Merge branch 'master' of github.com:youngyangyang04/leetcode-master

This commit is contained in:
programmercarl
2022-06-10 11:02:53 +08:00
79 changed files with 3294 additions and 136 deletions

View File

@ -275,5 +275,48 @@ class Solution {
} }
``` ```
Scala:
```scala
object Solution {
// 导入包
import scala.collection.mutable
def twoSum(nums: Array[Int], target: Int): Array[Int] = {
// key存储值value存储下标
val map = new mutable.HashMap[Int, Int]()
for (i <- nums.indices) {
val tmp = target - nums(i) // 计算差值
// 如果这个差值存在于map则说明找到了结果
if (map.contains(tmp)) {
return Array(map.get(tmp).get, i)
}
// 如果不包含把当前值与其下标放到map
map.put(nums(i), i)
}
// 如果没有找到直接返回一个空的数组return关键字可以省略
new Array[Int](2)
}
}
```
C#:
```csharp
public class Solution {
public int[] TwoSum(int[] nums, int target) {
Dictionary<int ,int> dic= new Dictionary<int,int>();
for(int i=0;i<nums.Length;i++){
int imp= target-nums[i];
if(dic.ContainsKey(imp)&&dic[imp]!=i){
return new int[]{i, dic[imp]};
}
if(!dic.ContainsKey(nums[i])){
dic.Add(nums[i],i);
}
}
return new int[]{0, 0};
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -616,6 +616,49 @@ public class Solution
} }
} }
``` ```
Scala:
```scala
object Solution {
// 导包
import scala.collection.mutable.ListBuffer
import scala.util.control.Breaks.{break, breakable}
def threeSum(nums: Array[Int]): List[List[Int]] = {
// 定义结果集最后需要转换为List
val res = ListBuffer[List[Int]]()
val nums_tmp = nums.sorted // 对nums进行排序
for (i <- nums_tmp.indices) {
// 如果要排的第一个数字大于0直接返回结果
if (nums_tmp(i) > 0) {
return res.toList
}
// 如果i大于0并且和前一个数字重复则跳过本次循环相当于continue
breakable {
if (i > 0 && nums_tmp(i) == nums_tmp(i - 1)) {
break
} else {
var left = i + 1
var right = nums_tmp.length - 1
while (left < right) {
var sum = nums_tmp(i) + nums_tmp(left) + nums_tmp(right) // 求三数之和
if (sum < 0) left += 1
else if (sum > 0) right -= 1
else {
res += List(nums_tmp(i), nums_tmp(left), nums_tmp(right)) // 如果等于0 添加进结果集
// 为了避免重复对left和right进行移动
while (left < right && nums_tmp(left) == nums_tmp(left + 1)) left += 1
while (left < right && nums_tmp(right) == nums_tmp(right - 1)) right -= 1
left += 1
right -= 1
}
}
}
}
}
// 最终返回需要转换为Listreturn关键字可以省略
res.toList
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -522,6 +522,49 @@ public class Solution
} }
} }
``` ```
Scala:
```scala
object Solution {
// 导包
import scala.collection.mutable.ListBuffer
import scala.util.control.Breaks.{break, breakable}
def fourSum(nums: Array[Int], target: Int): List[List[Int]] = {
val res = ListBuffer[List[Int]]()
val nums_tmp = nums.sorted // 先排序
for (i <- nums_tmp.indices) {
breakable {
if (i > 0 && nums_tmp(i) == nums_tmp(i - 1)) {
break // 如果该值和上次的值相同跳过本次循环相当于continue
} else {
for (j <- i + 1 until nums_tmp.length) {
breakable {
if (j > i + 1 && nums_tmp(j) == nums_tmp(j - 1)) {
break // 同上
} else {
// 双指针
var (left, right) = (j + 1, nums_tmp.length - 1)
while (left < right) {
var sum = nums_tmp(i) + nums_tmp(j) + nums_tmp(left) + nums_tmp(right)
if (sum == target) {
// 满足要求,直接加入到集合里面去
res += List(nums_tmp(i), nums_tmp(j), nums_tmp(left), nums_tmp(right))
while (left < right && nums_tmp(left) == nums_tmp(left + 1)) left += 1
while (left < right && nums_tmp(right) == nums_tmp(right - 1)) right -= 1
left += 1
right -= 1
} else if (sum < target) left += 1
else right -= 1
}
}
}
}
}
}
}
// 最终返回的res要转换为Listreturn关键字可以省略
res.toList
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -39,7 +39,7 @@
分为如下几步: 分为如下几步:
* 首先这里我推荐大家使用虚拟头结点,这样方处理删除实际头结点的逻辑,如果虚拟头结点不清楚,可以看这篇: [链表:听说用虚拟头节点会方便很多?](https://programmercarl.com/0203.移除链表元素.html) * 首先这里我推荐大家使用虚拟头结点,这样方便处理删除实际头结点的逻辑,如果虚拟头结点不清楚,可以看这篇: [链表:听说用虚拟头节点会方便很多?](https://programmercarl.com/0203.移除链表元素.html)
* 定义fast指针和slow指针初始值为虚拟头结点如图 * 定义fast指针和slow指针初始值为虚拟头结点如图
@ -289,6 +289,28 @@ func removeNthFromEnd(_ head: ListNode?, _ n: Int) -> ListNode? {
return dummyHead.next return dummyHead.next
} }
``` ```
Scala:
```scala
object Solution {
def removeNthFromEnd(head: ListNode, n: Int): ListNode = {
val dummy = new ListNode(-1, head) // 定义虚拟头节点
var fast = head // 快指针从头开始走
var slow = dummy // 慢指针从虚拟头开始头
// 因为参数 n 是不可变量,所以不能使用 while(n>0){n-=1}的方式
for (i <- 0 until n) {
fast = fast.next
}
// 快指针和满指针一起走直到fast走到null
while (fast != null) {
slow = slow.next
fast = fast.next
}
// 删除slow的下一个节点
slow.next = slow.next.next
// 返回虚拟头节点的下一个
dummy.next
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -400,6 +400,27 @@ bool isValid(char * s){
return !stackTop; return !stackTop;
} }
``` ```
Scala:
```scala
object Solution {
import scala.collection.mutable
def isValid(s: String): Boolean = {
if(s.length % 2 != 0) return false // 如果字符串长度是奇数直接返回false
val stack = mutable.Stack[Char]()
// 循环遍历字符串
for (i <- s.indices) {
val c = s(i)
if (c == '(' || c == '[' || c == '{') stack.push(c)
else if(stack.isEmpty) return false // 如果没有(、[、{则直接返回false
// 以下三种情况不满足则直接返回false
else if(c==')' && stack.pop() != '(') return false
else if(c==']' && stack.pop() != '[') return false
else if(c=='}' && stack.pop() != '{') return false
}
// 如果为空则正确匹配,否则还有余孽就不匹配
stack.isEmpty
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -311,7 +311,29 @@ func swapPairs(_ head: ListNode?) -> ListNode? {
return dummyHead.next return dummyHead.next
} }
``` ```
Scala:
```scala
// 虚拟头节点
object Solution {
def swapPairs(head: ListNode): ListNode = {
var dummy = new ListNode(0, head) // 虚拟头节点
var pre = dummy
var cur = head
// 当pre的下一个和下下个都不为空才进行两两转换
while (pre.next != null && pre.next.next != null) {
var tmp: ListNode = cur.next.next // 缓存下一次要进行转换的第一个节点
pre.next = cur.next // 步骤一
cur.next.next = cur // 步骤二
cur.next = tmp // 步骤三
// 下面是准备下一轮的交换
pre = cur
cur = tmp
}
// 最终返回dummy虚拟头节点的下一个return可以省略
dummy.next
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -93,7 +93,7 @@ public:
**双指针法(快慢指针法)在数组和链表的操作中是非常常见的,很多考察数组、链表、字符串等操作的面试题,都使用双指针法。** **双指针法(快慢指针法)在数组和链表的操作中是非常常见的,很多考察数组、链表、字符串等操作的面试题,都使用双指针法。**
都会一一介绍到,本题代码如下: 都会一一介绍到,本题代码如下:
```CPP ```CPP
// 时间复杂度O(n) // 时间复杂度O(n)
@ -338,6 +338,20 @@ int removeElement(int* nums, int numsSize, int val){
return slow; return slow;
} }
``` ```
Scala:
```scala
object Solution {
def removeElement(nums: Array[Int], `val`: Int): Int = {
var slow = 0
for (fast <- 0 until nums.length) {
if (`val` != nums(fast)) {
nums(slow) = nums(fast)
slow += 1
}
}
slow
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -1166,5 +1166,80 @@ func strStr(_ haystack: String, _ needle: String) -> Int {
``` ```
PHP
> 前缀表统一减一
```php
function strStr($haystack, $needle) {
if (strlen($needle) == 0) return 0;
$next= [];
$this->getNext($next,$needle);
$j = -1;
for ($i = 0;$i < strlen($haystack); $i++) { // 注意i就从0开始
while($j >= 0 && $haystack[$i] != $needle[$j + 1]) {
$j = $next[$j];
}
if ($haystack[$i] == $needle[$j + 1]) {
$j++;
}
if ($j == (strlen($needle) - 1) ) {
return ($i - strlen($needle) + 1);
}
}
return -1;
}
function getNext(&$next, $s){
$j = -1;
$next[0] = $j;
for($i = 1; $i < strlen($s); $i++) { // 注意i从1开始
while ($j >= 0 && $s[$i] != $s[$j + 1]) {
$j = $next[$j];
}
if ($s[$i] == $s[$j + 1]) {
$j++;
}
$next[$i] = $j;
}
}
```
> 前缀表统一不减一
```php
function strStr($haystack, $needle) {
if (strlen($needle) == 0) return 0;
$next= [];
$this->getNext($next,$needle);
$j = 0;
for ($i = 0;$i < strlen($haystack); $i++) { // 注意i就从0开始
while($j > 0 && $haystack[$i] != $needle[$j]) {
$j = $next[$j-1];
}
if ($haystack[$i] == $needle[$j]) {
$j++;
}
if ($j == strlen($needle)) {
return ($i - strlen($needle) + 1);
}
}
return -1;
}
function getNext(&$next, $s){
$j = 0;
$next[0] = $j;
for($i = 1; $i < strlen($s); $i++) { // 注意i从1开始
while ($j > 0 && $s[$i] != $s[$j]) {
$j = $next[$j-1];
}
if ($s[$i] == $s[$j]) {
$j++;
}
$next[$i] = $j;
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -480,7 +480,52 @@ var searchRange = function(nums, target) {
return [-1, -1]; return [-1, -1];
}; };
``` ```
### Scala
```scala
object Solution {
def searchRange(nums: Array[Int], target: Int): Array[Int] = {
var left = getLeftBorder(nums, target)
var right = getRightBorder(nums, target)
if (left == -2 || right == -2) return Array(-1, -1)
if (right - left > 1) return Array(left + 1, right - 1)
Array(-1, -1)
}
// 寻找左边界
def getLeftBorder(nums: Array[Int], target: Int): Int = {
var leftBorder = -2
var left = 0
var right = nums.length - 1
while (left <= right) {
var mid = left + (right - left) / 2
if (nums(mid) >= target) {
right = mid - 1
leftBorder = right
} else {
left = mid + 1
}
}
leftBorder
}
// 寻找右边界
def getRightBorder(nums: Array[Int], target: Int): Int = {
var rightBorder = -2
var left = 0
var right = nums.length - 1
while (left <= right) {
var mid = left + (right - left) / 2
if (nums(mid) <= target) {
left = mid + 1
rightBorder = left
} else {
right = mid - 1
}
}
rightBorder
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -316,7 +316,26 @@ func searchInsert(_ nums: [Int], _ target: Int) -> Int {
return right + 1 return right + 1
} }
``` ```
### Scala
```scala
object Solution {
def searchInsert(nums: Array[Int], target: Int): Int = {
var left = 0
var right = nums.length - 1
while (left <= right) {
var mid = left + (right - left) / 2
if (target == nums(mid)) {
return mid
} else if (target > nums(mid)) {
left = mid + 1
} else {
right = mid - 1
}
}
right + 1
}
}
```
### PHP ### PHP

View File

@ -96,7 +96,7 @@ public:
vector<vector<int>> merge(vector<vector<int>>& intervals) { vector<vector<int>> merge(vector<vector<int>>& intervals) {
vector<vector<int>> result; vector<vector<int>> result;
if (intervals.size() == 0) return result; if (intervals.size() == 0) return result;
// 排序的参数使用了lamda表达式 // 排序的参数使用了lambda表达式
sort(intervals.begin(), intervals.end(), [](const vector<int>& a, const vector<int>& b){return a[0] < b[0];}); sort(intervals.begin(), intervals.end(), [](const vector<int>& a, const vector<int>& b){return a[0] < b[0];});
result.push_back(intervals[0]); result.push_back(intervals[0]);

