This commit is contained in:
programmercarl
2025-01-03 15:29:08 +08:00
127 changed files with 2094 additions and 393 deletions

View File

@ -141,9 +141,9 @@
1. [字符串344.反转字符串](./problems/0344.反转字符串.md)
2. [字符串541.反转字符串II](./problems/0541.反转字符串II.md)
3. [字符串:替换数字](./problems/kama54.替换数字.md)
3. [字符串:替换数字](./problems/kamacoder/0054.替换数字.md)
4. [字符串151.翻转字符串里的单词](./problems/0151.翻转字符串里的单词.md)
5. [字符串:右旋字符串](./problems/kama55.右旋字符串.md)
5. [字符串:右旋字符串](./problems/kamacoder/0055.右旋字符串.md)
6. [帮你把KMP算法学个通透](./problems/0028.实现strStr.md)
8. [字符串459.重复的子字符串](./problems/0459.重复的子字符串.md)
9. [字符串:总结篇!](./problems/字符串总结.md)
@ -154,7 +154,7 @@
1. [数组27.移除元素](./problems/0027.移除元素.md)
2. [字符串344.反转字符串](./problems/0344.反转字符串.md)
3. [字符串:替换数字](./problems/kama54.替换数字.md)
3. [字符串:替换数字](./problems/kamacoder/0054.替换数字.md)
4. [字符串151.翻转字符串里的单词](./problems/0151.翻转字符串里的单词.md)
5. [链表206.翻转链表](./problems/0206.翻转链表.md)
6. [链表19.删除链表的倒数第 N 个结点](./problems/0019.删除链表的倒数第N个节点.md)

View File

@ -341,7 +341,7 @@ impl Solution {
}
```
### Javascript:
### JavaScript:
```javascript
var twoSum = function (nums, target) {

View File

@ -34,7 +34,7 @@
### 哈希解法
两层for循环就可以确定 a 和b 的数值,可以使用哈希法来确定 0-(a+b) 是否在 数组里出现过,其实这个思路是正确的,但是我们有一个非常棘手的问题,就是题目中说的不可以包含重复的三元组。
两层for循环就可以确定 两个数值,可以使用哈希法来确定 第三个数 0-(a+b) 或者 0 - (a + c) 是否在 数组里出现过,其实这个思路是正确的,但是我们有一个非常棘手的问题,就是题目中说的不可以包含重复的三元组。
把符合条件的三元组放进vector中然后再去重这样是非常费时的很容易超时也是这道题目通过率如此之低的根源所在。
@ -48,35 +48,41 @@
```CPP
class Solution {
public:
// 在一个数组中找到3个数形成的三元组它们的和为0不能重复使用三数下标互不相同且三元组不能重复。
// b存储== 0-(a+c)(检索)
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
// 找出a + b + c = 0
// a = nums[i], b = nums[j], c = -(a + b)
for (int i = 0; i < nums.size(); i++) {
// 排序之后如果第一个元素已经大于零,那么不可能凑成三元组
if (nums[i] > 0) {
// 如果a是正数a<b<c不可能形成和为0的三元组
if (nums[i] > 0)
break;
}
if (i > 0 && nums[i] == nums[i - 1]) { //三元组元素a去重
// [a, a, ...] 如果本轮a和上轮a相同那么找到的bc也是相同的所以去重a
if (i > 0 && nums[i] == nums[i - 1])
continue;
}
// 这个set的作用是存储b
unordered_set<int> set;
for (int j = i + 1; j < nums.size(); j++) {
if (j > i + 2
&& nums[j] == nums[j-1]
&& nums[j-1] == nums[j-2]) { // 三元组元素b去重
for (int k = i + 1; k < nums.size(); k++) {
// 去重b=c时的b和c
if (k > i + 2 && nums[k] == nums[k - 1] && nums[k - 1] == nums[k - 2])
continue;
// a+b+c=0 <=> b=0-(a+c)
int target = 0 - (nums[i] + nums[k]);
if (set.find(target) != set.end()) {
result.push_back({nums[i], target, nums[k]}); // nums[k]成为c
set.erase(target);
}
int c = 0 - (nums[i] + nums[j]);
if (set.find(c) != set.end()) {
result.push_back({nums[i], nums[j], c});
set.erase(c);// 三元组元素c去重
} else {
set.insert(nums[j]);
else {
set.insert(nums[k]); // nums[k]成为b
}
}
}
return result;
}
};

View File

@ -58,7 +58,7 @@
* fast和slow同时移动直到fast指向末尾如题
<img src='https://code-thinking.cdn.bcebos.com/pics/19.%E5%88%A0%E9%99%A4%E9%93%BE%E8%A1%A8%E7%9A%84%E5%80%92%E6%95%B0%E7%AC%ACN%E4%B8%AA%E8%8A%82%E7%82%B92.png' width=600> </img></div>
//图片中有错别词:应该将“只到”改为“直到”
* 删除slow指向的下一个节点如图
<img src='https://code-thinking.cdn.bcebos.com/pics/19.%E5%88%A0%E9%99%A4%E9%93%BE%E8%A1%A8%E7%9A%84%E5%80%92%E6%95%B0%E7%AC%ACN%E4%B8%AA%E8%8A%82%E7%82%B93.png' width=600> </img></div>

View File

@ -275,7 +275,7 @@ def is_valid(strs)
end
```
### Javascript:
### JavaScript:
```javascript
var isValid = function (s) {

View File

@ -286,7 +286,7 @@ func swapPairs(head *ListNode) *ListNode {
}
```
### Javascript:
### JavaScript:
```javascript
var swapPairs = function (head) {

View File

@ -131,7 +131,24 @@ public:
## 其他语言版本
### Java
```java
class Solution {
public int removeElement(int[] nums, int val) {
// 暴力法
int n = nums.length;
for (int i = 0; i < n; i++) {
if (nums[i] == val) {
for (int j = i + 1; j < n; j++) {
nums[j - 1] = nums[j];
}
i--;
n--;
}
}
return n;
}
}
```
```java
class Solution {
public int removeElement(int[] nums, int val) {

