调用算法
|
||||
int[] minDist = SPFAForSSSP.spfa(n, graph, src, k);
|
||||
// 校验起点->终点
|
||||
if (minDist[dst] == Integer.MAX_VALUE) {
|
||||
System.out.println("unreachable");
|
||||
} else {
|
||||
System.out.println("最短路径:" + minDist[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
|
||||
### Python
|
||||
|
||||
Bellman-Ford方法求解单源有限最短路
|
||||
|
||||
```python
|
||||
def main():
|
||||
# 輸入
|
||||
@ -736,6 +858,48 @@ def main():
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
```
|
||||
|
||||
SPFA方法求解单源有限最短路
|
||||
|
||||
```python
|
||||
from collections import deque
|
||||
from math import inf
|
||||
|
||||
|
||||
def main():
|
||||
n, m = [int(i) for i in input().split()]
|
||||
graph = [[] for _ in range(n+1)]
|
||||
for _ in range(m):
|
||||
v1, v2, val = [int(i) for i in input().split()]
|
||||
graph[v1].append([v2, val])
|
||||
src, dst, k = [int(i) for i in input().split()]
|
||||
min_dist = [inf for _ in range(n+1)]
|
||||
min_dist[src] = 0 # 初始化起点的距离
|
||||
que = deque([src])
|
||||
|
||||
while k != -1 and que:
|
||||
visited = [False for _ in range(n+1)] # 用于保证每次松弛时一个节点最多加入队列一次
|
||||
que_size = len(que)
|
||||
temp_dist = min_dist.copy() # 用于记录上一次遍历的结果
|
||||
for _ in range(que_size):
|
||||
cur_node = que.popleft()
|
||||
for next_node, val in graph[cur_node]:
|
||||
if min_dist[next_node] > temp_dist[cur_node] + val:
|
||||
min_dist[next_node] = temp_dist[cur_node] + val
|
||||
if not visited[next_node]:
|
||||
que.append(next_node)
|
||||
visited[next_node] = True
|
||||
k -= 1
|
||||
|
||||
if min_dist[dst] == inf:
|
||||
print("unreachable")
|
||||
else:
|
||||
print(min_dist[dst])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
```
|
||||
@ -744,7 +908,7 @@ if __name__ == "__main__":
|
||||
|
||||
### Rust
|
||||
|
||||
### Javascript
|
||||
### JavaScript
|
||||
|
||||
### TypeScript
|
||||
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user