View File

@ -130,57 +130,37 @@ Java
```Java ```Java
class Solution { class Solution {
public int[][] generateMatrix(int n) { public int[][] generateMatrix(int n) {
int loop = 0; // 控制循环次数
int[][] res = new int[n][n]; int[][] res = new int[n][n];
int start = 0; // 每次循环的开始点(start, start)
int count = 1; // 定义填充数字
int i, j;
// 循环次数 while (loop++ < n / 2) { // 判断边界后loop从1开始
int loop = n / 2;
// 定义每次循环起始位置
int startX = 0;
int startY = 0;
// 定义偏移量
int offset = 1;
// 定义填充数字
int count = 1;
// 定义中间位置
int mid = n / 2;
while (loop > 0) {
int i = startX;
int j = startY;
// 模拟上侧从左到右 // 模拟上侧从左到右
for (; j<startY + n -offset; ++j) { for (j = start; j < n - loop; j++) {
res[startX][j] = count++; res[start][j] = count++;
} }
// 模拟右侧从上到下 // 模拟右侧从上到下
for (; i<startX + n -offset; ++i) { for (i = start; i < n - loop; i++) {
res[i][j] = count++; res[i][j] = count++;
} }
// 模拟下侧从右到左 // 模拟下侧从右到左
for (; j > startY; j--) { for (; j >= loop; j--) {
res[i][j] = count++; res[i][j] = count++;
} }
// 模拟左侧从下到上 // 模拟左侧从下到上
for (; i > startX; i--) { for (; i >= loop; i--) {
res[i][j] = count++; res[i][j] = count++;
} }
start++;
loop--;
startX += 1;
startY += 1;
offset += 2;
} }
if (n % 2 == 1) { if (n % 2 == 1) {
res[mid][mid] = count; res[start][start] = count;
} }
return res; return res;
@ -564,6 +544,57 @@ int** generateMatrix(int n, int* returnSize, int** returnColumnSizes){
return ans; return ans;
} }
``` ```
Scala:
```scala
object Solution {
def generateMatrix(n: Int): Array[Array[Int]] = {
var res = Array.ofDim[Int](n, n) // 定义一个n*n的二维矩阵
var num = 1 // 标志当前到了哪个数字
var i = 0 // 横坐标
var j = 0 // 竖坐标
while (num <= n * n) {
// 向右当j不越界并且下一个要填的数字是空白时
while (j < n && res(i)(j) == 0) {
res(i)(j) = num // 当前坐标等于num
num += 1 // num++
j += 1 // 竖坐标+1
}
i += 1 // 下移一行
j -= 1 // 左移一列
// 剩下的都同上
// 向下
while (i < n && res(i)(j) == 0) {
res(i)(j) = num
num += 1
i += 1
}
i -= 1
j -= 1
// 向左
while (j >= 0 && res(i)(j) == 0) {
res(i)(j) = num
num += 1
j -= 1
}
i -= 1
j += 1
// 向上
while (i >= 0 && res(i)(j) == 0) {
res(i)(j) = num
num += 1
i -= 1
}
i += 1
j += 1
}
res
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -66,7 +66,7 @@ dp[i][j] 表示从0 0出发到(i, j) 有dp[i][j]条不同的路
所以代码为: 所以代码为:
``` ```cpp
if (obstacleGrid[i][j] == 0) { // 当(i, j)没有障碍的时候再推导dp[i][j] if (obstacleGrid[i][j] == 0) { // 当(i, j)没有障碍的时候再推导dp[i][j]
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]; dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
} }
@ -76,7 +76,7 @@ if (obstacleGrid[i][j] == 0) { // 当(i, j)没有障碍的时候再推导dp[i
在[62.不同路径](https://programmercarl.com/0062.不同路径.html)不同路径中我们给出如下的初始化: 在[62.不同路径](https://programmercarl.com/0062.不同路径.html)不同路径中我们给出如下的初始化:
``` ```cpp
vector<vector<int>> dp(m, vector<int>(n, 0)); // 初始值为0 vector<vector<int>> dp(m, vector<int>(n, 0)); // 初始值为0
for (int i = 0; i < m; i++) dp[i][0] = 1; for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1; for (int j = 0; j < n; j++) dp[0][j] = 1;
@ -138,6 +138,8 @@ public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) { int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size(); int m = obstacleGrid.size();
int n = obstacleGrid[0].size(); int n = obstacleGrid[0].size();
if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) //如果在起点或终点出现了障碍直接返回0
return 0;
vector<vector<int>> dp(m, vector<int>(n, 0)); vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1; for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1; for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;

View File

@ -199,6 +199,28 @@ var climbStairs = function(n) {
}; };
``` ```
TypeScript
```typescript
function climbStairs(n: number): number {
const m: number = 2; // 本题m为2
const dp: number[] = new Array(n + 1).fill(0);
dp[0] = 1;
// 遍历背包
for (let i = 1; i <= n; i++) {
// 遍历物品
for (let j = 1; j <= m; j++) {
if (j <= i) {
dp[i] += dp[i - j];
}
}
}
return dp[n];
};
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -82,6 +82,26 @@ public:
} }
}; };
``` ```
```CPP
# 递归法
class Solution {
public:
void order(TreeNode* cur, vector<vector<int>>& result, int depth)
{
if (cur == nullptr) return;
if (result.size() == depth) result.push_back(vector<int>());
result[depth].push_back(cur->val);
order(cur->left, result, depth + 1);
order(cur->right, result, depth + 1);
}
vector<vector<int>> levelOrder(TreeNode* root) {
vector<vector<int>> result;
int depth = 0;
order(root, result, depth);
return result;
}
};
```
python3代码 python3代码
@ -298,6 +318,61 @@ func levelOrder(_ root: TreeNode?) -> [[Int]] {
return result return result
} }
``` ```
Scala:
```scala
// 102.二叉树的层序遍历
object Solution {
import scala.collection.mutable
def levelOrder(root: TreeNode): List[List[Int]] = {
val res = mutable.ListBuffer[List[Int]]()
if (root == null) return res.toList
val queue = mutable.Queue[TreeNode]() // 声明一个队列
queue.enqueue(root) // 把根节点加入queue
while (!queue.isEmpty) {
val tmp = mutable.ListBuffer[Int]()
val len = queue.size // 求出len的长度
for (i <- 0 until len) { // 从0到当前队列长度的所有节点都加入到结果集
val curNode = queue.dequeue()
tmp.append(curNode.value)
if (curNode.left != null) queue.enqueue(curNode.left)
if (curNode.right != null) queue.enqueue(curNode.right)
}
res.append(tmp.toList)
}
res.toList
}
}
```
Rust:
```rust
pub fn level_order(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<Vec<i32>> {
let mut ans = Vec::new();
let mut stack = Vec::new();
if root.is_none(){
return ans;
}
stack.push(root.unwrap());
while stack.is_empty()!= true{
let num = stack.len();
let mut level = Vec::new();
for _i in 0..num{
let tmp = stack.remove(0);
level.push(tmp.borrow_mut().val);
if tmp.borrow_mut().left.is_some(){
stack.push(tmp.borrow_mut().left.take().unwrap());
}
if tmp.borrow_mut().right.is_some(){
stack.push(tmp.borrow_mut().right.take().unwrap());
}
}
ans.push(level);
}
ans
}
```
**此时我们就掌握了二叉树的层序遍历了,那么如下九道力扣上的题目,只需要修改模板的两三行代码(不能再多了),便可打倒!** **此时我们就掌握了二叉树的层序遍历了,那么如下九道力扣上的题目,只需要修改模板的两三行代码(不能再多了),便可打倒!**
@ -528,6 +603,61 @@ func levelOrderBottom(_ root: TreeNode?) -> [[Int]] {
} }
``` ```
Scala:
```scala
// 107.二叉树的层次遍历II
object Solution {
import scala.collection.mutable
def levelOrderBottom(root: TreeNode): List[List[Int]] = {
val res = mutable.ListBuffer[List[Int]]()
if (root == null) return res.toList
val queue = mutable.Queue[TreeNode]()
queue.enqueue(root)
while (!queue.isEmpty) {
val tmp = mutable.ListBuffer[Int]()
val len = queue.size
for (i <- 0 until len) {
val curNode = queue.dequeue()
tmp.append(curNode.value)
if (curNode.left != null) queue.enqueue(curNode.left)
if (curNode.right != null) queue.enqueue(curNode.right)
}
res.append(tmp.toList)
}
// 最后翻转一下
res.reverse.toList
}
Rust:
```rust
pub fn level_order(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<Vec<i32>> {
let mut ans = Vec::new();
let mut stack = Vec::new();
if root.is_none(){
return ans;
}
stack.push(root.unwrap());
while stack.is_empty()!= true{
let num = stack.len();
let mut level = Vec::new();
for _i in 0..num{
let tmp = stack.remove(0);
level.push(tmp.borrow_mut().val);
if tmp.borrow_mut().left.is_some(){
stack.push(tmp.borrow_mut().left.take().unwrap());
}
if tmp.borrow_mut().right.is_some(){
stack.push(tmp.borrow_mut().right.take().unwrap());
}
}
ans.push(level);
}
ans
}
```
# 199.二叉树的右视图 # 199.二叉树的右视图
[力扣题目链接](https://leetcode-cn.com/problems/binary-tree-right-side-view/) [力扣题目链接](https://leetcode-cn.com/problems/binary-tree-right-side-view/)
@ -750,6 +880,31 @@ func rightSideView(_ root: TreeNode?) -> [Int] {
} }
``` ```
Scala:
```scala
// 199.二叉树的右视图
object Solution {
import scala.collection.mutable
def rightSideView(root: TreeNode): List[Int] = {
val res = mutable.ListBuffer[Int]()
if (root == null) return res.toList
val queue = mutable.Queue[TreeNode]()
queue.enqueue(root)
while (!queue.isEmpty) {
val len = queue.size
var curNode: TreeNode = null
for (i <- 0 until len) {
curNode = queue.dequeue()
if (curNode.left != null) queue.enqueue(curNode.left)
if (curNode.right != null) queue.enqueue(curNode.right)
}
res.append(curNode.value) // 把最后一个节点的值加入解集
}
res.toList // 最后需要把res转换为Listreturn关键字可以省略
}
}
```
# 637.二叉树的层平均值 # 637.二叉树的层平均值
[力扣题目链接](https://leetcode-cn.com/problems/average-of-levels-in-binary-tree/) [力扣题目链接](https://leetcode-cn.com/problems/average-of-levels-in-binary-tree/)
@ -981,6 +1136,30 @@ func averageOfLevels(_ root: TreeNode?) -> [Double] {
return result return result
} }
``` ```
Scala:
```scala
// 637.二叉树的层平均值
object Solution {
import scala.collection.mutable
def averageOfLevels(root: TreeNode): Array[Double] = {
val res = mutable.ArrayBuffer[Double]()
val queue = mutable.Queue[TreeNode]()
queue.enqueue(root)
while (!queue.isEmpty) {
var sum = 0.0
var len = queue.size
for (i <- 0 until len) {
var curNode = queue.dequeue()
sum += curNode.value // 累加该层的值
if (curNode.left != null) queue.enqueue(curNode.left)
if (curNode.right != null) queue.enqueue(curNode.right)
}
res.append(sum / len) // 平均值即为sum/len
}
res.toArray // 最后需要转换为Arrayreturn关键字可以省略
}
}
```
# 429.N叉树的层序遍历 # 429.N叉树的层序遍历
@ -1225,6 +1404,34 @@ func levelOrder(_ root: Node?) -> [[Int]] {
} }
``` ```
Scala:
```scala
// 429.N叉树的层序遍历
object Solution {
import scala.collection.mutable
def levelOrder(root: Node): List[List[Int]] = {
val res = mutable.ListBuffer[List[Int]]()
if (root == null) return res.toList
val queue = mutable.Queue[Node]()
queue.enqueue(root) // 根节点入队
while (!queue.isEmpty) {
val tmp = mutable.ListBuffer[Int]() // 存储每层节点
val len = queue.size
for (i <- 0 until len) {
val curNode = queue.dequeue()
tmp.append(curNode.value) // 将该节点的值加入tmp
// 循环遍历该节点的子节点,加入队列
for (child <- curNode.children) {
queue.enqueue(child)
}
}
res.append(tmp.toList) // 将该层的节点放到结果集
}
res.toList
}
}
```
# 515.在每个树行中找最大值 # 515.在每个树行中找最大值
[力扣题目链接](https://leetcode-cn.com/problems/find-largest-value-in-each-tree-row/) [力扣题目链接](https://leetcode-cn.com/problems/find-largest-value-in-each-tree-row/)

View File

@ -192,6 +192,33 @@ public:
}; };
``` ```
rust:
```rust
impl Solution {
pub fn max_depth(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
if root.is_none(){
return 0;
}
let mut max_depth: i32 = 0;
let mut stack = vec![root.unwrap()];
while !stack.is_empty() {
let num = stack.len();
for _i in 0..num{
let top = stack.remove(0);
if top.borrow_mut().left.is_some(){
stack.push(top.borrow_mut().left.take().unwrap());
}
if top.borrow_mut().right.is_some(){
stack.push(top.borrow_mut().right.take().unwrap());
}
}
max_depth+=1;
}
max_depth
}
```
那么我们可以顺便解决一下n叉树的最大深度问题 那么我们可以顺便解决一下n叉树的最大深度问题
# 559.n叉树的最大深度 # 559.n叉树的最大深度

View File

@ -208,7 +208,7 @@ int getHeight(TreeNode* node) {
```CPP ```CPP
class Solution { class Solution {
public: public:
// 返回以该节点为根节点的二叉树的高度,如果不是二叉搜索树了则返回-1 // 返回以该节点为根节点的二叉树的高度,如果不是平衡二叉树了则返回-1
int getHeight(TreeNode* node) { int getHeight(TreeNode* node) {
if (node == NULL) { if (node == NULL) {
return 0; return 0;