View File

@ -1456,6 +1456,70 @@ public int[] GetNext(string needle)
}
```
### C:
> 前缀表统一右移和减一
```c
int *build_next(char* needle, int len) {
int *next = (int *)malloc(len * sizeof(int));
assert(next); // 确保分配成功
// 初始化next数组
next[0] = -1; // next[0] 设置为 -1表示没有有效前缀匹配
if (len <= 1) { // 如果模式串长度小于等于 1直接返回
return next;
}
next[1] = 0; // next[1] 设置为 0表示第一个字符没有公共前后缀
// 构建next数组 i 从模式串的第三个字符开始, j 指向当前匹配的最长前缀长度
int i = 2, j = 0;
while (i < len) {
if (needle[i - 1] == needle[j]) {
j++;
next[i] = j;
i++;
} else if (j > 0) {
// 如果不匹配且 j > 0 回退到次长匹配前缀的长度
j = next[j];
} else {
next[i] = 0;
i++;
}
}
return next;
}
int strStr(char* haystack, char* needle) {
int needle_len = strlen(needle);
int haystack_len = strlen(haystack);
int *next = build_next(needle, needle_len);
int i = 0, j = 0; // i 指向主串的当前起始位置, j 指向模式串的当前匹配位置
while (i <= haystack_len - needle_len) {
if (haystack[i + j] == needle[j]) {
j++;
if (j == needle_len) {
free(next);
next = NULL
return i;
}
} else {
i += j - next[j]; // 调整主串的起始位置
j = j > 0 ? next[j] : 0;
}
}
free(next);
next = NULL;
return -1;
}
```
<p align="center">
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
<img src="../pics/网站星球宣传海报.jpg" width="1000"/>

View File

@ -366,40 +366,56 @@ class Solution:
"""
Do not return anything, modify board in-place instead.
"""
self.backtracking(board)
row_used = [set() for _ in range(9)]
col_used = [set() for _ in range(9)]
box_used = [set() for _ in range(9)]
for row in range(9):
for col in range(9):
num = board[row][col]
if num == ".":
continue
row_used[row].add(num)
col_used[col].add(num)
box_used[(row // 3) * 3 + col // 3].add(num)
self.backtracking(0, 0, board, row_used, col_used, box_used)
def backtracking(self, board: List[List[str]]) -> bool:
# 若有解返回True若无解返回False
for i in range(len(board)): # 遍历行
for j in range(len(board[0])): # 遍历列
# 若空格内已有数字,跳过
if board[i][j] != '.': continue
for k in range(1, 10):
if self.is_valid(i, j, k, board):
board[i][j] = str(k)
if self.backtracking(board): return True
board[i][j] = '.'
# 若数字1-9都不能成功填入空格返回False无解
return False
return True # 有解
def is_valid(self, row: int, col: int, val: int, board: List[List[str]]) -> bool:
# 判断同一行是否冲突
for i in range(9):
if board[row][i] == str(val):
return False
# 判断同一列是否冲突
for j in range(9):
if board[j][col] == str(val):
return False
# 判断同一九宫格是否有冲突
start_row = (row // 3) * 3
start_col = (col // 3) * 3
for i in range(start_row, start_row + 3):
for j in range(start_col, start_col + 3):
if board[i][j] == str(val):
return False
def backtracking(
self,
row: int,
col: int,
board: List[List[str]],
row_used: List[List[int]],
col_used: List[List[int]],
box_used: List[List[int]],
) -> bool:
if row == 9:
return True
next_row, next_col = (row, col + 1) if col < 8 else (row + 1, 0)
if board[row][col] != ".":
return self.backtracking(
next_row, next_col, board, row_used, col_used, box_used
)
for num in map(str, range(1, 10)):
if (
num not in row_used[row]
and num not in col_used[col]
and num not in box_used[(row // 3) * 3 + col // 3]
):
board[row][col] = num
row_used[row].add(num)
col_used[col].add(num)
box_used[(row // 3) * 3 + col // 3].add(num)
if self.backtracking(
next_row, next_col, board, row_used, col_used, box_used
):
return True
board[row][col] = "."
row_used[row].remove(num)
col_used[col].remove(num)
box_used[(row // 3) * 3 + col // 3].remove(num)
return False
```
### Go
@ -460,7 +476,7 @@ func isvalid(row, col int, k byte, board [][]byte) bool {
### Javascript
### JavaScript
```Javascript
var solveSudoku = function(board) {

View File

@ -374,7 +374,7 @@ func max(a, b int) int {
}
```
### Javascript
### JavaScript
```Javascript
var jump = function(nums) {

View File

@ -272,7 +272,7 @@ func dfs(nums []int, cur int) {
}
```
### Javascript
### JavaScript
```js

View File

@ -283,7 +283,7 @@ func dfs(nums []int, cur int) {
}
```
### Javascript
### JavaScript
```javascript
var permuteUnique = function (nums) {

View File

@ -451,7 +451,7 @@ func isValid(n, row, col int, chessboard [][]string) bool {
```
### Javascript
### JavaScript
```Javascript
/**
* @param {number} n

View File

@ -326,7 +326,7 @@ pub fn max_sub_array(nums: Vec<i32>) -> i32 {
}
```
### Javascript:
### JavaScript:
```Javascript
var maxSubArray = function(nums) {

View File

@ -260,7 +260,7 @@ class Solution {
}
```
### Javascript
### JavaScript
```
/**
* @param {number[][]} matrix

View File

@ -183,7 +183,7 @@ func max(a, b int ) int {
}
```
### Javascript
### JavaScript
```Javascript
var canJump = function(nums) {

View File

@ -215,7 +215,7 @@ func max56(a, b int) int {
```
### Javascript
### JavaScript
```javascript
var merge = function (intervals) {
intervals.sort((a, b) => a[0] - b[0]);

View File

@ -411,7 +411,7 @@ func uniquePaths(m int, n int) int {
}
```
### Javascript
### JavaScript
```Javascript
var uniquePaths = function(m, n) {

View File

@ -465,7 +465,7 @@ func uniquePathsWithObstacles(obstacleGrid [][]int) int {
}
```
### Javascript
### JavaScript
```Javascript
var uniquePathsWithObstacles = function(obstacleGrid) {

View File

@ -327,7 +327,7 @@ func climbStairs(n int) int {
return dp[n]
}
```
### Javascript
### JavaScript
```Javascript
var climbStairs = function(n) {
// dp[i] 为第 i 阶楼梯有多少种方法爬到楼顶

View File

@ -313,7 +313,7 @@ func Min(args ...int) int {
}
```
### Javascript
### JavaScript
```javascript
const minDistance = (word1, word2) => {

View File

@ -468,7 +468,7 @@ func dfs(n int, k int, start int) {
}
```
### Javascript
### JavaScript
未剪枝:
```js

View File

@ -246,7 +246,7 @@ func dfs(nums []int, start int) {
}
```
### Javascript
### JavaScript
```Javascript
var subsets = function(nums) {

View File

@ -474,7 +474,128 @@ class Solution:
### Go:
> 单调栈
暴力解法
```go
func largestRectangleArea(heights []int) int {
sum := 0
for i := 0; i < len(heights); i++ {
left, right := i, i
for left >= 0 {
if heights[left] < heights[i] {
break
}
left--
}
for right < len(heights) {
if heights[right] < heights[i] {
break
}
right++
}
w := right - left - 1
h := heights[i]
sum = max(sum, w * h)
}
return sum
}
func max(x, y int) int {
if x > y {
return x
}
return y
}
```
双指针解法
```go
func largestRectangleArea(heights []int) int {
size := len(heights)
minLeftIndex := make([]int, size)
minRightIndex := make([]int, size)
// 记录每个柱子 左边第一个小于该柱子的下标
minLeftIndex[0] = -1 // 注意这里初始化防止下面while死循环
for i := 1; i < size; i++ {
t := i - 1
// 这里不是用if而是不断向左寻找的过程
for t >= 0 && heights[t] >= heights[i] {
t = minLeftIndex[t]
}
minLeftIndex[i] = t
}
// 记录每个柱子 右边第一个小于该柱子的下标
minRightIndex[size - 1] = size; // 注意这里初始化防止下面while死循环
for i := size - 2; i >= 0; i-- {
t := i + 1
// 这里不是用if而是不断向右寻找的过程
for t < size && heights[t] >= heights[i] {
t = minRightIndex[t]
}
minRightIndex[i] = t
}
// 求和
result := 0
for i := 0; i < size; i++ {
sum := heights[i] * (minRightIndex[i] - minLeftIndex[i] - 1)
result = max(sum, result)
}
return result
}
func max(x, y int) int {
if x > y {
return x
}
return y
}
```
单调栈
```go
func largestRectangleArea(heights []int) int {
result := 0
heights = append([]int{0}, heights...) // 数组头部加入元素0
heights = append(heights, 0) // 数组尾部加入元素0
st := []int{0}
// 第一个元素已经入栈从下标1开始
for i := 1; i < len(heights); i++ {
if heights[i] > heights[st[len(st)-1]] {
st = append(st, i)
} else if heights[i] == heights[st[len(st)-1]] {
st = st[:len(st)-1]
st = append(st, i)
} else {
for len(st) > 0 && heights[i] < heights[st[len(st)-1]] {
mid := st[len(st)-1]
st = st[:len(st)-1]
if len(st) > 0 {
left := st[len(st)-1]
right := i
w := right - left - 1
h := heights[mid]
result = max(result, w * h)
}
}
st = append(st, i)
}
}
return result
}
func max(x, y int) int {
if x > y {
return x
}
return y
}
```
单调栈精简
```go
func largestRectangleArea(heights []int) int {

View File

@ -376,7 +376,7 @@ func dfs(nums []int, start int) {
```
### Javascript
### JavaScript
```Javascript

View File

@ -221,7 +221,7 @@ func numTrees(n int)int{
}
```
### Javascript
### JavaScript
```Javascript
const numTrees =(n) => {

View File

@ -22,7 +22,7 @@
## 算法公开课
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html)[你对二叉搜索树了解的还不够! | LeetCode98.验证二叉搜索树](https://www.bilibili.com/video/BV18P411n7Q4),相信结合视频看本篇题解,更有助于大家对本题的理解**。
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html)[你对二叉搜索树了解的还不够! | LeetCode98.验证二叉搜索树](https://www.bilibili.com/video/BV18P411n7Q4),相信结合视频看本篇题解,更有助于大家对本题的理解**。
## 思路

View File

@ -356,7 +356,7 @@ func levelOrder(root *TreeNode) (res [][]int) {
}
```
#### Javascript
#### JavaScript
```javascript
var levelOrder = function(root) {
@ -759,7 +759,7 @@ func levelOrderBottom(root *TreeNode) [][]int {
}
```
#### Javascript:
#### JavaScript:
```javascript
var levelOrderBottom = function (root) {
@ -1101,7 +1101,7 @@ func rightSideView(root *TreeNode) []int {
}
```
#### Javascript:
#### JavaScript:
```javascript
var rightSideView = function(root) {
@ -1421,7 +1421,7 @@ func averageOfLevels(root *TreeNode) []float64 {
}
```
#### Javascript
#### JavaScript
```javascript
var averageOfLevels = function(root) {
@ -2109,7 +2109,7 @@ func largestValues(root *TreeNode) []int {
}
```
#### Javascript
#### JavaScript
```javascript
var largestValues = function (root) {

View File

@ -604,7 +604,7 @@ func maxDepth(root *Node) int {
}
```
### Javascript :
### JavaScript :
104.二叉树的最大深度

View File

@ -830,7 +830,7 @@ func traverse(node *TreeNode, result *[][]int, currPath *[]int, targetSum int) {
}
```
### Javascript
### JavaScript
0112.路径总和

View File

@ -265,7 +265,7 @@ func numDistinct(s string, t string) int {
}
```
### Javascript:
### JavaScript:
```javascript
const numDistinct = (s, t) => {