View File

@ -488,5 +488,69 @@ func minDepth(_ root: TreeNode?) -> Int {
} }
``` ```
rust:
```rust
impl Solution {
pub fn min_depth(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
return Solution::bfs(root)
}
// 递归
pub fn dfs(node: Option<Rc<RefCell<TreeNode>>>) -> i32{
if node.is_none(){
return 0;
}
let parent = node.unwrap();
let left_child = parent.borrow_mut().left.take();
let right_child = parent.borrow_mut().right.take();
if left_child.is_none() && right_child.is_none(){
return 1;
}
let mut min_depth = i32::MAX;
if left_child.is_some(){
let left_depth = Solution::dfs(left_child);
if left_depth <= min_depth{
min_depth = left_depth
}
}
if right_child.is_some(){
let right_depth = Solution::dfs(right_child);
if right_depth <= min_depth{
min_depth = right_depth
}
}
min_depth + 1
}
// 迭代
pub fn bfs(node: Option<Rc<RefCell<TreeNode>>>) -> i32{
let mut min_depth = 0;
if node.is_none(){
return min_depth
}
let mut stack = vec![node.unwrap()];
while !stack.is_empty(){
min_depth += 1;
let num = stack.len();
for _i in 0..num{
let top = stack.remove(0);
let left_child = top.borrow_mut().left.take();
let right_child = top.borrow_mut().right.take();
if left_child.is_none() && right_child.is_none(){
return min_depth;
}
if left_child.is_some(){
stack.push(left_child.unwrap());
}
if right_child.is_some(){
stack.push(right_child.unwrap());
}
}
}
min_depth
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -377,22 +377,22 @@ class solution {
```java ```java
class solution { class solution {
public list<list<integer>> pathsum(treenode root, int targetsum) { public List<List<Integer>> pathsum(TreeNode root, int targetsum) {
list<list<integer>> res = new arraylist<>(); List<List<Integer>> res = new ArrayList<>();
if (root == null) return res; // 非空判断 if (root == null) return res; // 非空判断
list<integer> path = new linkedlist<>(); List<Integer> path = new LinkedList<>();
preorderdfs(root, targetsum, res, path); preorderdfs(root, targetsum, res, path);
return res; return res;
} }
public void preorderdfs(treenode root, int targetsum, list<list<integer>> res, list<integer> path) { public void preorderdfs(TreeNode root, int targetsum, List<List<Integer>> res, List<Integer> path) {
path.add(root.val); path.add(root.val);
// 遇到了叶子节点 // 遇到了叶子节点
if (root.left == null && root.right == null) { if (root.left == null && root.right == null) {
// 找到了和为 targetsum 的路径 // 找到了和为 targetsum 的路径
if (targetsum - root.val == 0) { if (targetsum - root.val == 0) {
res.add(new arraylist<>(path)); res.add(new ArrayList<>(path));
} }
return; // 如果和不为 targetsum返回 return; // 如果和不为 targetsum返回
} }
@ -1006,6 +1006,126 @@ func traversal(_ cur: TreeNode?, count: Int) {
} }
``` ```
## C
> 0112.路径总和
递归法:
```c
bool hasPathSum(struct TreeNode* root, int targetSum){
// 递归结束条件若当前节点不存在返回false
if(!root)
return false;
// 若当前节点为叶子节点且targetSum-root的值为0。当前路径上的节点值的和满足条件返回true
if(!root->right && !root->left && targetSum == root->val)
return true;
// 查看左子树和右子树的所有节点是否满足条件
return hasPathSum(root->right, targetSum - root->val) || hasPathSum(root->left, targetSum - root->val);
}
```
迭代法:
```c
// 存储一个节点以及当前的和
struct Pair {
struct TreeNode* node;
int sum;
};
bool hasPathSum(struct TreeNode* root, int targetSum){
struct Pair stack[1000];
int stackTop = 0;
// 若root存在则将节点和值封装成一个pair入栈
if(root) {
struct Pair newPair = {root, root->val};
stack[stackTop++] = newPair;
}
// 当栈不为空时
while(stackTop) {
// 出栈栈顶元素
struct Pair topPair = stack[--stackTop];
// 若栈顶元素为叶子节点且和为targetSum时返回true
if(!topPair.node->left && !topPair.node->right && topPair.sum == targetSum)
return true;
// 若当前栈顶节点有左右孩子,计算和并入栈
if(topPair.node->left) {
struct Pair newPair = {topPair.node->left, topPair.sum + topPair.node->left->val};
stack[stackTop++] = newPair;
}
if(topPair.node->right) {
struct Pair newPair = {topPair.node->right, topPair.sum + topPair.node->right->val};
stack[stackTop++] = newPair;
}
}
return false;
}
```
> 0113.路径总和 II
```c
int** ret;
int* path;
int* colSize;
int retTop;
int pathTop;
void traversal(const struct TreeNode* const node, int count) {
// 若当前节点为叶子节点
if(!node->right && !node->left) {
// 若当前path上的节点值总和等于targetSum。
if(count == 0) {
// 复制当前path
int *curPath = (int*)malloc(sizeof(int) * pathTop);
memcpy(curPath, path, sizeof(int) * pathTop);
// 记录当前path的长度为pathTop
colSize[retTop] = pathTop;
// 将当前path加入到ret数组中
ret[retTop++] = curPath;
}
return;
}
// 若节点有左/右孩子
if(node->left) {
// 将左孩子的值加入path中
path[pathTop++] = node->left->val;
traversal(node->left, count - node->left->val);
// 回溯
pathTop--;
}
if(node->right) {
// 将右孩子的值加入path中
path[pathTop++] = node->right->val;
traversal(node->right, count - node->right->val);
// 回溯
--pathTop;
}
}
int** pathSum(struct TreeNode* root, int targetSum, int* returnSize, int** returnColumnSizes){
// 初始化数组
ret = (int**)malloc(sizeof(int*) * 1000);
path = (int*)malloc(sizeof(int*) * 1000);
colSize = (int*)malloc(sizeof(int) * 1000);
retTop = pathTop = 0;
*returnSize = 0;
// 若根节点不存在返回空的ret
if(!root)
return ret;
// 将根节点加入到path中
path[pathTop++] = root->val;
traversal(root, targetSum - root->val);
// 设置返回ret数组大小以及其中每个一维数组元素的长度
*returnSize = retTop;
*returnColumnSizes = colSize;
return ret;
}
```
----------------------- -----------------------

View File

@ -426,6 +426,46 @@ var maxProfit = function(prices) {
}; };
``` ```
TypeScript
> 贪心法
```typescript
function maxProfit(prices: number[]): number {
if (prices.length === 0) return 0;
let buy: number = prices[0];
let profitMax: number = 0;
for (let i = 1, length = prices.length; i < length; i++) {
profitMax = Math.max(profitMax, prices[i] - buy);
buy = Math.min(prices[i], buy);
}
return profitMax;
};
```
> 动态规划
```typescript
function maxProfit(prices: number[]): number {
/**
dp[i][0]: 第i天持有股票的最大现金
dp[i][1]: 第i天不持有股票的最大现金
*/
const length = prices.length;
if (length === 0) return 0;
const dp: number[][] = [];
dp[0] = [-prices[0], 0];
for (let i = 1; i < length; i++) {
dp[i] = [];
dp[i][0] = Math.max(dp[i - 1][0], -prices[i]);
dp[i][1] = Math.max(dp[i - 1][0] + prices[i], dp[i - 1][1]);
}
return dp[length - 1][1];
};
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -295,6 +295,42 @@ const maxProfit = (prices) => {
} }
``` ```
TypeScript
> 动态规划
```typescript
function maxProfit(prices: number[]): number {
/**
dp[i][0]: 第i天持有股票
dp[i][1]: 第i天不持有股票
*/
const length: number = prices.length;
if (length === 0) return 0;
const dp: number[][] = new Array(length).fill(0).map(_ => []);
dp[0] = [-prices[0], 0];
for (let i = 1; i < length; i++) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
}
return dp[length - 1][1];
};
```
> 贪心法
```typescript
function maxProfit(prices: number[]): number {
let resProfit: number = 0;
for (let i = 1, length = prices.length; i < length; i++) {
if (prices[i] > prices[i - 1]) {
resProfit += prices[i] - prices[i - 1];
}
}
return resProfit;
};
```
----------------------- -----------------------

View File

@ -352,6 +352,36 @@ const maxProfit = prices => {
}; };
``` ```
TypeScript
> 版本一
```typescript
function maxProfit(prices: number[]): number {
/**
dp[i][0]: 无操作;
dp[i][1]: 第一次买入;
dp[i][2]: 第一次卖出;
dp[i][3]: 第二次买入;
dp[i][4]: 第二次卖出;
*/
const length: number = prices.length;
if (length === 0) return 0;
const dp: number[][] = new Array(length).fill(0)
.map(_ => new Array(5).fill(0));
dp[0][1] = -prices[0];
dp[0][3] = -prices[0];
for (let i = 1; i < length; i++) {
dp[i][0] = dp[i - 1][0];
dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);
dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
}
return Math.max(dp[length - 1][2], dp[length - 1][4]);
};
```
Go: Go:
> 版本一: > 版本一:

View File

@ -345,6 +345,48 @@ const wordBreak = (s, wordDict) => {
} }
``` ```
TypeScript
> 动态规划
```typescript
function wordBreak(s: string, wordDict: string[]): boolean {
const dp: boolean[] = new Array(s.length + 1).fill(false);
dp[0] = true;
for (let i = 1; i <= s.length; i++) {
for (let j = 0; j < i; j++) {
const tempStr: string = s.slice(j, i);
if (wordDict.includes(tempStr) && dp[j] === true) {
dp[i] = true;
break;
}
}
}
return dp[s.length];
};
```
> 记忆化回溯
```typescript
function wordBreak(s: string, wordDict: string[]): boolean {
// 只需要记忆结果为false的情况
const memory: boolean[] = [];
return backTracking(s, wordDict, 0, memory);
function backTracking(s: string, wordDict: string[], startIndex: number, memory: boolean[]): boolean {
if (startIndex >= s.length) return true;
if (memory[startIndex] === false) return false;
for (let i = startIndex + 1, length = s.length; i <= length; i++) {
const str: string = s.slice(startIndex, i);
if (wordDict.includes(str) && backTracking(s, wordDict, i, memory))
return true;
}
memory[startIndex] = false;
return false;
}
};
```
----------------------- -----------------------

View File

@ -370,7 +370,31 @@ ListNode *detectCycle(ListNode *head) {
} }
``` ```
Scala:
```scala
object Solution {
def detectCycle(head: ListNode): ListNode = {
var fast = head // 快指针
var slow = head // 慢指针
while (fast != null && fast.next != null) {
fast = fast.next.next // 快指针一次走两步
slow = slow.next // 慢指针一次走一步
// 如果相遇fast快指针回到头
if (fast == slow) {
fast = head
// 两个指针一步一步的走,第一次相遇的节点必是入环节点
while (fast != slow) {
fast = fast.next
slow = slow.next
}
return fast
}
}
// 如果fast指向空值必然无环返回null
null
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -136,19 +136,19 @@ java:
class Solution { class Solution {
public int evalRPN(String[] tokens) { public int evalRPN(String[] tokens) {
Deque<Integer> stack = new LinkedList(); Deque<Integer> stack = new LinkedList();
for (int i = 0; i < tokens.length; ++i) { for (String s : tokens) {
if ("+".equals(tokens[i])) { // leetcode 内置jdk的问题不能使用==判断字符串是否相等 if ("+".equals(s)) { // leetcode 内置jdk的问题不能使用==判断字符串是否相等
stack.push(stack.pop() + stack.pop()); // 注意 - 和/ 需要特殊处理 stack.push(stack.pop() + stack.pop()); // 注意 - 和/ 需要特殊处理
} else if ("-".equals(tokens[i])) { } else if ("-".equals(s)) {
stack.push(-stack.pop() + stack.pop()); stack.push(-stack.pop() + stack.pop());
} else if ("*".equals(tokens[i])) { } else if ("*".equals(s)) {
stack.push(stack.pop() * stack.pop()); stack.push(stack.pop() * stack.pop());
} else if ("/".equals(tokens[i])) { } else if ("/".equals(s)) {
int temp1 = stack.pop(); int temp1 = stack.pop();
int temp2 = stack.pop(); int temp2 = stack.pop();
stack.push(temp2 / temp1); stack.push(temp2 / temp1);
} else { } else {
stack.push(Integer.valueOf(tokens[i])); stack.push(Integer.valueOf(s));
} }
} }
return stack.pop(); return stack.pop();
@ -325,6 +325,33 @@ func evalRPN(_ tokens: [String]) -> Int {
return stack.last! return stack.last!
} }
``` ```
Scala:
```scala
object Solution {
import scala.collection.mutable
def evalRPN(tokens: Array[String]): Int = {
val stack = mutable.Stack[Int]() // 定义栈
// 抽取运算操作需要传递x,y和一个函数
def operator(x: Int, y: Int, f: (Int, Int) => Int): Int = f(x, y)
for (token <- tokens) {
// 模式匹配,匹配不同的操作符做什么样的运算
token match {
// 最后一个参数 _+_代表x+y遵循Scala的函数至简原则以下运算同理
case "+" => stack.push(operator(stack.pop(), stack.pop(), _ + _))
case "-" => stack.push(operator(stack.pop(), stack.pop(), -_ + _))
case "*" => stack.push(operator(stack.pop(), stack.pop(), _ * _))
case "/" => {
var pop1 = stack.pop()
var pop2 = stack.pop()
stack.push(operator(pop2, pop1, _ / _))
}
case _ => stack.push(token.toInt) // 不是运算符就入栈
}
}
// 最后返回栈顶不需要加return关键字
stack.pop()
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -758,7 +758,63 @@ func reverseWord(_ s: inout [Character]) {
} }
``` ```
Scala:
```scala
object Solution {
def reverseWords(s: String): String = {
var sb = removeSpace(s) // 移除多余的空格
reverseString(sb, 0, sb.length - 1) // 翻转字符串
reverseEachWord(sb)
sb.mkString
}
// 移除多余的空格
def removeSpace(s: String): Array[Char] = {
var start = 0
var end = s.length - 1
// 移除字符串前面的空格
while (start < s.length && s(start) == ' ') start += 1
// 移除字符串后面的空格
while (end >= 0 && s(end) == ' ') end -= 1
var sb = "" // String
// 当start小于等于end的时候执行添加操作
while (start <= end) {
var c = s(start)
// 当前字符不等于空sb的最后一个字符不等于空的时候添加到sb
if (c != ' ' || sb(sb.length - 1) != ' ') {
sb ++= c.toString
}
start += 1 // 指针向右移动
}
sb.toArray
}
// 翻转字符串
def reverseString(s: Array[Char], start: Int, end: Int): Unit = {
var (left, right) = (start, end)
while (left < right) {
var tmp = s(left)
s(left) = s(right)
s(right) = tmp
left += 1
right -= 1
}
}
// 翻转每个单词
def reverseEachWord(s: Array[Char]): Unit = {
var i = 0
while (i < s.length) {
var j = i + 1
// 向后迭代寻找每个单词的坐标
while (j < s.length && s(j) != ' ') j += 1
reverseString(s, i, j - 1) // 翻转每个单词
i = j + 1 // i往后更新
}
}
}
```