View File

@ -249,7 +249,7 @@ func max(a, b int) int {
}
```
### Javascript:
### JavaScript:
贪心

View File

@ -316,8 +316,9 @@ class Solution:
### Go:
> 版本一
```go
// 版本一
func maxProfit(prices []int) int {
dp := make([][]int, len(prices))
for i := 0; i < len(prices); i++ {
@ -345,8 +346,9 @@ func max(a, b int) int {
}
```
> 版本二
```go
// 版本二
func maxProfit(prices []int) int {
if len(prices) == 0 {
return 0
@ -371,8 +373,9 @@ func max(x, y int) int {
}
```
> 版本三
```go
// 版本三
func maxProfit(prices []int) int {
if len(prices) == 0 {
return 0
@ -397,6 +400,26 @@ func max(x, y int) int {
}
```
> 版本四:一维 dp 易懂版本
```go
func maxProfit(prices []int) int {
dp := make([]int, 4)
dp[0] = -prices[0]
dp[2] = -prices[0]
for _, price := range prices[1:] {
dc := slices.Clone(dp) // 这句话是关键,把前一天的 dp 状态保存下来,防止被覆盖掉,后面只用它,不用 dp逻辑简单易懂
dp[0] = max(dc[0], -price)
dp[1] = max(dc[1], dc[0] + price)
dp[2] = max(dc[2], dc[1] - price)
dp[3] = max(dc[3], dc[2] + price)
}
return dp[3]
}
```
### JavaScript:
> 版本一:

View File

@ -396,7 +396,7 @@ func canCompleteCircuit(gas []int, cost []int) int {
}
```
### Javascript
### JavaScript
暴力
```js
var canCompleteCircuit = function(gas, cost) {

View File

@ -233,7 +233,7 @@ func findMax(num1 int, num2 int) int {
}
```
### Javascript
### JavaScript
```Javascript
var candy = function(ratings) {
let candys = new Array(ratings.length).fill(1)

View File

@ -38,7 +38,7 @@ public:
cur = head;
int i = 1;
int j = vec.size() - 1; // i j为之前前后的双指针
int count = 0; // 计数,偶数后面,奇数取前面
int count = 0; // 计数,偶数后面,奇数取前面
while (i <= j) {
if (count % 2 == 0) {
cur->next = vec[j];
@ -73,7 +73,7 @@ public:
}
cur = head;
int count = 0; // 计数,偶数后面,奇数取前面
int count = 0; // 计数,偶数后面,奇数取前面
ListNode* node;
while(que.size()) {
if (count % 2 == 0) {
@ -338,8 +338,85 @@ class Solution:
return pre
```
### Go
```go
# 方法三 分割链表
// 方法一 数组模拟
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func reorderList(head *ListNode) {
vec := make([]*ListNode, 0)
cur := head
if cur == nil {
return
}
for cur != nil {
vec = append(vec, cur)
cur = cur.Next
}
cur = head
i := 1
j := len(vec) - 1 // i j为前后的双指针
count := 0 // 计数,偶数取后面,奇数取前面
for i <= j {
if count % 2 == 0 {
cur.Next = vec[j]
j--
} else {
cur.Next = vec[i]
i++
}
cur = cur.Next
count++
}
cur.Next = nil // 注意结尾
}
```
```go
// 方法二 双向队列模拟
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func reorderList(head *ListNode) {
que := make([]*ListNode, 0)
cur := head
if cur == nil {
return
}
for cur.Next != nil {
que = append(que, cur.Next)
cur = cur.Next
}
cur = head
count := 0 // 计数,偶数取后面,奇数取前面
for len(que) > 0 {
if count % 2 == 0 {
cur.Next = que[len(que)-1]
que = que[:len(que)-1]
} else {
cur.Next = que[0]
que = que[1:]
}
count++
cur = cur.Next
}
cur.Next = nil // 注意结尾
}
```
```go
// 方法三 分割链表
func reorderList(head *ListNode) {
var slow=head
var fast=head

View File

@ -188,34 +188,21 @@ class Solution(object):
return stack.pop()
```
另一种可行但因为使用eval相对较慢的方法:
另一种可行但因为使用eval()相对较慢的方法:
```python
from operator import add, sub, mul
def div(x, y):
# 使用整数除法的向零取整方式
return int(x / y) if x * y > 0 else -(abs(x) // abs(y))
class Solution(object):
op_map = {'+': add, '-': sub, '*': mul, '/': div}
def evalRPN(self, tokens):
"""
:type tokens: List[str]
:rtype: int
"""
def evalRPN(self, tokens: List[str]) -> int:
stack = []
for token in tokens:
if token in self.op_map:
op1 = stack.pop()
op2 = stack.pop()
operation = self.op_map[token]
stack.append(operation(op2, op1))
# 判断是否为数字因为isdigit()不识别负数,故需要排除第一位的符号
if token.isdigit() or (len(token)>1 and token[1].isdigit()):
stack.append(token)
else:
stack.append(int(token))
return stack.pop()
op2 = stack.pop()
op1 = stack.pop()
# 由题意"The division always truncates toward zero"所以使用int()可以天然取整
stack.append(str(int(eval(op1 + token + op2))))
return int(stack.pop())
```
### Go:

View File

@ -513,6 +513,29 @@ class Solution:
return "".join(result)
```
(版本五) 遇到空格就说明前面的是一个单词,把它加入到一个数组中。
```python
class Solution:
def reverseWords(self, s: str) -> str:
words = []
word = ''
s += ' ' # 帮助处理最后一个字词
for char in s:
if char == ' ': # 遇到空格就说明前面的可能是一个单词
if word != '': # 确认是单词,把它加入到一个数组中
words.append(word)
word = '' # 清空当前单词
continue
word += char # 收集单词的字母
words.reverse()
return ' '.join(words)
```
### Go
版本一:

View File

@ -297,8 +297,7 @@ class Solution {
### Python:
版本一
> 版本一
```python
class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
@ -313,7 +312,8 @@ class Solution:
dp[i][j+2] = max(dp[i-1][j+2], dp[i-1][j+1] + prices[i])
return dp[-1][2*k]
```
版本二
> 版本二
```python
class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
@ -329,9 +329,31 @@ class Solution:
dp[j] = max(dp[j],dp[j-1]+prices[i])
return dp[2*k]
```
> 版本三: 一维 dp 数组(易理解版本)
```python
class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
dp = [0] * k * 2
for i in range(k):
dp[i * 2] = -prices[0]
for price in prices[1:]:
dc = dp.copy() # 这句话是关键,把前一天的 dp 状态保存下来,防止被覆盖掉,后面只用它,不用 dp逻辑简单易懂
for i in range(2 * k):
if i % 2 == 1:
dp[i] = max(dc[i], dc[i - 1] + price)
else:
pre = 0 if i == 0 else dc[i - 1]
dp[i] = max(dc[i], pre - price)
return dp[-1]
```
### Go:
版本一:
> 版本一:
```go
// 买卖股票的最佳时机IV 动态规划
@ -368,7 +390,7 @@ func max(a, b int) int {
}
```
版本二: 三维 dp数组
> 版本二: 三维 dp数组
```go
func maxProfit(k int, prices []int) int {
length := len(prices)
@ -443,7 +465,31 @@ func max(a, b int) int {
}
```
> 版本四:一维 dp 数组(易理解版本)
```go
func maxProfit(k int, prices []int) int {
dp := make([]int, 2 * k)
for i := range k {
dp[i * 2] = -prices[0]
}
for j := 1; j < len(prices); j++ {
dc := slices.Clone(dp) // 这句话是关键,把前一天的 dp 状态保存下来,防止被覆盖掉,后面只用它,不用 dp逻辑简单易懂
for i := range k * 2 {
if i % 2 == 1 {
dp[i] = max(dc[i], dc[i - 1] + prices[j])
} else {
pre := 0; if i >= 1 { pre = dc[i - 1] }
dp[i] = max(dc[i], pre - prices[j])
}
}
}
return dp[2 * k - 1]
}
```
### JavaScript:

View File

@ -337,6 +337,37 @@ public ListNode removeElements(ListNode head, int val) {
```
递归
```java
/**
* 时间复杂度 O(n)
* 空间复杂度 O(n)
* @param head
* @param val
* @return
*/
class Solution {
public ListNode removeElements(ListNode head, int val) {
if (head == null) {
return head;
}
// 假设 removeElements() 返回后面完整的已经去掉val节点的子链表
// 在当前递归层用当前节点接住后面的子链表
// 随后判断当前层的node是否需要被删除如果是就返回
// 也可以先判断是否需要删除当前node但是这样条件语句会比较不好想
head.next = removeElements(head.next, val);
if (head.val == val) {
return head.next;
}
return head;
// 实际上就是还原一个从尾部开始重新构建链表的过程
}
}
```
### Python
```python
@ -737,7 +768,45 @@ public class Solution
}
}
```
### Ruby#
```ruby
# 定义链表节点
class ListNode
attr_accessor :val, :next
def initialize(val = 0, _next = nil)
@val = val
@next = _next
end
end
# 删除链表中值为 val 的节点
def remove_elements(head, val)
# 创建一个虚拟头节点,这样可以简化删除头节点的处理
# 虚拟头节点的值为 0指向当前链表的头节点
dummy = ListNode.new(0)
dummy.next = head
# 初始化当前节点为虚拟头节点
current = dummy
# 遍历链表,直到当前节点的下一个节点为空
while current.next
# 如果当前节点的下一个节点的值等于 val
if current.next.val == val
# 跳过该节点,即将当前节点的 next 指向下一个节点的 next
current.next = current.next.next
else
# 否则继续遍历,当前节点向前移动
current = current.next
end
end
# 返回删除 val 后的新链表的头节点,虚拟头节点的 next 就是新的头节点
dummy.next
end
```
<p align="center">
<a href="https://programmercarl.com/other/kstar.html" target="_blank">

View File

@ -266,7 +266,7 @@ var minSubArrayLen = function(target, nums) {
};
```
### Typescript
### TypeScript
```typescript
function minSubArrayLen(target: number, nums: number[]): number {

View File

@ -81,7 +81,7 @@ if (root == NULL) return root;
3. 确定单层递归的逻辑
因为是前序遍历,所以先进行交换左右孩子节点,然后反转左子树,反转右子树。
因为是前序遍历,所以先进行交换左右孩子节点,然后反转左子树,反转右子树。
```cpp
swap(root->left, root->right);
@ -348,14 +348,13 @@ class Solution:
while stack:
node = stack.pop()
node.left, node.right = node.right, node.left
if node.left:
stack.append(node.left)
if node.right:
stack.append(node.right)
if node.left:
stack.append(node.left)
return root
```
递归法:中序遍历:
```python
# Definition for a binary tree node.
@ -374,7 +373,7 @@ class Solution:
return root
```
迭代法中序遍历:
迭代法,伪中序遍历(结果是对的,看起来像是中序遍历,实际上它是前序遍历,只不过把中间节点处理逻辑放到了中间。还是要用'统一写法'才是真正的中序遍历)
```python
# Definition for a binary tree node.
# class TreeNode:
@ -389,15 +388,14 @@ class Solution:
stack = [root]
while stack:
node = stack.pop()
if node.left:
stack.append(node.left)
node.left, node.right = node.right, node.left
if node.left:
stack.append(node.left)
if node.right:
stack.append(node.right)
node.left, node.right = node.right, node.left # 放到中间,依然是前序遍历
if node.right:
stack.append(node.right)
return root
```
递归法:后序遍历:
```python
# Definition for a binary tree node.
@ -416,7 +414,7 @@ class Solution:
return root
```
迭代法后序遍历:
迭代法,伪后序遍历(结果是对的,看起来像是后序遍历,实际上它是前序遍历,只不过把中间节点处理逻辑放到了最后。还是要用'统一写法'才是真正的后序遍历)
```python
# Definition for a binary tree node.
# class TreeNode:
@ -431,19 +429,15 @@ class Solution:
stack = [root]
while stack:
node = stack.pop()
if node.left:
stack.append(node.left)
if node.right:
stack.append(node.right)
if node.left:
stack.append(node.left)
node.left, node.right = node.right, node.left
return root
```
迭代法:广度优先遍历(层序遍历):
```python
# Definition for a binary tree node.

View File

@ -113,7 +113,7 @@ public:
```
* 时间复杂度: push和empty为O(1), pop和peek为O(n)
* 时间复杂度: 为O(1)pop和peek看起来像O(n)实际上一个循环n会被使用n次最后还是O(1)。
* 空间复杂度: O(n)