View File

@ -409,5 +409,27 @@ var maxProfit = function(k, prices) {
}; };
``` ```
TypeScript
```typescript
function maxProfit(k: number, prices: number[]): number {
const length: number = prices.length;
if (length === 0) return 0;
const dp: number[][] = new Array(length).fill(0)
.map(_ => new Array(k * 2 + 1).fill(0));
for (let i = 1; i <= k; i++) {
dp[0][i * 2 - 1] = -prices[0];
}
for (let i = 1; i < length; i++) {
for (let j = 1; j < 2 * k + 1; j++) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - 1] + Math.pow(-1, j) * prices[i]);
}
}
return dp[length - 1][2 * k];
};
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -189,6 +189,29 @@ const rob = nums => {
}; };
``` ```
TypeScript
```typescript
function rob(nums: number[]): number {
/**
dp[i]: 前i个房屋能偷到的最大金额
dp[0]: nums[0];
dp[1]: max(nums[0], nums[1]);
...
dp[i]: max(dp[i-1], dp[i-2]+nums[i]);
*/
const length: number = nums.length;
if (length === 1) return nums[0];
const dp: number[] = [];
dp[0] = nums[0];
dp[1] = Math.max(nums[0], nums[1]);
for (let i = 2; i < length; i++) {
dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
}
return dp[length - 1];
};
```

View File

@ -385,5 +385,61 @@ bool isHappy(int n){
return bHappy; return bHappy;
} }
``` ```
Scala:
```scala
object Solution {
// 引入mutable
import scala.collection.mutable
def isHappy(n: Int): Boolean = {
// 存放每次计算后的结果
val set: mutable.HashSet[Int] = new mutable.HashSet[Int]()
var tmp = n // 因为形参是不可变量,所以需要找到一个临时变量
// 开始进入循环
while (true) {
val sum = getSum(tmp) // 获取这个数每个值的平方和
if (sum == 1) return true // 如果最终等于 1则返回true
// 如果set里面已经有这个值了说明进入无限循环可以返回false否则添加这个值到set
if (set.contains(sum)) return false
else set.add(sum)
tmp = sum
}
// 最终需要返回值直接返回个false
false
}
def getSum(n: Int): Int = {
var sum = 0
var tmp = n
while (tmp != 0) {
sum += (tmp % 10) * (tmp % 10)
tmp = tmp / 10
}
sum
}
C#
```csharp
public class Solution {
private int getSum(int n) {
int sum = 0;
//每位数的换算
while (n > 0) {
sum += (n % 10) * (n % 10);
n /= 10;
}
return sum;
}
public bool IsHappy(int n) {
HashSet <int> set = new HashSet<int>();
while(n != 1 && !set.Contains(n)) { //判断避免循环
set.Add(n);
n = getSum(n);
}
return n == 1;
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -266,6 +266,27 @@ public ListNode removeElements(ListNode head, int val) {
} }
return head; return head;
} }
/**
* 不添加虚拟节点and pre Node方式
* 时间复杂度 O(n)
* 空间复杂度 O(1)
* @param head
* @param val
* @return
*/
public ListNode removeElements(ListNode head, int val) {
while(head!=null && head.val==val){
head = head.next;
}
ListNode curr = head;
while(curr!=null){
while(curr.next!=null && curr.next.val == val){
curr.next = curr.next.next;
}
curr = curr.next;
}
return head;
}
``` ```
Python Python
@ -478,6 +499,36 @@ impl Solution {
} }
} }
``` ```
Scala:
```scala
/**
* Definition for singly-linked list.
* class ListNode(_x: Int = 0, _next: ListNode = null) {
* var next: ListNode = _next
* var x: Int = _x
* }
*/
object Solution {
def removeElements(head: ListNode, `val`: Int): ListNode = {
if (head == null) return head
var dummy = new ListNode(-1, head) // 定义虚拟头节点
var cur = head // cur 表示当前节点
var pre = dummy // pre 表示cur前一个节点
while (cur != null) {
if (cur.x == `val`) {
// 相等就删除那么cur的前一个节点pre执行cur的下一个
pre.next = cur.next
} else {
// 不相等pre就等于当前cur节点
pre = cur
}
// 向下迭代
cur = cur.next
}
// 最终返回dummy的下一个就是链表的头
dummy.next
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -496,6 +496,40 @@ struct ListNode* reverseList(struct ListNode* head){
return reverse(NULL, head); return reverse(NULL, head);
} }
``` ```
Scala:
双指针法:
```scala
object Solution {
def reverseList(head: ListNode): ListNode = {
var pre: ListNode = null
var cur = head
while (cur != null) {
var tmp = cur.next
cur.next = pre
pre = cur
cur = tmp
}
pre
}
}
```
递归法:
```scala
object Solution {
def reverseList(head: ListNode): ListNode = {
reverse(null, head)
}
def reverse(pre: ListNode, cur: ListNode): ListNode = {
if (cur == null) {
return pre // 如果当前cur为空则返回pre
}
val tmp: ListNode = cur.next
cur.next = pre
reverse(cur, tmp) // 此时cur成为前一个节点tmp是当前节点
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -400,6 +400,54 @@ class Solution {
} }
} }
``` ```
Scala:
滑动窗口:
```scala
object Solution {
def minSubArrayLen(target: Int, nums: Array[Int]): Int = {
var result = Int.MaxValue // 返回结果,默认最大值
var left = 0 // 慢指针当sum>=target向右移动
var sum = 0 // 窗口值的总和
for (right <- 0 until nums.length) {
sum += nums(right)
while (sum >= target) {
result = math.min(result, right - left + 1) // 产生新结果
sum -= nums(left) // 左指针移动,窗口总和减去左指针的值
left += 1 // 左指针向右移动
}
}
// 相当于三元运算符return关键字可以省略
if (result == Int.MaxValue) 0 else result
}
}
```
暴力解法:
```scala
object Solution {
def minSubArrayLen(target: Int, nums: Array[Int]): Int = {
import scala.util.control.Breaks
var res = Int.MaxValue
var subLength = 0
for (i <- 0 until nums.length) {
var sum = 0
Breaks.breakable(
for (j <- i until nums.length) {
sum += nums(j)
if (sum >= target) {
subLength = j - i + 1
res = math.min(subLength, res)
Breaks.break()
}
}
)
}
// 相当于三元运算符
if (res == Int.MaxValue) 0 else res
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -165,7 +165,30 @@ const robRange = (nums, start, end) => {
return dp[end] return dp[end]
} }
``` ```
TypeScript
```typescript
function rob(nums: number[]): number {
const length: number = nums.length;
if (length === 0) return 0;
if (length === 1) return nums[0];
return Math.max(robRange(nums, 0, length - 2),
robRange(nums, 1, length - 1));
};
function robRange(nums: number[], start: number, end: number): number {
if (start === end) return nums[start];
const dp: number[] = [];
dp[start] = nums[start];
dp[start + 1] = Math.max(nums[start], nums[start + 1]);
for (let i = start + 2; i <= end; i++) {
dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
}
return dp[end];
}
```
Go Go
```go ```go
// 打家劫舍Ⅱ 动态规划 // 打家劫舍Ⅱ 动态规划
// 时间复杂度O(n) 空间复杂度O(n) // 时间复杂度O(n) 空间复杂度O(n)

View File

@ -815,6 +815,89 @@ class MyStack {
} }
} }
``` ```
Scala:
使用两个队列模拟栈:
```scala
import scala.collection.mutable
class MyStack() {
val queue1 = new mutable.Queue[Int]()
val queue2 = new mutable.Queue[Int]()
def push(x: Int) {
queue1.enqueue(x)
}
def pop(): Int = {
var size = queue1.size
// 将queue1中的每个元素都移动到queue2
for (i <- 0 until size - 1) {
queue2.enqueue(queue1.dequeue())
}
var res = queue1.dequeue()
// 再将queue2中的每个元素都移动到queue1
while (!queue2.isEmpty) {
queue1.enqueue(queue2.dequeue())
}
res
}
def top(): Int = {
var size = queue1.size
for (i <- 0 until size - 1) {
queue2.enqueue(queue1.dequeue())
}
var res = queue1.dequeue()
while (!queue2.isEmpty) {
queue1.enqueue(queue2.dequeue())
}
// 最终还需要把res送进queue1
queue1.enqueue(res)
res
}
def empty(): Boolean = {
queue1.isEmpty
}
}
```
使用一个队列模拟:
```scala
import scala.collection.mutable
class MyStack() {
val queue = new mutable.Queue[Int]()
def push(x: Int) {
queue.enqueue(x)
}
def pop(): Int = {
var size = queue.size
for (i <- 0 until size - 1) {
queue.enqueue(queue.head) // 把头添到队列最后
queue.dequeue() // 再出队
}
queue.dequeue()
}
def top(): Int = {
var size = queue.size
var res = 0
for (i <- 0 until size) {
queue.enqueue(queue.head) // 把头添到队列最后
res = queue.dequeue() // 再出队
}
res
}
def empty(): Boolean = {
queue.isEmpty
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -368,9 +368,7 @@ func invertTree(root *TreeNode) *TreeNode {
if root ==nil{ if root ==nil{
return nil return nil
} }
temp:=root.Left root.Left,root.Right=root.Right,root.Left//交换
root.Left=root.Right
root.Right=temp
invertTree(root.Left) invertTree(root.Left)
invertTree(root.Right) invertTree(root.Right)

View File

@ -495,6 +495,45 @@ void myQueueFree(MyQueue* obj) {
obj->stackOutTop = 0; obj->stackOutTop = 0;
} }
``` ```
Scala:
```scala
class MyQueue() {
import scala.collection.mutable
val stackIn = mutable.Stack[Int]() // 负责出栈
val stackOut = mutable.Stack[Int]() // 负责入栈
// 添加元素
def push(x: Int) {
stackIn.push(x)
}
// 复用代码如果stackOut为空就把stackIn的所有元素都压入StackOut
def dumpStackIn(): Unit = {
if (!stackOut.isEmpty) return
while (!stackIn.isEmpty) {
stackOut.push(stackIn.pop())
}
}
// 弹出元素
def pop(): Int = {
dumpStackIn()
stackOut.pop()
}
// 获取队头
def peek(): Int = {
dumpStackIn()
val res: Int = stackOut.pop()
stackOut.push(res)
res
}
// 判断是否为空
def empty(): Boolean = {
stackIn.isEmpty && stackOut.isEmpty
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -630,6 +630,53 @@ func maxSlidingWindow(_ nums: [Int], _ k: Int) -> [Int] {
return result return result
} }
``` ```
Scala:
```scala
import scala.collection.mutable.ArrayBuffer
object Solution {
def maxSlidingWindow(nums: Array[Int], k: Int): Array[Int] = {
var len = nums.length - k + 1 // 滑动窗口长度
var res: Array[Int] = new Array[Int](len) // 声明存储结果的数组
var index = 0 // 结果数组指针
val queue: MyQueue = new MyQueue // 自定义队列
// 将前k个添加到queue
for (i <- 0 until k) {
queue.add(nums(i))
}
res(index) = queue.peek // 第一个滑动窗口的最大值
index += 1
for (i <- k until nums.length) {
queue.poll(nums(i - k)) // 首先移除第i-k个元素
queue.add(nums(i)) // 添加当前数字到队列
res(index) = queue.peek() // 赋值
index+=1
}
// 最终返回resreturn关键字可以省略
res
}
}
class MyQueue {
var queue = ArrayBuffer[Int]()
// 移除元素,如果传递进来的跟队头相等,那么移除
def poll(value: Int): Unit = {
if (!queue.isEmpty && queue.head == value) {
queue.remove(0)
}
}
// 添加元素,当队尾大于当前元素就删除
def add(value: Int): Unit = {
while (!queue.isEmpty && value > queue.last) {
queue.remove(queue.length - 1)
}
queue.append(value)
}
def peek(): Int = queue.head
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -307,6 +307,52 @@ impl Solution {
} }
} }
``` ```
Scala:
```scala
object Solution {
def isAnagram(s: String, t: String): Boolean = {
// 如果两个字符串的长度不等直接返回false
if (s.length != t.length) return false
val record = new Array[Int](26) // 记录每个单词出现了多少次
// 遍历字符串对于s字符串单词对应的记录+=1t字符串对应的记录-=1
for (i <- 0 until s.length) {
record(s(i) - 97) += 1
record(t(i) - 97) -= 1
}
// 如果不等于则直接返回false
for (i <- 0 until 26) {
if (record(i) != 0) {
return false
}
}
// 如果前面不返回false说明匹配成功返回truereturn可以省略
true
}
}
```
C#
```csharp
public bool IsAnagram(string s, string t) {
int sl=s.Length,tl=t.Length;
if(sl!=tl) return false;
int[] a = new int[26];
for(int i = 0; i < sl; i++){
a[s[i] - 'a']++;
a[t[i] - 'a']--;
}
foreach (int i in a)
{
if (i != 0)
return false;
}
return true;
}
```
## 相关题目 ## 相关题目
* 383.赎金信 * 383.赎金信