View File

@ -38,7 +38,7 @@
## 算法公开课
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html)[二叉搜索树找祖先就有点不一样了!| 235. 二叉搜索树的最近公共祖先](https://www.bilibili.com/video/BV1Zt4y1F7ww?share_source=copy_web),相信结合视频看本篇题解,更有助于大家对本题的理解**。
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html)[二叉搜索树找祖先就有点不一样了!| 235. 二叉搜索树的最近公共祖先](https://www.bilibili.com/video/BV1Zt4y1F7ww?share_source=copy_web),相信结合视频看本篇题解,更有助于大家对本题的理解**。
## 思路

View File

@ -36,7 +36,7 @@
## 算法公开课
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html)[自底向上查找,有点难度! | LeetCode236. 二叉树的最近公共祖先](https://www.bilibili.com/video/BV1jd4y1B7E2),相信结合视频看本篇题解,更有助于大家对本题的理解**。
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html)[自底向上查找,有点难度! | LeetCode236. 二叉树的最近公共祖先](https://www.bilibili.com/video/BV1jd4y1B7E2),相信结合视频看本篇题解,更有助于大家对本题的理解**。
## 思路
@ -45,7 +45,7 @@
那么二叉树如何可以自底向上查找呢?
回溯啊,二叉树回溯的过程就是从到上。
回溯啊,二叉树回溯的过程就是从到上。
后序遍历(左右中)就是天然的回溯过程,可以根据左右子树的返回值,来处理中节点的逻辑。

View File

@ -299,7 +299,7 @@ class Solution {
```
### Python
#### 解法一:使用自定义的单调队列类
```python
from collections import deque
@ -339,6 +339,35 @@ class Solution:
return result
```
#### 解法二:直接用单调队列
```python
from collections import deque
class Solution:
def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
max_list = [] # 结果集合
kept_nums = deque() # 单调队列
for i in range(len(nums)):
update_kept_nums(kept_nums, nums[i]) # 右侧新元素加入
if i >= k and nums[i - k] == kept_nums[0]: # 左侧旧元素如果等于单调队列头元素,需要移除头元素
kept_nums.popleft()
if i >= k - 1:
max_list.append(kept_nums[0])
return max_list
def update_kept_nums(kept_nums, num): # num 是新加入的元素
# 所有小于新元素的队列尾部元素,在新元素出现后,都是没有价值的,都需要被移除
while kept_nums and num > kept_nums[-1]:
kept_nums.pop()
kept_nums.append(num)
```
### Go
```go
@ -401,7 +430,7 @@ func maxSlidingWindow(nums []int, k int) []int {
}
```
### Javascript:
### JavaScript:
```javascript
/**

View File

@ -346,7 +346,7 @@ func min(a, b int) int {
}
```
### Javascript:
### JavaScript:
```Javascript
// 先遍历物品,再遍历背包

View File

@ -248,7 +248,7 @@ func lengthOfLIS(nums []int ) int {
}
```
### Javascript:
### JavaScript:
```javascript
const lengthOfLIS = (nums) => {

View File

@ -274,7 +274,7 @@ class Solution {
```
### Python
版本一
> 版本一
```python
from typing import List
@ -294,7 +294,8 @@ class Solution:
return max(dp[n-1][3], dp[n-1][1], dp[n-1][2]) # 返回最后一天不持有股票的最大利润
```
版本二
> 版本二
```python
class Solution:
def maxProfit(self, prices: List[int]) -> int:
@ -320,6 +321,36 @@ class Solution:
return max(dp[-1][1], dp[-1][2])
```
> 版本三
```python
class Solution:
def maxProfit(self, prices: List[int]) -> int:
# 0: holding stocks
# (1) keep holding stocks: dp[i][0] = dp[i - 1][0]
# (2) buy stocks: dp[i][0] = dp[i - 1][1] - price, or dp[i - 1][3] - price
# 1: keep no stocks: dp[i][1] = dp[i - 1][1]
# 2: sell stocks: dp[i][2] = dp[i - 1][0] + price
# 3: cooldown day: dp[i][3] = dp[i - 1][2]
dp = [-prices[0], 0, 0, 0]
for price in prices[1:]:
dc = dp.copy() # 这句话是关键,把前一天的 dp 状态保存下来,防止被覆盖掉,后面只用它,不用 dp逻辑简单易懂
dp[0] = max(
dc[0],
dc[1] - price,
dc[3] - price
)
dp[1] = max(
dc[1],
dc[3]
)
dp[2] = dc[0] + price
dp[3] = dc[2]
return max(dp)
```
### Go
```go
@ -393,7 +424,7 @@ func max(a, b int) int {
### Javascript:
### JavaScript:
> 不同的状态定义 感觉更容易理解些
```javascript

View File

@ -427,7 +427,7 @@ impl Solution {
}
```
### Javascript
### JavaScript
```javascript
// 遍历物品

View File

@ -172,7 +172,7 @@ if (result.size() == ticketNum + 1) {
回溯的过程中,如何遍历一个机场所对应的所有机场呢?
这里刚刚说过,在选择映射函数的时候,不能选择`unordered_map<string, multiset<string>> targets` 因为一旦有元素增删multiset的迭代器就会失效当然可能有牛逼的容器删除元素迭代器不会失效这里就不讨论了。
这里刚刚说过,在选择映射函数的时候,不能选择`unordered_map<string, multiset<string>> targets` 因为一旦有元素增删multiset的迭代器就会失效当然可能有牛逼的容器删除元素迭代器不会失效这里就不讨论了。
**可以说本题既要找到一个对数据进行排序的容器,而且还要容易增删元素,迭代器还不能失效**
@ -535,7 +535,7 @@ func findItinerary(tickets [][]string) []string {
}
```
### Javascript
### JavaScript
```Javascript

View File

@ -477,14 +477,7 @@ func max(x, y int) int {
```go
func rob(root *TreeNode) int {
res := robTree(root)
return max(res[0], res[1])
}
func max(a, b int) int {
if a > b {
return a
}
return b
return slices.Max(res)
}
func robTree(cur *TreeNode) []int {
@ -498,7 +491,7 @@ func robTree(cur *TreeNode) []int {
// 考虑去偷当前的屋子
robCur := cur.Val + left[0] + right[0]
// 考虑不去偷当前的屋子
notRobCur := max(left[0], left[1]) + max(right[0], right[1])
notRobCur := slices.Max(left) + slices.Max(right)
// 注意顺序0:不偷1:去偷
return []int{notRobCur, robCur}

View File

@ -385,7 +385,7 @@ func integerBreak(n int) int {
}
```
### Javascript
### JavaScript
```Javascript
var integerBreak = function(n) {
let dp = new Array(n + 1).fill(0)

View File

@ -72,7 +72,7 @@
#### 情况一:上下坡中有平坡
例如 [1,2,2,2,1]这样的数组,如图:
例如 [1,2,2,2,2,1]这样的数组,如图:
![](https://code-thinking-1253855093.file.myqcloud.com/pics/20230106170449.png)
@ -466,7 +466,7 @@ func max(a, b int) int {
}
```
### Javascript
### JavaScript
**贪心**

View File

@ -254,7 +254,7 @@ func combinationSum4(nums []int, target int) int {
}
```
### Javascript
### JavaScript
```javascript
const combinationSum4 = (nums, target) => {

View File

@ -270,7 +270,7 @@ func reconstructQueue(people [][]int) [][]int {
}
```
### Javascript
### JavaScript
```Javascript
var reconstructQueue = function(people) {

View File

@ -311,7 +311,7 @@ func min(a, b int) int {
}
```
### Javascript
### JavaScript
- 按右边界排序
```Javascript
var eraseOverlapIntervals = function(intervals) {

View File

@ -801,6 +801,40 @@ impl Solution {
}
```
### Ruby
> 递归法:
```ruby
# @param {TreeNode} root
# @param {Integer} key
# @return {TreeNode}
def delete_node(root, key)
return nil if root.nil?
right = root.right
left = root.left
if root.val == key
return right if left.nil?
return left if right.nil?
node = right
while node.left
node = node.left
end
node.left = left
return right
end
if root.val > key
root.left = delete_node(left, key)
else
root.right = delete_node(right, key)
end
return root
end
```
<p align="center">
<a href="https://programmercarl.com/other/kstar.html" target="_blank">

View File

@ -226,7 +226,7 @@ func min(a, b int) int {
}
```
### Javascript
### JavaScript
```Javascript
var findMinArrowShots = function(points) {
points.sort((a, b) => {

View File

@ -278,7 +278,7 @@ pub fn find_content_children(mut children: Vec<i32>, mut cookies: Vec<i32>) -> i
}
```
### Javascript
### JavaScript
```js
var findContentChildren = function (g, s) {

View File

@ -362,7 +362,7 @@ func max(a,b int) int {
}
```
### Javascript
### JavaScript
```javascript
const findMaxForm = (strs, m, n) => {
const dp = Array.from(Array(m+1), () => Array(n+1).fill(0));

View File

@ -375,7 +375,7 @@ func dfs(nums []int, start int) {
}
```
### Javascript
### JavaScript
```Javascript