View File

@ -355,5 +355,24 @@ var numSquares2 = function(n) {
}; };
``` ```
TypeScript
```typescript
function numSquares(n: number): number {
const goodsNum: number = Math.floor(Math.sqrt(n));
const dp: number[] = new Array(n + 1).fill(Infinity);
dp[0] = 0;
for (let i = 1; i <= goodsNum; i++) {
const tempVal: number = i * i;
for (let j = tempVal; j <= n; j++) {
dp[j] = Math.min(dp[j], dp[j - tempVal] + 1);
}
}
return dp[n];
};
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -237,6 +237,27 @@ const lengthOfLIS = (nums) => {
}; };
``` ```
TypeScript
```typescript
function lengthOfLIS(nums: number[]): number {
/**
dp[i]: 前i个元素中以nums[i]结尾,最长子序列的长度
*/
const dp: number[] = new Array(nums.length).fill(1);
let resMax: number = 0;
for (let i = 0, length = nums.length; i < length; i++) {
for (let j = 0; j < i; j++) {
if (nums[i] > nums[j]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
resMax = Math.max(resMax, dp[i]);
}
return resMax;
};
```

View File

@ -325,6 +325,66 @@ const maxProfit = (prices) => {
}; };
``` ```
TypeScript
> 版本一,与本文思路一致
```typescript
function maxProfit(prices: number[]): number {
/**
dp[i][0]: 持股状态;
dp[i][1]: 无股状态,当天为非冷冻期;
dp[i][2]: 无股状态,当天卖出;
dp[i][3]: 无股状态,当天为冷冻期;
*/
const length: number = prices.length;
const dp: number[][] = new Array(length).fill(0).map(_ => []);
dp[0][0] = -prices[0];
dp[0][1] = dp[0][2] = dp[0][3] = 0;
for (let i = 1; i < length; i++) {
dp[i][0] = Math.max(
dp[i - 1][0],
Math.max(dp[i - 1][1], dp[i - 1][3]) - prices[i]
);
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][3]);
dp[i][2] = dp[i - 1][0] + prices[i];
dp[i][3] = dp[i - 1][2];
}
const lastEl: number[] = dp[length - 1];
return Math.max(lastEl[1], lastEl[2], lastEl[3]);
};
```
> 版本二,状态定义略有不同,可以帮助理解
```typescript
function maxProfit(prices: number[]): number {
/**
dp[i][0]: 持股状态,当天买入;
dp[i][1]: 持股状态,当天未买入;
dp[i][2]: 无股状态,当天卖出;
dp[i][3]: 无股状态,当天未卖出;
买入有冷冻期限制,其实就是状态[0]只能由前一天的状态[3]得到;
如果卖出有冷冻期限制,其实就是[2]由[1]得到。
*/
const length: number = prices.length;
const dp: number[][] = new Array(length).fill(0).map(_ => []);
dp[0][0] = -prices[0];
dp[0][1] = -Infinity;
dp[0][2] = dp[0][3] = 0;
for (let i = 1; i < length; i++) {
dp[i][0] = dp[i - 1][3] - prices[i];
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0]);
dp[i][2] = Math.max(dp[i - 1][0], dp[i - 1][1]) + prices[i];
dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2]);
}
return Math.max(dp[length - 1][2], dp[length - 1][3]);
};
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -340,7 +340,21 @@ const coinChange = (coins, amount) => {
} }
``` ```
TypeScript
```typescript
function coinChange(coins: number[], amount: number): number {
const dp: number[] = new Array(amount + 1).fill(Infinity);
dp[0] = 0;
for (let i = 0; i < coins.length; i++) {
for (let j = coins[i]; j <= amount; j++) {
if (dp[j - coins[i]] === Infinity) continue;
dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);
}
}
return dp[amount] === Infinity ? -1 : dp[amount];
};
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -429,7 +429,50 @@ const rob = root => {
}; };
``` ```
### TypeScript
> 记忆化后序遍历
```typescript
const memory: Map<TreeNode, number> = new Map();
function rob(root: TreeNode | null): number {
if (root === null) return 0;
if (memory.has(root)) return memory.get(root);
// 不取当前节点
const res1: number = rob(root.left) + rob(root.right);
// 取当前节点
let res2: number = root.val;
if (root.left !== null) res2 += rob(root.left.left) + rob(root.left.right);
if (root.right !== null) res2 += rob(root.right.left) + rob(root.right.right);
const res: number = Math.max(res1, res2);
memory.set(root, res);
return res;
};
```
> 状态标记化后序遍历
```typescript
function rob(root: TreeNode | null): number {
return Math.max(...robNode(root));
};
// [0]-不偷当前节点能获得的最大金额; [1]-偷~~
type MaxValueArr = [number, number];
function robNode(node: TreeNode | null): MaxValueArr {
if (node === null) return [0, 0];
const leftArr: MaxValueArr = robNode(node.left);
const rightArr: MaxValueArr = robNode(node.right);
// 不偷
const val1: number = Math.max(leftArr[0], leftArr[1]) +
Math.max(rightArr[0], rightArr[1]);
// 偷
const val2: number = leftArr[0] + rightArr[0] + node.val;
return [val1, val2];
}
```
### Go ### Go
```go ```go
// 打家劫舍Ⅲ 动态规划 // 打家劫舍Ⅲ 动态规划
// 时间复杂度O(n) 空间复杂度O(logn) // 时间复杂度O(n) 空间复杂度O(logn)

View File

@ -266,6 +266,20 @@ public class Solution
} }
} }
``` ```
Scala:
```scala
object Solution {
def reverseString(s: Array[Char]): Unit = {
var (left, right) = (0, s.length - 1)
while (left < right) {
var tmp = s(left)
s(left) = s(right)
s(right) = tmp
left += 1
right -= 1
}
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -374,7 +374,49 @@ function topKFrequent(nums: number[], k: number): number[] {
}; };
``` ```
Scala:
解法一: 优先级队列
```scala
object Solution {
import scala.collection.mutable
def topKFrequent(nums: Array[Int], k: Int): Array[Int] = {
val map = mutable.HashMap[Int, Int]()
// 将所有元素都放入Map
for (num <- nums) {
map.put(num, map.getOrElse(num, 0) + 1)
}
// 声明一个优先级队列,在函数柯里化那块需要指明排序方式
var queue = mutable.PriorityQueue[(Int, Int)]()(Ordering.fromLessThan((x, y) => x._2 > y._2))
// 将map里面的元素送入优先级队列
for (elem <- map) {
queue.enqueue(elem)
if(queue.size > k){
queue.dequeue // 如果队列元素大于k个出队
}
}
// 最终只需要key的Array形式就可以了return关键字可以省略
queue.map(_._1).toArray
}
}
```
解法二: 相当于一个wordCount程序
```scala
object Solution {
def topKFrequent(nums: Array[Int], k: Int): Array[Int] = {
// 首先将数据变为(x,1)然后按照x分组再使用map进行转换(x,sum)变换为Array
// 再使用sort针对sum进行排序最后take前k个再把数据变为x,y,z这种格式
nums.map((_, 1)).groupBy(_._1)
.map {
case (x, arr) => (x, arr.map(_._2).sum)
}
.toArray
.sortWith(_._2 > _._2)
.take(k)
.map(_._1)
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -313,6 +313,69 @@ int* intersection1(int* nums1, int nums1Size, int* nums2, int nums2Size, int* re
} }
``` ```
Scala:
正常解法:
```scala
object Solution {
def intersection(nums1: Array[Int], nums2: Array[Int]): Array[Int] = {
// 导入mutable
import scala.collection.mutable
// 临时Set用于记录数组1出现的每个元素
val tmpSet: mutable.HashSet[Int] = new mutable.HashSet[Int]()
// 结果Set存储最终结果
val resSet: mutable.HashSet[Int] = new mutable.HashSet[Int]()
// 遍历nums1把每个元素添加到tmpSet
nums1.foreach(tmpSet.add(_))
// 遍历nums2如果在tmpSet存在就添加到resSet
nums2.foreach(elem => {
if (tmpSet.contains(elem)) {
resSet.add(elem)
}
})
// 将结果转换为Array返回return可以省略
resSet.toArray
}
}
```
骚操作1:
```scala
object Solution {
def intersection(nums1: Array[Int], nums2: Array[Int]): Array[Int] = {
// 先转为Set然后取交集最后转换为Array
(nums1.toSet).intersect(nums2.toSet).toArray
}
}
```
骚操作2:
```scala
object Solution {
def intersection(nums1: Array[Int], nums2: Array[Int]): Array[Int] = {
// distinct去重然后取交集
(nums1.distinct).intersect(nums2.distinct)
}
}
C#:
```csharp
public int[] Intersection(int[] nums1, int[] nums2) {
if(nums1==null||nums1.Length==0||nums2==null||nums1.Length==0)
return new int[0]; //注意数组条件
HashSet<int> one = Insert(nums1);
HashSet<int> two = Insert(nums2);
one.IntersectWith(two);
return one.ToArray();
}
public HashSet<int> Insert(int[] nums){
HashSet<int> one = new HashSet<int>();
foreach(int num in nums){
one.Add(num);
}
return one;
}
```
## 相关题目 ## 相关题目
* 350.两个数组的交集 II * 350.两个数组的交集 II

View File

@ -221,7 +221,27 @@ const combinationSum4 = (nums, target) => {
}; };
``` ```
TypeScript
```typescript
function combinationSum4(nums: number[], target: number): number {
const dp: number[] = new Array(target + 1).fill(0);
dp[0] = 1;
// 遍历背包
for (let i = 1; i <= target; i++) {
// 遍历物品
for (let j = 0, length = nums.length; j < length; j++) {
if (i >= nums[j]) {
dp[i] += dp[i - nums[j]];
}
}
}
return dp[target];
};
```
Rust Rust
```Rust ```Rust
impl Solution { impl Solution {
pub fn combination_sum4(nums: Vec<i32>, target: i32) -> i32 { pub fn combination_sum4(nums: Vec<i32>, target: i32) -> i32 {

View File

@ -363,5 +363,87 @@ impl Solution {
} }
``` ```
Scala:
版本一: 使用数组作为哈希表
```scala
object Solution {
def canConstruct(ransomNote: String, magazine: String): Boolean = {
// 如果magazine的长度小于ransomNote的长度必然是false
if (magazine.length < ransomNote.length) {
return false
}
// 定义一个数组存储magazine字符出现的次数
val map: Array[Int] = new Array[Int](26)
// 遍历magazine字符串对应的字符+=1
for (i <- magazine.indices) {
map(magazine(i) - 'a') += 1
}
// 遍历ransomNote
for (i <- ransomNote.indices) {
if (map(ransomNote(i) - 'a') > 0)
map(ransomNote(i) - 'a') -= 1
else return false
}
// 如果上面没有返回false直接返回true关键字return可以省略
true
}
}
```
```scala
object Solution {
import scala.collection.mutable
def canConstruct(ransomNote: String, magazine: String): Boolean = {
// 如果magazine的长度小于ransomNote的长度必然是false
if (magazine.length < ransomNote.length) {
return false
}
// 定义mapkey是字符value是字符出现的次数
val map = new mutable.HashMap[Char, Int]()
// 遍历magazine把所有的字符都记录到map里面
for (i <- magazine.indices) {
val tmpChar = magazine(i)
// 如果map包含该字符那么对应的value++,否则添加该字符
if (map.contains(tmpChar)) {
map.put(tmpChar, map.get(tmpChar).get + 1)
} else {
map.put(tmpChar, 1)
}
}
// 遍历ransomNote
for (i <- ransomNote.indices) {
val tmpChar = ransomNote(i)
// 如果map包含并且该字符的value大于0则匹配成功map对应的--否则直接返回false
if (map.contains(tmpChar) && map.get(tmpChar).get > 0) {
map.put(tmpChar, map.get(tmpChar).get - 1)
} else {
return false
}
}
// 如果上面没有返回false直接返回true关键字return可以省略
true
}
}
C#
```csharp
public bool CanConstruct(string ransomNote, string magazine) {
if(ransomNote.Length > magazine.Length) return false;
int[] letters = new int[26];
foreach(char c in magazine){
letters[c-'a']++;
}
foreach(char c in ransomNote){
letters[c-'a']--;
if(letters[c-'a']<0){
return false;
}
}
return true;
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -336,8 +336,8 @@ var sumOfLeftLeaves = function(root) {
if(node===null){ if(node===null){
return 0; return 0;
} }
let leftValue = sumOfLeftLeaves(node.left); let leftValue = nodesSum(node.left);
let rightValue = sumOfLeftLeaves(node.right); let rightValue = nodesSum(node.right);
// 3. 单层递归逻辑 // 3. 单层递归逻辑
let midValue = 0; let midValue = 0;
if(node.left&&node.left.left===null&&node.left.right===null){ if(node.left&&node.left.left===null&&node.left.right===null){