View File

@ -705,6 +705,31 @@ class Solution:
```
### Go
回溯法思路
```go
func findTargetSumWays(nums []int, target int) int {
var result int
var backtracking func(nums []int, target int, index int, currentSum int)
backtracking = func(nums []int, target int, index int, currentSum int) {
if index == len(nums) {
if currentSum == target {
result++
}
return
}
// 选择加上当前数字
backtracking(nums, target, index+1, currentSum+nums[index])
// 选择减去当前数字
backtracking(nums, target, index+1, currentSum-nums[index])
}
backtracking(nums, target, 0, 0)
return result
}
```
二维dp
```go
func findTargetSumWays(nums []int, target int) int {
@ -790,7 +815,7 @@ func abs(x int) int {
}
```
### Javascript
### JavaScript
```javascript
const findTargetSumWays = (nums, target) => {

View File

@ -195,6 +195,62 @@ public:
建议大家把情况一二三想清楚了,先写出版本一的代码,然后在其基础上在做精简!
## 其他语言版本
### C
``` C
/* 先用单调栈的方法计算出结果再根据nums1中的元素去查找对应的结果 */
/**
* Note: The returned array must be malloced, assume caller calls free().
*/
int* nextGreaterElement(int* nums1, int nums1Size, int* nums2, int nums2Size, int* returnSize) {
/* stcak */
int top = -1;
int stack_len = nums2Size;
int stack[stack_len];
//memset(stack, 0x00, sizeof(stack));
/* nums2 result */
int* result_nums2 = (int *)malloc(sizeof(int) * nums2Size);
//memset(result_nums2, 0x00, sizeof(int) * nums2Size);
/* result */
int* result = (int *)malloc(sizeof(int) * nums1Size);
//memset(result, 0x00, sizeof(int) * nums1Size);
*returnSize = nums1Size;
/* init */
stack[++top] = 0; /* stack loaded with array subscripts */
for (int i = 0; i < nums2Size; i++) {
result_nums2[i] = -1;
}
/* get the result_nums2 */
for (int i = 1; i < nums2Size; i++) {
if (nums2[i] <= nums2[stack[top]]) {
stack[++top] = i; /* push */
} else {
while ((top >= 0) && (nums2[i] > nums2[stack[top]])) {
result_nums2[stack[top]] = nums2[i];
top--; /* pop */
}
stack[++top] = i;
}
}
/* get the result */
for (int i = 0; i < nums1Size; i++) {
for (int j = 0; j < nums2Size; j++) {
if (nums1[i] == nums2[j]) {
result[i] = result_nums2[j];
}
}
}
return result;
}
```
### Java
```java

View File

@ -35,7 +35,7 @@
## 算法公开课
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html)[不仅双指针,还有代码技巧可以惊艳到你! | LeetCode501.二叉搜索树中的众数](https://www.bilibili.com/video/BV1fD4y117gp),相信结合视频看本篇题解,更有助于大家对本题的理解**。
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html)[不仅双指针,还有代码技巧可以惊艳到你! | LeetCode501.二叉搜索树中的众数](https://www.bilibili.com/video/BV1fD4y117gp),相信结合视频看本篇题解,更有助于大家对本题的理解**。
## 思路

View File

@ -185,7 +185,7 @@ class Solution:
> 版本二:针对版本一的优化
```python3
```python
class Solution:
def nextGreaterElements(self, nums: List[int]) -> List[int]:
res = [-1] * len(nums)
@ -213,6 +213,40 @@ class Solution:
### Go:
```go
// 版本一
func nextGreaterElements(nums []int) []int {
// 拼接一个新的nums
numsNew := make([]int, len(nums) * 2)
copy(numsNew, nums)
copy(numsNew[len(nums):], nums)
// 用新的nums大小来初始化result
result := make([]int, len(numsNew))
for i := range result {
result[i] = -1
}
// 开始单调栈
st := []int{0}
for i := 1; i < len(numsNew); i++ {
if numsNew[i] < numsNew[st[len(st)-1]] {
st = append(st, i)
} else if numsNew[i] == numsNew[st[len(st)-1]] {
st = append(st, i)
} else {
for len(st) > 0 && numsNew[i] > numsNew[st[len(st)-1]] {
result[st[len(st)-1]] = numsNew[i]
st = st[:len(st)-1]
}
st = append(st, i)
}
}
result = result[:len(result)/2]
return result
}
```
```go
// 版本二
func nextGreaterElements(nums []int) []int {
length := len(nums)
result := make([]int,length)

View File

@ -292,7 +292,7 @@ func fib(n int) int {
return c
}
```
### Javascript
### JavaScript
解法一
```Javascript
var fib = function(n) {

View File

@ -224,7 +224,7 @@ func longestPalindromeSubseq(s string) int {
}
```
### Javascript
### JavaScript
```javascript
const longestPalindromeSubseq = (s) => {

View File

@ -498,7 +498,7 @@ impl Solution {
}
```
### Javascript
### JavaScript
```javascript
const change = (amount, coins) => {

View File

@ -21,7 +21,7 @@
## 算法公开课
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html)[二叉搜索树中,需要掌握如何双指针遍历!| LeetCode530.二叉搜索树的最小绝对差](https://www.bilibili.com/video/BV1DD4y11779),相信结合视频看本篇题解,更有助于大家对本题的理解**。
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html)[二叉搜索树中,需要掌握如何双指针遍历!| LeetCode530.二叉搜索树的最小绝对差](https://www.bilibili.com/video/BV1DD4y11779),相信结合视频看本篇题解,更有助于大家对本题的理解**。
## 思路

View File

@ -282,7 +282,7 @@ class Solution:
return ''.join(res)
```
### Python3 (v2):
#### Python3 (v2):
```python
class Solution:
@ -297,6 +297,21 @@ class Solution:
return s
```
#### Python3 (v3):
```python
class Solution:
def reverseStr(self, s: str, k: int) -> str:
i = 0
chars = list(s)
while i < len(chars):
chars[i:i + k] = chars[i:i + k][::-1] # 反转后,更改原值为反转后值
i += k * 2
return ''.join(chars)
```
### Go
```go

View File

@ -33,7 +33,7 @@
dp[i][j]以i-1为结尾的字符串word1和以j-1位结尾的字符串word2想要达到相等所需要删除元素的最少次数。
这里dp数组的定义有点点绕大家要清思路。
这里dp数组的定义有点点绕大家要清思路。
2. 确定递推公式
@ -255,6 +255,8 @@ class Solution(object):
```
### Go
动态规划一
```go
func minDistance(word1 string, word2 string) int {
dp := make([][]int, len(word1)+1)
@ -287,7 +289,39 @@ func min(a, b int) int {
return b
}
```
### Javascript
动态规划二
```go
func minDistance(word1 string, word2 string) int {
dp := make([][]int, len(word1) + 1)
for i := range dp {
dp[i] = make([]int, len(word2) + 1)
}
for i := 1; i <= len(word1); i++ {
for j := 1; j <= len(word2); j++ {
if word1[i-1] == word2[j-1] {
dp[i][j] = dp[i-1][j-1] + 1
} else {
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
}
}
}
return len(word1) + len(word2) - dp[len(word1)][len(word2)] * 2
}
func max(x, y int) int {
if x > y {
return x
}
return y
}
```
### JavaScript
```javascript
// 方法一

View File

@ -102,7 +102,7 @@ dp[i][j]可以初始化为true么 当然不行,怎能刚开始就全都匹
4. 确定遍历顺序
遍历顺序可有点讲究了。
遍历顺序可有点讲究了。
首先从递推公式中可以看出情况三是根据dp[i + 1][j - 1]是否为true在对dp[i][j]进行赋值true的。
@ -465,7 +465,7 @@ func countSubstrings(s string) int {
}
```
### Javascript
### JavaScript
> 动态规划
```javascript

View File

@ -22,7 +22,7 @@
## 算法公开课
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html)[你修剪的方式不对,我来给你纠正一下!| LeetCode669. 修剪二叉搜索树](https://www.bilibili.com/video/BV17P41177ud?share_source=copy_web),相信结合视频看本篇题解,更有助于大家对本题的理解**。
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html)[你修剪的方式不对,我来给你纠正一下!| LeetCode669. 修剪二叉搜索树](https://www.bilibili.com/video/BV17P41177ud?share_source=copy_web),相信结合视频看本篇题解,更有助于大家对本题的理解**。
## 思路

View File

@ -359,7 +359,7 @@ impl Solution {
```
### Javascript
### JavaScript
> 动态规划:
```javascript

View File

@ -422,38 +422,38 @@ void myLinkedListFree(MyLinkedList* obj) {
```Java
//单链表
class ListNode {
class MyLinkedList {
class ListNode {
int val;
ListNode next;
ListNode(){}
ListNode(int val) {
this.val=val;
}
}
class MyLinkedList {
}
//size存储链表元素的个数
int size;
//虚拟头结点
ListNode head;
private int size;
//注意这里记录的是虚拟头结点
private ListNode head;
//初始化链表
public MyLinkedList() {
size = 0;
head = new ListNode(0);
this.size = 0;
this.head = new ListNode(0);
}
//获取第index个节点的数值注意index是从0开始的第0个节点就是头结点
//获取第index个节点的数值注意index是从0开始的第0个节点就是虚拟头结点
public int get(int index) {
//如果index非法返回-1
if (index < 0 || index >= size) {
return -1;
}
ListNode currentNode = head;
//包含一个虚拟头节点,所以查找第 index+1 个节点
ListNode cur = head;
//第0个节点是虚拟头节点,所以查找第 index+1 个节点
for (int i = 0; i <= index; i++) {
currentNode = currentNode.next;
cur = cur.next;
}
return currentNode.val;
return cur.val;
}
public void addAtHead(int val) {
@ -473,7 +473,6 @@ class MyLinkedList {
while (cur.next != null) {
cur = cur.next;
}
cur.next = newNode;
size++;
@ -485,55 +484,53 @@ class MyLinkedList {
// 如果 index 等于链表的长度,则说明是新插入的节点为链表的尾结点
// 如果 index 大于链表的长度,则返回空
public void addAtIndex(int index, int val) {
if (index > size) {
if (index < 0 || index > size) {
return;
}
if (index < 0) {
index = 0;
}
size++;
//找到要插入节点的前驱
ListNode pred = head;
ListNode pre = head;
for (int i = 0; i < index; i++) {
pred = pred.next;
pre = pre.next;
}
ListNode toAdd = new ListNode(val);
toAdd.next = pred.next;
pred.next = toAdd;
ListNode newNode = new ListNode(val);
newNode.next = pre.next;
pre.next = newNode;
size++;
}
//删除第index个节点
public void deleteAtIndex(int index) {
if (index < 0 || index >= size) {
return;
}
size--;
//因为有虚拟头节点,所以不用对Index=0的情况进行特殊处理
ListNode pred = head;
//因为有虚拟头节点,所以不用对index=0的情况进行特殊处理
ListNode pre = head;
for (int i = 0; i < index ; i++) {
pred = pred.next;
pre = pre.next;
}
pred.next = pred.next.next;
pre.next = pre.next.next;
size--;
}
}
```
```Java
//双链表
class ListNode{
class MyLinkedList {
class ListNode{
int val;
ListNode next,prev;
ListNode() {};
ListNode next, prev;
ListNode(int val){
this.val = val;
}
}
class MyLinkedList {
}
//记录链表中元素的数量
int size;
private int size;
//记录链表的虚拟头结点和尾结点
ListNode head,tail;
private ListNode head, tail;
public MyLinkedList() {
//初始化操作
@ -541,25 +538,25 @@ class MyLinkedList {
this.head = new ListNode(0);
this.tail = new ListNode(0);
//这一步非常关键否则在加入头结点的操作中会出现null.next的错误
head.next=tail;
tail.prev=head;
this.head.next = tail;
this.tail.prev = head;
}
public int get(int index) {
//判断index是否有效
if(index>=size){
if(index < 0 || index >= size){
return -1;
}
ListNode cur = this.head;
ListNode cur = head;
//判断是哪一边遍历时间更短
if(index >= size / 2){
//tail开始
cur = tail;
for(int i=0; i< size-index; i++){
for(int i = 0; i < size - index; i++){
cur = cur.prev;
}
}else{
for(int i=0; i<= index; i++){
for(int i = 0; i <= index; i++){
cur = cur.next;
}
}
@ -568,24 +565,23 @@ class MyLinkedList {
public void addAtHead(int val) {
//等价于在第0个元素前添加
addAtIndex(0,val);
addAtIndex(0, val);
}
public void addAtTail(int val) {
//等价于在最后一个元素(null)前添加
addAtIndex(size,val);
addAtIndex(size, val);
}
public void addAtIndex(int index, int val) {
//index大于链表长度
if(index>size){
//判断index是否有效
if(index < 0 || index > size){
return;
}
size++;
//找到前驱
ListNode pre = this.head;
for(int i=0; i<index; i++){
ListNode pre = head;
for(int i = 0; i < index; i++){
pre = pre.next;
}
//新建结点
@ -594,22 +590,24 @@ class MyLinkedList {
pre.next.prev = newNode;
newNode.prev = pre;
pre.next = newNode;
size++;
}
public void deleteAtIndex(int index) {
//判断索引是否有效
if(index>=size){
//判断index是否有效
if(index < 0 || index >= size){
return;
}
//删除操作
size--;
ListNode pre = this.head;
for(int i=0; i<index; i++){
ListNode pre = head;
for(int i = 0; i < index; i++){
pre = pre.next;
}
pre.next.next.prev = pre;
pre.next = pre.next.next;
size--;
}
}

View File

@ -243,7 +243,7 @@ func maxProfit(prices []int, fee int) int {
return res
}
```
### Javascript
### JavaScript
```Javascript
// 贪心思路
var maxProfit = function(prices, fee) {

View File

@ -226,7 +226,7 @@ func max(a, b int) int {
}
```
### Javascript
### JavaScript
```javascript
const maxProfit = (prices,fee) => {

View File

@ -190,9 +190,9 @@ class Solution:
贪心(版本一)
```python
class Solution:
def monotoneIncreasingDigits(self, N: int) -> int:
def monotoneIncreasingDigits(self, n: int) -> int:
# 将整数转换为字符串
strNum = str(N)
strNum = str(n)
# flag用来标记赋值9从哪里开始
# 设置为字符串长度为了防止第二个for循环在flag没有被赋值的情况下执行
flag = len(strNum)
@ -216,9 +216,9 @@ class Solution:
贪心(版本二)
```python
class Solution:
def monotoneIncreasingDigits(self, N: int) -> int:
def monotoneIncreasingDigits(self, n: int) -> int:
# 将整数转换为字符串
strNum = list(str(N))
strNum = list(str(n))
# 从右往左遍历字符串
for i in range(len(strNum) - 1, 0, -1):
@ -238,9 +238,9 @@ class Solution:
```python
class Solution:
def monotoneIncreasingDigits(self, N: int) -> int:
def monotoneIncreasingDigits(self, n: int) -> int:
# 将整数转换为字符串
strNum = list(str(N))
strNum = list(str(n))
# 从右往左遍历字符串
for i in range(len(strNum) - 1, 0, -1):
@ -258,8 +258,8 @@ class Solution:
```python
class Solution:
def monotoneIncreasingDigits(self, N: int) -> int:
strNum = str(N)
def monotoneIncreasingDigits(self, n: int) -> int:
strNum = str(n)
for i in range(len(strNum) - 1, 0, -1):
# 如果当前字符比前一个字符小,说明需要修改前一个字符
if strNum[i - 1] > strNum[i]:
@ -272,12 +272,12 @@ class Solution:
```
### Go
```go
func monotoneIncreasingDigits(N int) int {
func monotoneIncreasingDigits(n int) int {
s := strconv.Itoa(N)//将数字转为字符串,方便使用下标
ss := []byte(s)//将字符串转为byte数组方便更改。
n := len(ss)
if n <= 1 {
return N
return n
}
for i := n-1; i > 0; i-- {
if ss[i-1] > ss[i] { //前一个大于后一位,前一位减1后面的全部置为9
@ -292,7 +292,7 @@ func monotoneIncreasingDigits(N int) int {
}
```
### Javascript
### JavaScript
```Javascript
var monotoneIncreasingDigits = function(n) {
n = n.toString()

View File

@ -215,6 +215,38 @@ public:
## 其他语言版本
### C
```C
/**
* Note: The returned array must be malloced, assume caller calls free().
*/
int* dailyTemperatures(int* temperatures, int temperaturesSize, int* returnSize) {
int len = temperaturesSize;
*returnSize = len;
int *result = (int *)malloc(sizeof(int) * len);
memset(result, 0x00, sizeof(int) * len);
int stack[len];
memset(stack, 0x00, sizeof(stack));
int top = 0;
for (int i = 1; i < len; i++) {
if (temperatures[i] <= temperatures[stack[top]]) { /* push */
stack[++top] = i;
} else {
while (top >= 0 && temperatures[i] > temperatures[stack[top]]) { /* stack not empty */
result[stack[top]] = i - stack[top];
top--; /* pop */
}
stack[++top] = i; /* push */
}
}
return result;
}
```
### Java
```java

View File

@ -312,7 +312,7 @@ func max(a, b int) int {
}
```
### Javascript
### JavaScript
```Javascript
var partitionLabels = function(s) {
let hash = {}

View File

@ -226,7 +226,7 @@ func lemonadeChange(bills []int) bool {
}
```
### Javascript
### JavaScript
```Javascript
var lemonadeChange = function(bills) {
let fiveCount = 0

View File

@ -11,9 +11,9 @@
[力扣题目链接](https://leetcode.cn/problems/sort-array-by-parity-ii/)
给定一个非负整数数组 A A 中一半整数是奇数,一半整数是偶数。
给定一个非负整数数组 nums nums 中一半整数是奇数,一半整数是偶数。
对数组进行排序,以便当 A[i] 为奇数时i 也是奇数 A[i] 为偶数时, i 也是偶数。
对数组进行排序,以便当 nums[i] 为奇数时i 也是奇数 nums[i] 为偶数时, i 也是偶数。
你可以返回任何满足上述条件的数组作为答案。
@ -35,17 +35,17 @@
```CPP
class Solution {
public:
vector<int> sortArrayByParityII(vector<int>& A) {
vector<int> even(A.size() / 2); // 初始化就确定数组大小,节省开销
vector<int> odd(A.size() / 2);
vector<int> result(A.size());
vector<int> sortArrayByParityII(vector<int>& nums) {
vector<int> even(nums.size() / 2); // 初始化就确定数组大小,节省开销
vector<int> odd(nums.size() / 2);
vector<int> result(nums.size());
int evenIndex = 0;
int oddIndex = 0;
int resultIndex = 0;
// 把A数组放进偶数数组,和奇数数组
for (int i = 0; i < A.size(); i++) {
if (A[i] % 2 == 0) even[evenIndex++] = A[i];
else odd[oddIndex++] = A[i];
// 把nums数组放进偶数数组,和奇数数组
for (int i = 0; i < nums.size(); i++) {
if (nums[i] % 2 == 0) even[evenIndex++] = nums[i];
else odd[oddIndex++] = nums[i];
}
// 把偶数数组奇数数组分别放进result数组中
for (int i = 0; i < evenIndex; i++) {
@ -62,22 +62,22 @@ public:
### 方法二
以上代码我是建了两个辅助数组,而且A数组还相当于遍历了两次,用辅助数组的好处就是思路清晰,优化一下就是不用这两个辅助,代码如下:
以上代码我是建了两个辅助数组,而且nums数组还相当于遍历了两次,用辅助数组的好处就是思路清晰,优化一下就是不用这两个辅助数组,代码如下:
```CPP
class Solution {
public:
vector<int> sortArrayByParityII(vector<int>& A) {
vector<int> result(A.size());
vector<int> sortArrayByParityII(vector<int>& nums) {
vector<int> result(nums.size());
int evenIndex = 0; // 偶数下标
int oddIndex = 1; // 奇数下标
for (int i = 0; i < A.size(); i++) {
if (A[i] % 2 == 0) {
result[evenIndex] = A[i];
for (int i = 0; i < nums.size(); i++) {
if (nums[i] % 2 == 0) {
result[evenIndex] = nums[i];
evenIndex += 2;
}
else {
result[oddIndex] = A[i];
result[oddIndex] = nums[i];
oddIndex += 2;
}
}
@ -96,15 +96,15 @@ public:
```CPP
class Solution {
public:
vector<int> sortArrayByParityII(vector<int>& A) {
vector<int> sortArrayByParityII(vector<int>& nums) {
int oddIndex = 1;
for (int i = 0; i < A.size(); i += 2) {
if (A[i] % 2 == 1) { // 在偶数位遇到了奇数
while(A[oddIndex] % 2 != 0) oddIndex += 2; // 在奇数位找一个偶数
swap(A[i], A[oddIndex]); // 替换
for (int i = 0; i < nums.size(); i += 2) {
if (nums[i] % 2 == 1) { // 在偶数位遇到了奇数
while(nums[oddIndex] % 2 != 0) oddIndex += 2; // 在奇数位找一个偶数
swap(nums[i], nums[oddIndex]); // 替换
}
}
return A;
return nums;
}
};
```
@ -253,6 +253,37 @@ func sortArrayByParityII(nums []int) []int {
}
return result;
}
// 方法二
func sortArrayByParityII(nums []int) []int {
result := make([]int, len(nums))
evenIndex := 0 // 偶数下标
oddIndex := 1 // 奇数下标
for _, v := range nums {
if v % 2 == 0 {
result[evenIndex] = v
evenIndex += 2
} else {
result[oddIndex] = v
oddIndex += 2
}
}
return result
}
// 方法三
func sortArrayByParityII(nums []int) []int {
oddIndex := 1
for i := 0; i < len(nums); i += 2 {
if nums[i] % 2 == 1 { // 在偶数位遇到了奇数
for nums[oddIndex] % 2 != 0 {
oddIndex += 2 // 在奇数位找一个偶数
}
nums[i], nums[oddIndex] = nums[oddIndex], nums[i]
}
}
return nums
}
```
### JavaScript

View File

@ -536,7 +536,7 @@ func min(a, b int) int {
```
### Javascript
### JavaScript
```Javascript
var minCameraCover = function(root) {

View File

@ -301,7 +301,7 @@ impl Solution {
}
}
```
### Javascript
### JavaScript
```Javascript
/**
@ -327,7 +327,7 @@ var sortedSquares = function(nums) {
};
```
### Typescript
### TypeScript
双指针法:

View File

@ -207,7 +207,7 @@ func largestSumAfterKNegations(nums []int, K int) int {
```
### Javascript
### JavaScript
```Javascript
var largestSumAfterKNegations = function(nums, k) {

View File

@ -8,11 +8,16 @@
[力扣题目链接](https://leetcode.cn/problems/uncrossed-lines/)
我们在两条独立的水平线上按给定的顺序写下 A  B 中的整数。
在两条独立的水平线上按给定的顺序写下 nums1 和 nums2 中的整数。
现在,我们可以绘制一些连接两个数字 A[i]  B[j] 的直线,只要 A[i] == B[j],且我们绘制的直线不与任何其他连线(非水平线)相交。
现在,可以绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,这些直线需要同时满足:
以这种方法绘制线条,并返回我们可以绘制的最大连线数。
* nums1[i] == nums2[j]
* 且绘制的直线不与任何其他连线(非水平线)相交。
请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。
以这种方法绘制线条,并返回可以绘制的最大连线数。
![1035.不相交的线](https://code-thinking-1253855093.file.myqcloud.com/pics/2021032116363533.png)
@ -26,16 +31,16 @@
相信不少录友看到这道题目都没啥思路,我们来逐步分析一下。
绘制一些连接两个数字 A[i] 和 B[j] 的直线,只要 A[i] == B[j],且直线不能相交!
绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,只要 nums1[i] == nums2[j],且直线不能相交!
直线不能相交,这就是说明在字符串A中 找到一个与字符串B相同的子序列,且这个子序列不能改变相对顺序,只要相对顺序不改变,接相同数字的直线就不会相交。
直线不能相交,这就是说明在字符串nums1中 找到一个与字符串nums2相同的子序列,且这个子序列不能改变相对顺序,只要相对顺序不改变,接相同数字的直线就不会相交。
拿示例一A = [1,4,2], B = [1,2,4]为例,相交情况如图:
拿示例一nums1 = [1,4,2], nums2 = [1,2,4]为例,相交情况如图:
![](https://code-thinking-1253855093.file.myqcloud.com/pics/20210914145158.png)
其实也就是说A和B的最长公共子序列是[1,4]长度为2。 这个公共子序列指的是相对顺序不变即数字4在字符串A中数字1的后面那么数字4也应该在字符串B数字1的后面
其实也就是说nums1和nums2的最长公共子序列是[1,4]长度为2。 这个公共子序列指的是相对顺序不变即数字4在字符串nums1中数字1的后面那么数字4也应该在字符串nums2数字1的后面
这么分析完之后,大家可以发现:**本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!**
@ -52,18 +57,18 @@
```CPP
class Solution {
public:
int maxUncrossedLines(vector<int>& A, vector<int>& B) {
vector<vector<int>> dp(A.size() + 1, vector<int>(B.size() + 1, 0));
for (int i = 1; i <= A.size(); i++) {
for (int j = 1; j <= B.size(); j++) {
if (A[i - 1] == B[j - 1]) {
int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
for (int i = 1; i <= nums1.size(); i++) {
for (int j = 1; j <= nums2.size(); j++) {
if (nums1[i - 1] == nums2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[A.size()][B.size()];
return dp[nums1.size()][nums2.size()];
}
};
```
@ -110,11 +115,11 @@ public:
```python
class Solution:
def maxUncrossedLines(self, A: List[int], B: List[int]) -> int:
dp = [[0] * (len(B)+1) for _ in range(len(A)+1)]
for i in range(1, len(A)+1):
for j in range(1, len(B)+1):
if A[i-1] == B[j-1]:
def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int:
dp = [[0] * (len(nums2)+1) for _ in range(len(nums1)+1)]
for i in range(1, len(nums1)+1):
for j in range(1, len(nums2)+1):
if nums1[i-1] == nums2[j-1]:
dp[i][j] = dp[i-1][j-1] + 1
else:
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
@ -124,23 +129,22 @@ class Solution:
### Go:
```go
func maxUncrossedLines(A []int, B []int) int {
m, n := len(A), len(B)
dp := make([][]int, m+1)
func maxUncrossedLines(nums1 []int, nums2 []int) int {
dp := make([][]int, len(nums1) + 1)
for i := range dp {
dp[i] = make([]int, n+1)
dp[i] = make([]int, len(nums2) + 1)
}
for i := 1; i <= len(A); i++ {
for j := 1; j <= len(B); j++ {
if (A[i - 1] == B[j - 1]) {
for i := 1; i <= len(nums1); i++ {
for j := 1; j <= len(nums2); j++ {
if (nums1[i - 1] == nums2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1
} else {
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
}
}
}
return dp[m][n]
return dp[len(nums1)][len(nums2)]
}

View File

@ -80,7 +80,7 @@ if (text1[i - 1] == text2[j - 1]) {
先看看dp[i][0]应该是多少呢?
test1[0, i-1]和空串的最长公共子序列自然是0所以dp[i][0] = 0;
text1[0, i-1]和空串的最长公共子序列自然是0所以dp[i][0] = 0;
同理dp[0][j]也是0。

View File

@ -138,18 +138,51 @@ public int[] smallerNumbersThanCurrent(int[] nums) {
### Python
```python
> 暴力法:
```python3
class Solution:
def smallerNumbersThanCurrent(self, nums: List[int]) -> List[int]:
res = [0 for _ in range(len(nums))]
for i in range(len(nums)):
cnt = 0
for j in range(len(nums)):
if j == i:
continue
if nums[i] > nums[j]:
cnt += 1
res[i] = cnt
return res
```
> 排序+hash
```python3
class Solution:
# 方法一:使用字典
def smallerNumbersThanCurrent(self, nums: List[int]) -> List[int]:
res = nums[:]
hash = dict()
hash_dict = dict()
res.sort() # 从小到大排序之后,元素下标就是小于当前数字的数字
for i, num in enumerate(res):
if num not in hash.keys(): # 遇到了相同的数字,那么不需要更新该 number 的情况
hash[num] = i
if num not in hash_dict.keys(): # 遇到了相同的数字,那么不需要更新该 number 的情况
hash_dict[num] = i
for i, num in enumerate(nums):
res[i] = hash[num]
res[i] = hash_dict[num]
return res
# 方法二:使用数组
def smallerNumbersThanCurrent(self, nums: List[int]) -> List[int]:
# 同步进行排序和创建新数组的操作这样可以减少一次冗余的数组复制操作以减少一次O(n) 的复制时间开销
sort_nums = sorted(nums)
# 题意中 0 <= nums[i] <= 100故range的参数设为101
hash_lst = [0 for _ in range(101)]
# 从后向前遍历这样hash里存放的就是相同元素最左面的数值和下标了
for i in range(len(sort_nums)-1,-1,-1):
hash_lst[sort_nums[i]] = i
for i in range(len(nums)):
nums[i] = hash_lst[nums[i]]
return nums
```
### Go
@ -220,7 +253,7 @@ var smallerNumbersThanCurrent = function(nums) {
};
```
### TypeScript:
### TypeScript
> 暴力法:
@ -241,7 +274,7 @@ function smallerNumbersThanCurrent(nums: number[]): number[] {
};
```
> 排序+hash
> 排序+hash
```typescript
function smallerNumbersThanCurrent(nums: number[]): number[] {
@ -260,7 +293,7 @@ function smallerNumbersThanCurrent(nums: number[]): number[] {
};
```
### rust
### Rust
```rust
use std::collections::HashMap;
impl Solution {