View File

@ -417,6 +417,163 @@ var canPartition = function(nums) {
``` ```
C:
二维dp
```c
/**
1. dp数组含义dp[i][j]为背包重量为j时从[0-i]元素和最大值
2. 递推公式dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - nums[i]] + nums[i])
3. 初始化dp[i][0]初始化为0。因为背包重量为0时不可能放入元素。dp[0][j] = nums[0]当j >= nums[0] && j < target时
4. 遍历顺序:先遍历物品,再遍历背包
*/
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
int getSum(int* nums, int numsSize) {
int sum = 0;
int i;
for(i = 0; i < numsSize; ++i) {
sum += nums[i];
}
return sum;
}
bool canPartition(int* nums, int numsSize){
// 求出元素总和
int sum = getSum(nums, numsSize);
// 若元素总和为奇数,则不可能得到两个和相等的子数组
if(sum % 2)
return false;
// 若子数组的和等于target则nums可以被分割
int target = sum / 2;
// 初始化dp数组
int dp[numsSize][target + 1];
// dp[j][0]都应被设置为0。因为当背包重量为0时不可放入元素
memset(dp, 0, sizeof(int) * numsSize * (target + 1));
int i, j;
// 当背包重量j大于nums[0]时可以在dp[0][j]中放入元素nums[0]
for(j = nums[0]; j <= target; ++j) {
dp[0][j] = nums[0];
}
for(i = 1; i < numsSize; ++i) {
for(j = 1; j <= target; ++j) {
// 若当前背包重量j小于nums[i]则其值等于只考虑0到i-1物品时的值
if(j < nums[i])
dp[i][j] = dp[i - 1][j];
// 否则背包重量等于在背包中放入num[i]/不放入nums[i]的较大值
else
dp[i][j] = MAX(dp[i - 1][j], dp[i - 1][j - nums[i]] + nums[i]);
}
}
// 判断背包重量为target且考虑到所有物品时放入的元素和是否等于target
return dp[numsSize - 1][target] == target;
}
```
滚动数组:
```c
/**
1. dp数组含义dp[j]为背包重量为j时其中可放入元素的最大值
2. 递推公式dp[j] = max(dp[j], dp[j - nums[i]] + nums[i])
3. 初始化均初始化为0即可
4. 遍历顺序:先遍历物品,再后序遍历背包
*/
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
int getSum(int* nums, int numsSize) {
int sum = 0;
int i;
for(i = 0; i < numsSize; ++i) {
sum += nums[i];
}
return sum;
}
bool canPartition(int* nums, int numsSize){
// 求出元素总和
int sum = getSum(nums, numsSize);
// 若元素总和为奇数,则不可能得到两个和相等的子数组
if(sum % 2)
return false;
// 背包容量
int target = sum / 2;
// 初始化dp数组元素均为0
int dp[target + 1];
memset(dp, 0, sizeof(int) * (target + 1));
int i, j;
// 先遍历物品,后遍历背包
for(i = 0; i < numsSize; ++i) {
for(j = target; j >= nums[i]; --j) {
dp[j] = MAX(dp[j], dp[j - nums[i]] + nums[i]);
}
}
// 查看背包容量为target时元素总和是否等于target
return dp[target] == target;
}
```
TypeScript:
> 一维数组,简洁
```typescript
function canPartition(nums: number[]): boolean {
const sum: number = nums.reduce((pre, cur) => pre + cur);
if (sum % 2 === 1) return false;
const bagSize: number = sum / 2;
const goodsNum: number = nums.length;
const dp: number[] = new Array(bagSize + 1).fill(0);
for (let i = 0; i < goodsNum; i++) {
for (let j = bagSize; j >= nums[i]; j--) {
dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);
}
}
return dp[bagSize] === bagSize;
};
```
> 二维数组,易懂
```typescript
function canPartition(nums: number[]): boolean {
/**
weightArr = nums;
valueArr = nums;
bagSize = sum / 2; (sum为nums各元素总和);
按照0-1背包处理
*/
const sum: number = nums.reduce((pre, cur) => pre + cur);
if (sum % 2 === 1) return false;
const bagSize: number = sum / 2;
const weightArr: number[] = nums;
const valueArr: number[] = nums;
const goodsNum: number = weightArr.length;
const dp: number[][] = new Array(goodsNum)
.fill(0)
.map(_ => new Array(bagSize + 1).fill(0));
for (let i = weightArr[0]; i <= bagSize; i++) {
dp[0][i] = valueArr[0];
}
for (let i = 1; i < goodsNum; i++) {
for (let j = 0; j <= bagSize; j++) {
if (j < weightArr[i]) {
dp[i][j] = dp[i - 1][j];
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weightArr[i]] + valueArr[i]);
}
}
}
return dp[goodsNum - 1][bagSize] === bagSize;
};
```
----------------------- -----------------------

View File

@ -318,5 +318,69 @@ impl Solution {
} }
``` ```
Scala:
```scala
object Solution {
// 导包
import scala.collection.mutable
def fourSumCount(nums1: Array[Int], nums2: Array[Int], nums3: Array[Int], nums4: Array[Int]): Int = {
// 定义一个HashMapkey存储值value存储该值出现的次数
val map = new mutable.HashMap[Int, Int]()
// 遍历前两个数组把他们所有可能的情况都记录到map
for (i <- nums1.indices) {
for (j <- nums2.indices) {
val tmp = nums1(i) + nums2(j)
// 如果包含该值则对他的key加1不包含则添加进去
if (map.contains(tmp)) {
map.put(tmp, map.get(tmp).get + 1)
} else {
map.put(tmp, 1)
}
}
}
var res = 0 // 结果变量
// 遍历后两个数组
for (i <- nums3.indices) {
for (j <- nums4.indices) {
val tmp = -(nums3(i) + nums4(j))
// 如果map中存在该值结果就+=value
if (map.contains(tmp)) {
res += map.get(tmp).get
}
}
}
// 返回最终结果可以省略关键字return
res
}
}
C#
```csharp
public int FourSumCount(int[] nums1, int[] nums2, int[] nums3, int[] nums4) {
Dictionary<int, int> dic = new Dictionary<int, int>();
foreach(var i in nums1){
foreach(var j in nums2){
int sum = i + j;
if(dic.ContainsKey(sum)){
dic[sum]++;
}else{
dic.Add(sum, 1);
}
}
}
int res = 0;
foreach(var a in nums3){
foreach(var b in nums4){
int sum = a+b;
if(dic.TryGetValue(-sum, out var result)){
res += result;
}
}
}
return res;
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -323,6 +323,129 @@ const findMaxForm = (strs, m, n) => {
}; };
``` ```
TypeScript
> 滚动数组,二维数组法
```typescript
type BinaryInfo = { numOfZero: number, numOfOne: number };
function findMaxForm(strs: string[], m: number, n: number): number {
const goodsNum: number = strs.length;
const dp: number[][] = new Array(m + 1).fill(0)
.map(_ => new Array(n + 1).fill(0));
for (let i = 0; i < goodsNum; i++) {
const { numOfZero, numOfOne } = countBinary(strs[i]);
for (let j = m; j >= numOfZero; j--) {
for (let k = n; k >= numOfOne; k--) {
dp[j][k] = Math.max(dp[j][k], dp[j - numOfZero][k - numOfOne] + 1);
}
}
}
return dp[m][n];
};
function countBinary(str: string): BinaryInfo {
let numOfZero: number = 0,
numOfOne: number = 0;
for (let s of str) {
if (s === '0') {
numOfZero++;
} else {
numOfOne++;
}
}
return { numOfZero, numOfOne };
}
```
> 传统背包,三维数组法
```typescript
type BinaryInfo = { numOfZero: number, numOfOne: number };
function findMaxForm(strs: string[], m: number, n: number): number {
/**
dp[i][j][k]: 前i个物品中, 背包的0容量为j, 1容量为k, 最多能放的物品数量
*/
const goodsNum: number = strs.length;
const dp: number[][][] = new Array(goodsNum).fill(0)
.map(_ => new Array(m + 1)
.fill(0)
.map(_ => new Array(n + 1).fill(0))
);
const { numOfZero, numOfOne } = countBinary(strs[0]);
for (let i = numOfZero; i <= m; i++) {
for (let j = numOfOne; j <= n; j++) {
dp[0][i][j] = 1;
}
}
for (let i = 1; i < goodsNum; i++) {
const { numOfZero, numOfOne } = countBinary(strs[i]);
for (let j = 0; j <= m; j++) {
for (let k = 0; k <= n; k++) {
if (j < numOfZero || k < numOfOne) {
dp[i][j][k] = dp[i - 1][j][k];
} else {
dp[i][j][k] = Math.max(dp[i - 1][j][k], dp[i - 1][j - numOfZero][k - numOfOne] + 1);
}
}
}
}
return dp[dp.length - 1][m][n];
};
function countBinary(str: string): BinaryInfo {
let numOfZero: number = 0,
numOfOne: number = 0;
for (let s of str) {
if (s === '0') {
numOfZero++;
} else {
numOfOne++;
}
}
return { numOfZero, numOfOne };
}
```
> 回溯法(会超时)
```typescript
function findMaxForm(strs: string[], m: number, n: number): number {
/**
思路暴力枚举strs的所有子集记录符合条件子集的最大长度
*/
let resMax: number = 0;
backTrack(strs, m, n, 0, []);
return resMax;
function backTrack(
strs: string[], m: number, n: number,
startIndex: number, route: string[]
): void {
if (startIndex === strs.length) return;
for (let i = startIndex, length = strs.length; i < length; i++) {
route.push(strs[i]);
if (isValidSubSet(route, m, n)) {
resMax = Math.max(resMax, route.length);
backTrack(strs, m, n, i + 1, route);
}
route.pop();
}
}
};
function isValidSubSet(strs: string[], m: number, n: number): boolean {
let zeroNum: number = 0,
oneNum: number = 0;
strs.forEach(str => {
for (let s of str) {
if (s === '0') {
zeroNum++;
} else {
oneNum++;
}
}
});
return zeroNum <= m && oneNum <= n;
}
```
----------------------- -----------------------

View File

@ -351,6 +351,25 @@ const findTargetSumWays = (nums, target) => {
}; };
``` ```
TypeScript
```typescript
function findTargetSumWays(nums: number[], target: number): number {
const sum: number = nums.reduce((pre, cur) => pre + cur);
if (Math.abs(target) > sum) return 0;
if ((target + sum) % 2 === 1) return 0;
const bagSize: number = (target + sum) / 2;
const dp: number[] = new Array(bagSize + 1).fill(0);
dp[0] = 1;
for (let i = 0; i < nums.length; i++) {
for (let j = bagSize; j >= nums[i]; j--) {
dp[j] += dp[j - nums[i]];
}
}
return dp[bagSize];
};
```
----------------------- -----------------------

View File

@ -186,29 +186,28 @@ class Solution:
Go Go
```Go ```Go
func longestPalindromeSubseq(s string) int { func longestPalindromeSubseq(s string) int {
lenth:=len(s) size := len(s)
dp:=make([][]int,lenth) max := func(a, b int) int {
for i:=0;i<lenth;i++{ if a > b {
for j:=0;j<lenth;j++{ return a
if dp[i]==nil{ }
dp[i]=make([]int,lenth) return b
} }
if i==j{ dp := make([][]int, size)
dp[i][j]=1 for i := 0; i < size; i++ {
dp[i] = make([]int, size)
dp[i][i] = 1
}
for i := size - 1; i >= 0; i-- {
for j := i + 1; j < size; j++ {
if s[i] == s[j] {
dp[i][j] = dp[i+1][j-1] + 2
} else {
dp[i][j] = max(dp[i][j-1], dp[i+1][j])
} }
} }
} }
for i:=lenth-1;i>=0;i--{ return dp[0][size-1]
for j:=i+1;j<lenth;j++{
if s[i]==s[j]{
dp[i][j]=dp[i+1][j-1]+2
}else {
dp[i][j]=max(dp[i+1][j],dp[i][j-1])
}
}
}
return dp[0][lenth-1]
} }
``` ```

View File

@ -274,6 +274,21 @@ const change = (amount, coins) => {
} }
``` ```
TypeScript
```typescript
function change(amount: number, coins: number[]): number {
const dp: number[] = new Array(amount + 1).fill(0);
dp[0] = 1;
for (let i = 0, length = coins.length; i < length; i++) {
for (let j = coins[i]; j <= amount; j++) {
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
};
```
----------------------- -----------------------

View File

@ -347,6 +347,47 @@ public class Solution
} }
} }
``` ```
Scala:
版本一: (正常解法)
```scala
object Solution {
def reverseStr(s: String, k: Int): String = {
val res = s.toCharArray // 转换为Array好处理
for (i <- s.indices by 2 * k) {
// 如果i+k大于了res的长度则需要全部翻转
if (i + k > res.length) {
reverse(res, i, s.length - 1)
} else {
reverse(res, i, i + k - 1)
}
}
new String(res)
}
// 翻转字符串从start到end
def reverse(s: Array[Char], start: Int, end: Int): Unit = {
var (left, right) = (start, end)
while (left < right) {
var tmp = s(left)
s(left) = s(right)
s(right) = tmp
left += 1
right -= 1
}
}
}
```
版本二: 首先利用sliding每隔k个进行分割随后转换为数组再使用zipWithIndex添加每个数组的索引紧接着利用map做变换如果索引%2==0则说明需要翻转否则原封不动最后再转换为String
```scala
object Solution {
def reverseStr(s: String, k: Int): String = {
s.sliding(k, k)
.toArray
.zipWithIndex
.map(v => if (v._2 % 2 == 0) v._1.reverse else v._1)
.mkString
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -338,6 +338,45 @@ const findLengthOfLCIS = (nums) => {
}; };
``` ```
TypeScript
> 动态规划:
```typescript
function findLengthOfLCIS(nums: number[]): number {
/**
dp[i]: 前i个元素以nums[i]结尾,最长连续子序列的长度
*/
const dp: number[] = new Array(nums.length).fill(1);
let resMax: number = 1;
for (let i = 1, length = nums.length; i < length; i++) {
if (nums[i] > nums[i - 1]) {
dp[i] = dp[i - 1] + 1;
}
resMax = Math.max(resMax, dp[i]);
}
return resMax;
};
```
> 贪心:
```typescript
function findLengthOfLCIS(nums: number[]): number {
let resMax: number = 1;
let count: number = 1;
for (let i = 0, length = nums.length; i < length - 1; i++) {
if (nums[i] < nums[i + 1]) {
count++;
} else {
count = 1;
}
resMax = Math.max(resMax, count);
}
return resMax;
};
```

View File

@ -279,7 +279,7 @@ class Solution:
root.right = self.insertIntoBST(root.right, val) root.right = self.insertIntoBST(root.right, val)
# 返回更新后的以当前root为根节点的新树 # 返回更新后的以当前root为根节点的新树
return roo return root
``` ```
**递归法** - 无返回值 **递归法** - 无返回值

View File

@ -612,7 +612,48 @@ public class Solution{
} }
} }
``` ```
**Scala:**
(版本一)左闭右闭区间
```scala
object Solution {
def search(nums: Array[Int], target: Int): Int = {
var left = 0
var right = nums.length - 1
while (left <= right) {
var mid = left + ((right - left) / 2)
if (target == nums(mid)) {
return mid
} else if (target < nums(mid)) {
right = mid - 1
} else {
left = mid + 1
}
}
-1
}
}
```
(版本二)左闭右开区间
```scala
object Solution {
def search(nums: Array[Int], target: Int): Int = {
var left = 0
var right = nums.length
while (left < right) {
val mid = left + (right - left) / 2
if (target == nums(mid)) {
return mid
} else if (target < nums(mid)) {
right = mid
} else {
left = mid + 1
}
}
-1
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -1154,7 +1154,75 @@ class MyLinkedList {
} }
``` ```
Scala:
```scala
class ListNode(_x: Int = 0, _next: ListNode = null) {
var next: ListNode = _next
var x: Int = _x
}
class MyLinkedList() {
var size = 0 // 链表尺寸
var dummy: ListNode = new ListNode(0) // 虚拟头节点
// 获取第index个节点的值
def get(index: Int): Int = {
if (index < 0 || index >= size) {
return -1;
}
var cur = dummy
for (i <- 0 to index) {
cur = cur.next
}
cur.x // 返回cur的值
}
// 在链表最前面插入一个节点
def addAtHead(`val`: Int) {
addAtIndex(0, `val`)
}
// 在链表最后面插入一个节点
def addAtTail(`val`: Int) {
addAtIndex(size, `val`)
}
// 在第index个节点之前插入一个新节点
// 如果index等于链表长度则说明新插入的节点是尾巴
// 如果index等于0则说明新插入的节点是头
// 如果index>链表长度,则说明为空
def addAtIndex(index: Int, `val`: Int) {
if (index > size) {
return
}
var loc = index // 因为参数index是val不可变类型所以需要赋值给一个可变类型
if (index < 0) {
loc = 0
}
size += 1 //链表尺寸+1
var pre = dummy
for (i <- 0 until loc) {
pre = pre.next
}
val node: ListNode = new ListNode(`val`, pre.next)
pre.next = node
}
// 删除第index个节点
def deleteAtIndex(index: Int) {
if (index < 0 || index >= size) {
return
}
size -= 1
var pre = dummy
for (i <- 0 until index) {
pre = pre.next
}
pre.next = pre.next.next
}
}
```
----------------------- -----------------------

View File

@ -200,6 +200,29 @@ const maxProfit = (prices,fee) => {
} }
``` ```
TypeScript
```typescript
function maxProfit(prices: number[], fee: number): number {
/**
dp[i][0]:持有股票
dp[i][1]: 不持有
*/
const length: number = prices.length;
if (length === 0) return 0;
const dp: number[][] = new Array(length).fill(0).map(_ => []);
dp[0][0] = -prices[0];
dp[0][1] = 0;
for (let i = 1; i < length; i++) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
}
return dp[length - 1][1];
};
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -34,7 +34,8 @@
那么单调栈的原理是什么呢为什么时间复杂度是O(n)就可以找到每一个元素的右边第一个比它大的元素位置呢? 那么单调栈的原理是什么呢为什么时间复杂度是O(n)就可以找到每一个元素的右边第一个比它大的元素位置呢?
单调栈的本质是空间换时间,因为在遍历的过程中需要用一个栈来记录右边第一个比当前元素大的元素,优点是只需要遍历一次。
单调栈的本质是空间换时间,因为在遍历的过程中需要用一个栈来记录右边第一个比当前元素高的元素,优点是只需要遍历一次。
在使用单调栈的时候首先要明确如下几点: 在使用单调栈的时候首先要明确如下几点:
@ -192,7 +193,7 @@ class Solution {
否则的话,可以直接入栈。 否则的话,可以直接入栈。
注意,单调栈里 加入的元素是 下标。 注意,单调栈里 加入的元素是 下标。
*/ */
Stack<Integer>stack=new Stack<>(); Deque<Integer> stack=new LinkedList<>();
stack.push(0); stack.push(0);
for(int i=1;i<lens;i++){ for(int i=1;i<lens;i++){
@ -216,7 +217,7 @@ class Solution {
public int[] dailyTemperatures(int[] temperatures) { public int[] dailyTemperatures(int[] temperatures) {
int lens=temperatures.length; int lens=temperatures.length;
int []res=new int[lens]; int []res=new int[lens];
Stack<Integer>stack=new Stack<>(); Deque<Integer> stack=new LinkedList<>();
for(int i=0;i<lens;i++){ for(int i=0;i<lens;i++){
while(!stack.isEmpty()&&temperatures[i]>temperatures[stack.peek()]){ while(!stack.isEmpty()&&temperatures[i]>temperatures[stack.peek()]){

View File

@ -360,7 +360,41 @@ class Solution {
} }
} }
``` ```
Scala:
双指针:
```scala
object Solution {
def sortedSquares(nums: Array[Int]): Array[Int] = {
val res: Array[Int] = new Array[Int](nums.length)
var top = nums.length - 1
var i = 0
var j = nums.length - 1
while (i <= j) {
if (nums(i) * nums(i) <= nums(j) * nums(j)) {
// 当左侧平方小于等于右侧res数组顶部放右侧的平方并且top下移j左移
res(top) = nums(j) * nums(j)
top -= 1
j -= 1
} else {
// 当左侧平方大于右侧res数组顶部放左侧的平方并且top下移i右移
res(top) = nums(i) * nums(i)
top -= 1
i += 1
}
}
res
}
}
```
骚操作(暴力思路):
```scala
object Solution {
def sortedSquares(nums: Array[Int]): Array[Int] = {
nums.map(x=>{x*x}).sortWith(_ < _)
}
}
```
----------------------- -----------------------

View File

@ -418,6 +418,38 @@ char ** commonChars(char ** words, int wordsSize, int* returnSize){
return ret; return ret;
} }
``` ```
Scala:
```scala
object Solution {
def commonChars(words: Array[String]): List[String] = {
// 声明返回结果的不可变List集合因为res要重新赋值所以声明为var
var res = List[String]()
var hash = new Array[Int](26) // 统计字符出现的最小频率
// 统计第一个字符串中字符出现的次数
for (i <- 0 until words(0).length) {
hash(words(0)(i) - 'a') += 1
}
// 统计其他字符串出现的频率
for (i <- 1 until words.length) {
// 统计其他字符出现的频率
var hashOtherStr = new Array[Int](26)
for (j <- 0 until words(i).length) {
hashOtherStr(words(i)(j) - 'a') += 1
}
// 更新hash取26个字母最小出现的频率
for (k <- 0 until 26) {
hash(k) = math.min(hash(k), hashOtherStr(k))
}
}
// 根据hash的结果转换输出的形式
for (i <- 0 until 26) {
for (j <- 0 until hash(i)) {
res = res :+ (i + 'a').toChar.toString
}
}
res
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -209,6 +209,22 @@ var largestSumAfterKNegations = function(nums, k) {
return a + b return a + b
}) })
}; };
// 版本二 (优化: 一次遍历)
var largestSumAfterKNegations = function(nums, k) {
nums.sort((a, b) => Math.abs(b) - Math.abs(a)); // 排序
let sum = 0;
for(let i = 0; i < nums.length; i++) {
if(nums[i] < 0 && k-- > 0) { // 负数取反k 数量足够时)
nums[i] = -nums[i];
}
sum += nums[i]; // 求和
}
if(k % 2 > 0) { // k 有多余的k若消耗完则应为 -1
sum -= 2 * nums[nums.length - 1]; // 减去两倍的最小值(因为之前加过一次)
}
return sum;
};
``` ```

View File

@ -374,6 +374,27 @@ func removeDuplicates(_ s: String) -> String {
return String(stack) return String(stack)
} }
``` ```
Scala:
```scala
object Solution {
import scala.collection.mutable
def removeDuplicates(s: String): String = {
var stack = mutable.Stack[Int]()
var str = "" // 保存最终结果
for (i <- s.indices) {
var tmp = s(i)
// 如果栈非空并且栈顶元素等于当前字符,那么删掉栈顶和字符串最后一个元素
if (!stack.isEmpty && tmp == stack.head) {
str = str.take(str.length - 1)
stack.pop()
} else {
stack.push(tmp)
str += tmp
}
}
str
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -277,5 +277,26 @@ var lastStoneWeightII = function (stones) {
}; };
``` ```
TypeScript
```typescript
function lastStoneWeightII(stones: number[]): number {
const sum: number = stones.reduce((pre, cur) => pre + cur);
const bagSize: number = Math.floor(sum / 2);
const weightArr: number[] = stones;
const valueArr: number[] = stones;
const goodsNum: number = weightArr.length;
const dp: number[] = new Array(bagSize + 1).fill(0);
for (let i = 0; i < goodsNum; i++) {
for (let j = bagSize; j >= weightArr[i]; j--) {
dp[j] = Math.max(dp[j], dp[j - weightArr[i]] + valueArr[i]);
}
}
return sum - dp[bagSize] * 2;
};
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -258,6 +258,13 @@ class TreeNode<T> {
} }
} }
``` ```
Scala:
```scala
class TreeNode(_value: Int = 0, _left: TreeNode = null, _right: TreeNode = null) {
var value: Int = _value
var left: TreeNode = _left
var right: TreeNode = _right
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -591,6 +591,80 @@ function postorderTraversal(root: TreeNode | null): number[] {
return res; return res;
}; };
``` ```
Scala:
```scala
// 前序遍历
object Solution {
import scala.collection.mutable
def preorderTraversal(root: TreeNode): List[Int] = {
val res = mutable.ListBuffer[Int]()
val stack = mutable.Stack[TreeNode]()
if (root != null) stack.push(root)
while (!stack.isEmpty) {
var curNode = stack.top
if (curNode != null) {
stack.pop()
if (curNode.right != null) stack.push(curNode.right)
if (curNode.left != null) stack.push(curNode.left)
stack.push(curNode)
stack.push(null)
} else {
stack.pop()
res.append(stack.pop().value)
}
}
res.toList
}
}
// 中序遍历
object Solution {
import scala.collection.mutable
def inorderTraversal(root: TreeNode): List[Int] = {
val res = mutable.ListBuffer[Int]()
val stack = mutable.Stack[TreeNode]()
if (root != null) stack.push(root)
while (!stack.isEmpty) {
var curNode = stack.top
if (curNode != null) {
stack.pop()
if (curNode.right != null) stack.push(curNode.right)
stack.push(curNode)
stack.push(null)
if (curNode.left != null) stack.push(curNode.left)
} else {
// 等于空的时候好办,弹出这个元素
stack.pop()
res.append(stack.pop().value)
}
}
res.toList
}
}
// 后序遍历
object Solution {
import scala.collection.mutable
def postorderTraversal(root: TreeNode): List[Int] = {
val res = mutable.ListBuffer[Int]()
val stack = mutable.Stack[TreeNode]()
if (root != null) stack.push(root)
while (!stack.isEmpty) {
var curNode = stack.top
if (curNode != null) {
stack.pop()
stack.push(curNode)
stack.push(null)
if (curNode.right != null) stack.push(curNode.right)
if (curNode.left != null) stack.push(curNode.left)
} else {
stack.pop()
res.append(stack.pop().value)
}
}
res.toList
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -568,6 +568,71 @@ func inorderTraversal(_ root: TreeNode?) -> [Int] {
return result return result
} }
``` ```
Scala:
```scala
// 前序遍历(迭代法)
object Solution {
import scala.collection.mutable
def preorderTraversal(root: TreeNode): List[Int] = {
val res = mutable.ListBuffer[Int]()
if (root == null) return res.toList
// 声明一个栈泛型为TreeNode
val stack = mutable.Stack[TreeNode]()
stack.push(root) // 先把根节点压入栈
while (!stack.isEmpty) {
var curNode = stack.pop()
res.append(curNode.value) // 先把这个值压入栈
// 如果当前节点的左右节点不为空,则入栈,先放右节点,再放左节点
if (curNode.right != null) stack.push(curNode.right)
if (curNode.left != null) stack.push(curNode.left)
}
res.toList
}
}
// 中序遍历(迭代法)
object Solution {
import scala.collection.mutable
def inorderTraversal(root: TreeNode): List[Int] = {
val res = mutable.ArrayBuffer[Int]()
if (root == null) return res.toList
val stack = mutable.Stack[TreeNode]()
var curNode = root
// 将左节点都入栈当遍历到最左到空的时候再弹出栈顶元素加入res
// 再把栈顶元素的右节点加进来,继续下一轮遍历
while (curNode != null || !stack.isEmpty) {
if (curNode != null) {
stack.push(curNode)
curNode = curNode.left
} else {
curNode = stack.pop()
res.append(curNode.value)
curNode = curNode.right
}
}
res.toList
}
}
// 后序遍历(迭代法)
object Solution {
import scala.collection.mutable
def postorderTraversal(root: TreeNode): List[Int] = {
val res = mutable.ListBuffer[Int]()
if (root == null) return res.toList
val stack = mutable.Stack[TreeNode]()
stack.push(root)
while (!stack.isEmpty) {
val curNode = stack.pop()
res.append(curNode.value)
// 这次左节点先入栈,右节点再入栈
if(curNode.left != null) stack.push(curNode.left)
if(curNode.right != null) stack.push(curNode.right)
}
// 最后需要翻转List
res.reverse.toList
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -470,5 +470,56 @@ func postorder(_ root: TreeNode?, res: inout [Int]) {
res.append(root!.val) res.append(root!.val)
} }
``` ```
Scala: 前序遍历144.二叉树的前序遍历)
```scala
object Solution {
import scala.collection.mutable.ListBuffer
def preorderTraversal(root: TreeNode): List[Int] = {
val res = ListBuffer[Int]()
def traversal(curNode: TreeNode): Unit = {
if(curNode == null) return
res.append(curNode.value)
traversal(curNode.left)
traversal(curNode.right)
}
traversal(root)
res.toList
}
}
```
中序遍历94. 二叉树的中序遍历)
```scala
object Solution {
import scala.collection.mutable.ListBuffer
def inorderTraversal(root: TreeNode): List[Int] = {
val res = ListBuffer[Int]()
def traversal(curNode: TreeNode): Unit = {
if(curNode == null) return
traversal(curNode.left)
res.append(curNode.value)
traversal(curNode.right)
}
traversal(root)
res.toList
}
}
```
后序遍历145. 二叉树的后序遍历)
```scala
object Solution {
import scala.collection.mutable.ListBuffer
def postorderTraversal(root: TreeNode): List[Int] = {
val res = ListBuffer[Int]()
def traversal(curNode: TreeNode): Unit = {
if (curNode == null) return
traversal(curNode.left)
traversal(curNode.right)
res.append(curNode.value)
}
traversal(root)
res.toList
}
}
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -413,8 +413,62 @@ func replaceSpace(_ s: String) -> String {
} }
``` ```
Scala:
方式一: 双指针
```scala
object Solution {
def replaceSpace(s: String): String = {
var count = 0
s.foreach(c => if (c == ' ') count += 1) // 统计空格的数量
val sOldSize = s.length // 旧数组字符串长度
val sNewSize = s.length + count * 2 // 新数组字符串长度
val res = new Array[Char](sNewSize) // 新数组
var index = sNewSize - 1 // 新数组索引
// 逆序遍历
for (i <- (0 until sOldSize).reverse) {
if (s(i) == ' ') {
res(index) = '0'
index -= 1
res(index) = '2'
index -= 1
res(index) = '%'
} else {
res(index) = s(i)
}
index -= 1
}
res.mkString
}
}
```
方式二: 使用一个集合,遇到空格就添加%20
```scala
object Solution {
import scala.collection.mutable.ListBuffer
def replaceSpace(s: String): String = {
val res: ListBuffer[Char] = ListBuffer[Char]()
for (i <- s.indices) {
if (s(i) == ' ') {
res += '%'
res += '2'
res += '0'
}else{
res += s(i)
}
}
res.mkString
}
}
```
方式三: 使用map
```scala
object Solution {
def replaceSpace(s: String): String = {
s.map(c => if(c == ' ') "%20" else c).mkString
}
}
```
----------------------- -----------------------

View File

@ -291,6 +291,56 @@ func reverseString(_ s: inout [Character], startIndex: Int, endIndex: Int) {
``` ```
### PHP
```php
function reverseLeftWords($s, $n) {
$this->reverse($s,0,$n-1); //反转区间为前n的子串
$this->reverse($s,$n,strlen($s)-1); //反转区间为n到末尾的子串
$this->reverse($s,0,strlen($s)-1); //反转整个字符串
return $s;
}
// 按指定进行翻转 【array、string都可】
function reverse(&$s, $start, $end) {
for ($i = $start, $j = $end; $i < $j; $i++, $j--) {
$tmp = $s[$i];
$s[$i] = $s[$j];
$s[$j] = $tmp;
}
}
```
Scala:
```scala
object Solution {
def reverseLeftWords(s: String, n: Int): String = {
var str = s.toCharArray // 转换为Array
// abcdefg => ba cdefg
reverseString(str, 0, n - 1)
// ba cdefg => ba gfedc
reverseString(str, n, str.length - 1)
// ba gfedc => cdefgab
reverseString(str, 0, str.length - 1)
// 最终返回return关键字可以省略
new String(str)
}
// 翻转字符串
def reverseString(s: Array[Char], start: Int, end: Int): Unit = {
var (left, right) = (start, end)
while (left < right) {
var tmp = s(left)
s(left) = s(right)
s(right) = tmp
left += 1
right -= 1
}
}
}
```