View File

@ -213,7 +213,7 @@ class Solution:
return find(source) == find(destination)
```
### Javascript
### JavaScript
Javascript 并查集解法如下:

View File

@ -388,6 +388,62 @@ if __name__ == "__main__":
main()
```
### JavaScript
前缀和
```js
function func() {
const readline = require('readline')
const rl = readline.createInterface({
input: process.stdin,
output: process.stdout
})
let inputLines = []
rl.on('line', function (line) {
inputLines.push(line.trim())
})
rl.on('close', function () {
let [n, m] = inputLines[0].split(" ").map(Number)
let c = new Array(n).fill(0)
let r = new Array(m).fill(0)
let arr = new Array(n)
let sum = 0//数组总和
let min = Infinity//设置最小值的初始值为无限大
//定义数组
for (let s = 0; s < n; s++) {
arr[s] = inputLines[s + 1].split(" ").map(Number)
}
//每一行的和
for (let i = 0; i < n; i++) {
for (let j = 0; j < m; j++) {
c[i] += arr[i][j]
sum += arr[i][j]
}
}
//每一列的和
for (let i = 0; i < n; i++) {
for (let j = 0; j < m; j++) {
r[j] += arr[i][j]
}
}
let sum1 = 0, sum2 = 0
//横向切割
for (let i = 0; i < n; i++) {
sum1 += c[i]
min = min < Math.abs(sum - 2 * sum1) ? min : Math.abs(sum - 2 * sum1)
}
//纵向切割
for (let j = 0; j < m; j++) {
sum2 += r[j]
min = min < Math.abs(sum - 2 * sum2) ? min : Math.abs(sum - 2 * sum2)
}
console.log(min);
})
}
```
### C
前缀和

View File

@ -911,7 +911,7 @@ func main() {
### Rust
### Javascript
### JavaScript
### TypeScript

View File

@ -867,7 +867,7 @@ if __name__ == "__main__":
### Rust
### Javascript
### JavaScript
```js
function dijkstra(grid, start, end) {

View File

@ -547,7 +547,7 @@ if __name__ == "__main__":
### Rust
### Javascript
### JavaScript
```js
function kruskal(v, edges) {

View File

@ -692,7 +692,7 @@ if __name__ == "__main__":
### Rust
### Javascript
### JavaScript
```js
function prim(v, edges) {
const grid = Array.from({ length: v + 1 }, () => new Array(v + 1).fill(10001)); // Fixed grid initialization

View File

@ -350,7 +350,29 @@ function reverseStr(s, start, end) {
### Swift:
```swift
func rotateWords(_ s: String, _ k: Int) -> String {
var chars = Array(s)
// 先反转整体
reverseWords(&chars, start: 0, end: s.count - 1)
// 反转前半段
reverseWords(&chars, start: 0, end: k - 1)
// 反转后半段
reverseWords(&chars, start: k, end: s.count - 1)
return String(chars)
}
// 反转start...end 的字符数组
func reverseWords(_ chars: inout [Character], start: Int, end: Int) {
var left = start
var right = end
while left < right, right < chars.count {
(chars[left], chars[right]) = (chars[right], chars[left])
left += 1
right -= 1
}
}
```
### PHP

View File

@ -462,7 +462,7 @@ if __name__ == "__main__":
### Rust
### Javascript
### JavaScript
```js
async function main() {

View File

@ -483,7 +483,7 @@ if __name__ == "__main__":
### Rust
### Javascript
### JavaScript
```js
async function main() {

View File

@ -333,6 +333,8 @@ public class Main {
### Python
Bellman-Ford方法求解含有负回路的最短路问题
```python
import sys
@ -388,11 +390,57 @@ if __name__ == "__main__":
```
SPFA方法求解含有负回路的最短路问题
```python
from collections import deque
from math import inf
def main():
n, m = [int(i) for i in input().split()]
graph = [[] for _ in range(n+1)]
min_dist = [inf for _ in range(n+1)]
count = [0 for _ in range(n+1)] # 记录节点加入队列的次数
for _ in range(m):
s, t, v = [int(i) for i in input().split()]
graph[s].append([t, v])
min_dist[1] = 0 # 初始化
count[1] = 1
d = deque([1])
flag = False
while d: # 主循环
cur_node = d.popleft()
for next_node, val in graph[cur_node]:
if min_dist[next_node] > min_dist[cur_node] + val:
min_dist[next_node] = min_dist[cur_node] + val
count[next_node] += 1
if next_node not in d:
d.append(next_node)
if count[next_node] == n: # 如果某个点松弛了n次说明有负回路
flag = True
if flag:
break
if flag:
print("circle")
else:
if min_dist[-1] == inf:
print("unconnected")
else:
print(min_dist[-1])
if __name__ == "__main__":
main()
```
### Go
### Rust
### Javascript
### JavaScript
### TypeScript

View File

@ -702,7 +702,129 @@ public class Main {
```
```java
class Edge {
public int u; // 边的端点1
public int v; // 边的端点2
public int val; // 边的权值
public Edge() {
}
public Edge(int u, int v) {
this.u = u;
this.v = v;
this.val = 0;
}
public Edge(int u, int v, int val) {
this.u = u;
this.v = v;
this.val = val;
}
}
/**
* SPFA算法版本3处理含【负权回路】的有向图的最短路径问题
* bellman_ford版本3 的队列优化算法版本
* 限定起点、终点、至多途径k个节点
*/
public class SPFAForSSSP {
/**
* SPFA算法
*
* @param n 节点个数[1,n]
* @param graph 邻接表
* @param startIdx 开始节点(源点)
*/
public static int[] spfa(int n, List<List<Edge>> graph, int startIdx, int k) {
// 定义最大范围
int maxVal = Integer.MAX_VALUE;
// minDist[i] 源点到节点i的最短距离
int[] minDist = new int[n + 1]; // 有效节点编号范围:[1,n]
Arrays.fill(minDist, maxVal); // 初始化为maxVal
minDist[startIdx] = 0; // 设置源点到源点的最短路径为0
// 定义queue记录每一次松弛更新的节点
Queue<Integer> queue = new LinkedList<>();
queue.offer(startIdx); // 初始化源点开始queue和minDist的更新是同步的
// SPFA算法核心只对上一次松弛的时候更新过的节点关联的边进行松弛操作
while (k + 1 > 0 && !queue.isEmpty()) { // 限定松弛 k+1 次
int curSize = queue.size(); // 记录当前队列节点个数(上一次松弛更新的节点个数,用作分层统计)
while (curSize-- > 0) { //分层控制,限定本次松弛只针对上一次松弛更新的节点,不对新增的节点做处理
// 记录当前minDist状态作为本次松弛的基础
int[] minDist_copy = Arrays.copyOfRange(minDist, 0, minDist.length);
// 取出节点
int cur = queue.poll();
// 获取cur节点关联的边进行松弛操作
List<Edge> relateEdges = graph.get(cur);
for (Edge edge : relateEdges) {
int u = edge.u; // 与`cur`对照
int v = edge.v;
int weight = edge.val;
if (minDist_copy[u] + weight < minDist[v]) {
minDist[v] = minDist_copy[u] + weight; // 更新
// 队列同步更新(此处有一个针对队列的优化:就是如果已经存在于队列的元素不需要重复添加)
if (!queue.contains(v)) {
queue.offer(v); // 与minDist[i]同步更新,将本次更新的节点加入队列,用做下一个松弛的参考基础
}
}
}
}
// 当次松弛结束,次数-1
k--;
}
// 返回minDist
return minDist;
}
public static void main(String[] args) {
// 输入控制
Scanner sc = new Scanner(System.in);
System.out.println("1.输入N个节点、M条边u v weight");
int n = sc.nextInt();
int m = sc.nextInt();
System.out.println("2.输入M条边");
List<List<Edge>> graph = new ArrayList<>(); // 构建邻接表
for (int i = 0; i <= n; i++) {
graph.add(new ArrayList<>());
}
while (m-- > 0) {
int u = sc.nextInt();
int v = sc.nextInt();
int weight = sc.nextInt();
graph.get(u).add(new Edge(u, v, weight));
}
System.out.println("3.输入src dst k起点、终点、至多途径k个点");
int src = sc.nextInt();
int dst = sc.nextInt();
int k = sc.nextInt();
// 调用算法
int[] minDist = SPFAForSSSP.spfa(n, graph, src, k);
// 校验起点->终点
if (minDist[dst] == Integer.MAX_VALUE) {
System.out.println("unreachable");
} else {
System.out.println("最短路径:" + minDist[n]);
}
}
}
```
### Python
Bellman-Ford方法求解单源有限最短路
```python
def main():
# 輸入
@ -736,6 +858,48 @@ def main():
if __name__ == "__main__":
main()
```
SPFA方法求解单源有限最短路
```python
from collections import deque
from math import inf
def main():
n, m = [int(i) for i in input().split()]
graph = [[] for _ in range(n+1)]
for _ in range(m):
v1, v2, val = [int(i) for i in input().split()]
graph[v1].append([v2, val])
src, dst, k = [int(i) for i in input().split()]
min_dist = [inf for _ in range(n+1)]
min_dist[src] = 0 # 初始化起点的距离
que = deque([src])
while k != -1 and que:
visited = [False for _ in range(n+1)] # 用于保证每次松弛时一个节点最多加入队列一次
que_size = len(que)
temp_dist = min_dist.copy() # 用于记录上一次遍历的结果
for _ in range(que_size):
cur_node = que.popleft()
for next_node, val in graph[cur_node]:
if min_dist[next_node] > temp_dist[cur_node] + val:
min_dist[next_node] = temp_dist[cur_node] + val
if not visited[next_node]:
que.append(next_node)
visited[next_node] = True
k -= 1
if min_dist[dst] == inf:
print("unreachable")
else:
print(min_dist[dst])
if __name__ == "__main__":
main()
```
@ -744,7 +908,7 @@ if __name__ == "__main__":
### Rust
### Javascript
### JavaScript
### TypeScript

Some files were not shown because too many files have changed in this diff Show More