View File

@ -380,58 +380,84 @@ func main() {
### javascript ### javascript
```js ```js
/** function testWeightBagProblem (weight, value, size) {
* // 定义 dp 数组
* @param {Number []} weight const len = weight.length,
* @param {Number []} value dp = Array(len).fill().map(() => Array(size + 1).fill(0));
* @param {Number} size
* @returns
*/
function testWeightBagProblem(weight, value, size) { // 初始化
const len = weight.length, for(let j = weight[0]; j <= size; j++) {
dp = Array.from({length: len}).map( dp[0][j] = value[0];
() => Array(size + 1)) //JavaScript 数组是引用类型
for(let i = 0; i < len; i++) { //初始化最左一列即背包容量为0时的情况
dp[i][0] = 0;
}
for(let j = 1; j < size+1; j++) { //初始化第0行, 只有一件物品的情况
if(weight[0] <= j) {
dp[0][j] = value[0];
} else {
dp[0][j] = 0;
}
}
for(let i = 1; i < len; i++) { //dp[i][j]由其左上方元素推导得出
for(let j = 1; j < size+1; j++) {
if(j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = Math.max(dp[i-1][j], dp[i-1][j - weight[i]] + value[i]);
}
}
return dp[len-1][size] //满足条件的最大值
}
function testWeightBagProblem2 (wight, value, size) {
const len = wight.length,
dp = Array(size + 1).fill(0);
for(let i = 1; i <= len; i++) {
for(let j = size; j >= wight[i - 1]; j--) {
dp[j] = Math.max(dp[j], value[i - 1] + dp[j - wight[i - 1]]);
} }
}
return dp[size];
}
// weight 数组的长度len 就是物品个数
for(let i = 1; i < len; i++) { // 遍历物品
for(let j = 0; j <= size; j++) { // 遍历背包容量
if(j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
console.table(dp)
return dp[len - 1][size];
}
function test () { function test () {
console.log(testWeightBagProblem([1, 3, 4, 5], [15, 20, 30, 55], 6)); console.log(testWeightBagProblem([1, 3, 4, 5], [15, 20, 30, 55], 6));
} }
test(); test();
``` ```
### C
```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#define ARR_SIZE(a) (sizeof((a)) / sizeof((a)[0]))
#define BAG_WEIGHT 4
void backPack(int* weights, int weightSize, int* costs, int costSize, int bagWeight) {
// 开辟dp数组
int dp[weightSize][bagWeight + 1];
memset(dp, 0, sizeof(int) * weightSize * (bagWeight + 1));
int i, j;
// 当背包容量大于物品0的重量时将物品0放入到背包中
for(j = weights[0]; j <= bagWeight; ++j) {
dp[0][j] = costs[0];
}
// 先遍历物品,再遍历重量
for(j = 1; j <= bagWeight; ++j) {
for(i = 1; i < weightSize; ++i) {
// 如果当前背包容量小于物品重量
if(j < weights[i])
// 背包物品的价值等于背包不放置当前物品时的价值
dp[i][j] = dp[i-1][j];
// 若背包当前重量可以放置物品
else
// 背包的价值等于放置该物品或不放置该物品的最大值
dp[i][j] = MAX(dp[i - 1][j], dp[i - 1][j - weights[i]] + costs[i]);
}
}
printf("%d\n", dp[weightSize - 1][bagWeight]);
}
int main(int argc, char* argv[]) {
int weights[] = {1, 3, 4};
int costs[] = {15, 20, 30};
backPack(weights, ARR_SIZE(weights), costs, ARR_SIZE(costs), BAG_WEIGHT);
return 0;
}
```
### TypeScript ### TypeScript
```typescript ```typescript

View File

@ -137,6 +137,8 @@ dp[1] = dp[1 - weight[0]] + value[0] = 15
因为一维dp的写法背包容量一定是要倒序遍历原因上面已经讲了如果遍历背包容量放在上一层那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。 因为一维dp的写法背包容量一定是要倒序遍历原因上面已经讲了如果遍历背包容量放在上一层那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。
倒序遍历的原因是,本质上还是一个对二维数组的遍历,并且右下角的值依赖上一层左上角的值,因此需要保证左边的值仍然是上一层的,从右向左覆盖。
这里如果读不懂就在回想一下dp[j]的定义或者就把两个for循环顺序颠倒一下试试 这里如果读不懂就在回想一下dp[j]的定义或者就把两个for循环顺序颠倒一下试试
**所以一维dp数组的背包在遍历顺序上和二维其实是有很大差异的**,这一点大家一定要注意。 **所以一维dp数组的背包在遍历顺序上和二维其实是有很大差异的**,这一点大家一定要注意。
@ -315,6 +317,64 @@ function test () {
test(); test();
``` ```
### C
```c
#include <stdio.h>
#include <string.h>
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#define ARR_SIZE(arr) ((sizeof((arr))) / sizeof((arr)[0]))
#define BAG_WEIGHT 4
void test_back_pack(int* weights, int weightSize, int* values, int valueSize, int bagWeight) {
int dp[bagWeight + 1];
memset(dp, 0, sizeof(int) * (bagWeight + 1));
int i, j;
// 先遍历物品
for(i = 0; i < weightSize; ++i) {
// 后遍历重量。从后向前遍历
for(j = bagWeight; j >= weights[i]; --j) {
dp[j] = MAX(dp[j], dp[j - weights[i]] + values[i]);
}
}
// 打印最优结果
printf("%d\n", dp[bagWeight]);
}
int main(int argc, char** argv) {
int weights[] = {1, 3, 4};
int values[] = {15, 20, 30};
test_back_pack(weights, ARR_SIZE(weights), values, ARR_SIZE(values), BAG_WEIGHT);
return 0;
}
```
### TypeScript
```typescript
function testWeightBagProblem(
weight: number[],
value: number[],
size: number
): number {
const goodsNum: number = weight.length;
const dp: number[] = new Array(size + 1).fill(0);
for (let i = 0; i < goodsNum; i++) {
for (let j = size; j >= weight[i]; j--) {
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
}
}
return dp[size];
}
const weight = [1, 3, 4];
const value = [15, 20, 30];
const size = 4;
console.log(testWeightBagProblem(weight, value, size));
```
----------------------- -----------------------

View File

@ -334,6 +334,64 @@ func Test_multiplePack(t *testing.T) {
PASS PASS
``` ```
TypeScript
> 版本一(改变数据源):
```typescript
function testMultiPack() {
const bagSize: number = 10;
const weightArr: number[] = [1, 3, 4],
valueArr: number[] = [15, 20, 30],
amountArr: number[] = [2, 3, 2];
for (let i = 0, length = amountArr.length; i < length; i++) {
while (amountArr[i] > 1) {
weightArr.push(weightArr[i]);
valueArr.push(valueArr[i]);
amountArr[i]--;
}
}
const goodsNum: number = weightArr.length;
const dp: number[] = new Array(bagSize + 1).fill(0);
// 遍历物品
for (let i = 0; i < goodsNum; i++) {
// 遍历背包容量
for (let j = bagSize; j >= weightArr[i]; j--) {
dp[j] = Math.max(dp[j], dp[j - weightArr[i]] + valueArr[i]);
}
}
console.log(dp);
}
testMultiPack();
```
> 版本二(改变遍历方式):
```typescript
function testMultiPack() {
const bagSize: number = 10;
const weightArr: number[] = [1, 3, 4],
valueArr: number[] = [15, 20, 30],
amountArr: number[] = [2, 3, 2];
const goodsNum: number = weightArr.length;
const dp: number[] = new Array(bagSize + 1).fill(0);
// 遍历物品
for (let i = 0; i < goodsNum; i++) {
// 遍历物品个数
for (let j = 0; j < amountArr[i]; j++) {
// 遍历背包容量
for (let k = bagSize; k >= weightArr[i]; k--) {
dp[k] = Math.max(dp[k], dp[k - weightArr[i]] + valueArr[i]);
}
}
}
console.log(dp);
}
testMultiPack();
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -340,6 +340,27 @@ function test_completePack2() {
} }
``` ```
TypeScript
```typescript
// 先遍历物品,再遍历背包容量
function test_CompletePack(): void {
const weight: number[] = [1, 3, 4];
const value: number[] = [15, 20, 30];
const bagSize: number = 4;
const dp: number[] = new Array(bagSize + 1).fill(0);
for (let i = 0; i < weight.length; i++) {
for (let j = weight[i]; j <= bagSize; j++) {
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
}
}
console.log(dp);
}
test_CompletePack();
```
----------------------- -----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div> <div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -210,6 +210,13 @@ type ListNode struct {
} }
``` ```
Scala:
```scala
class ListNode(_x: Int = 0, _next: ListNode = null) {
var next: ListNode = _next
var x: Int = _x
}
```
----------------------- -----------------------

View File

@ -317,7 +317,55 @@ ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
} }
``` ```
Scala:
```scala
object Solution {
def getIntersectionNode(headA: ListNode, headB: ListNode): ListNode = {
var lenA = 0 // headA链表的长度
var lenB = 0 // headB链表的长度
var tmp = headA // 临时变量
// 统计headA的长度
while (tmp != null) {
lenA += 1;
tmp = tmp.next
}
// 统计headB的长度
tmp = headB // 临时变量赋值给headB
while (tmp != null) {
lenB += 1
tmp = tmp.next
}
// 因为传递过来的参数是不可变量,所以需要重新定义
var listA = headA
var listB = headB
// 两个链表的长度差
// 如果gap>0lenA>lenBheadA(listA)链表往前移动gap步
// 如果gap<0lenA<lenBheadB(listB)链表往前移动-gap步
var gap = lenA - lenB
if (gap > 0) {
// 因为不可以i-=1所以可以使用for
for (i <- 0 until gap) {
listA = listA.next // 链表headA(listA) 移动
}
} else {
gap = math.abs(gap) // 此刻gap为负值取绝对值
for (i <- 0 until gap) {
listB = listB.next
}
}
// 现在两个链表同时往前走,如果相等则返回
while (listA != null && listB != null) {
if (listA == listB) {
return listA
}
listA = listA.next
listB = listB.next
}
// 如果链表没有相交则返回nullreturn可以省略
null
}
}
```
----------------------- -----------------------