diff --git a/problems/0300.最长上升子序列.md b/problems/0300.最长上升子序列.md index dfdd5125..f68edb5a 100644 --- a/problems/0300.最长上升子序列.md +++ b/problems/0300.最长上升子序列.md @@ -168,6 +168,39 @@ func lengthOfLIS(nums []int ) int { } ``` +```go +// 动态规划求解 +func lengthOfLIS(nums []int) int { + // dp数组的定义 dp[i]表示取第i个元素的时候,表示子序列的长度,其中包括 nums[i] 这个元素 + dp := make([]int, len(nums)) + + // 初始化,所有的元素都应该初始化为1 + for i := range dp { + dp[i] = 1 + } + + ans := dp[0] + for i := 1; i < len(nums); i++ { + for j := 0; j < i; j++ { + if nums[i] > nums[j] { + dp[i] = max(dp[i], dp[j] + 1) + } + } + if dp[i] > ans { + ans = dp[i] + } + } + return ans +} + +func max(x, y int) int { + if x > y { + return x + } + return y +} +``` + Javascript ```javascript const lengthOfLIS = (nums) => { diff --git a/problems/0674.最长连续递增序列.md b/problems/0674.最长连续递增序列.md index e941d242..56e95d97 100644 --- a/problems/0674.最长连续递增序列.md +++ b/problems/0674.最长连续递增序列.md @@ -236,6 +236,45 @@ class Solution: ``` Go: +> 动态规划: +```go +func findLengthOfLCIS(nums []int) int { + if len(nums) == 0 {return 0} + res, count := 1, 1 + for i := 0; i < len(nums)-1; i++ { + if nums[i+1] > nums[i] { + count++ + }else { + count = 1 + } + if count > res { + res = count + } + } + return res +} +``` + +> 贪心算法: +```go +func findLengthOfLCIS(nums []int) int { + if len(nums) == 0 {return 0} + dp := make([]int, len(nums)) + for i := 0; i < len(dp); i++ { + dp[i] = 1 + } + res := 1 + for i := 0; i < len(nums)-1; i++ { + if nums[i+1] > nums[i] { + dp[i+1] = dp[i] + 1 + } + if dp[i+1] > res { + res = dp[i+1] + } + } + return res +} +``` Javascript: diff --git a/problems/0968.监控二叉树.md b/problems/0968.监控二叉树.md index 35c3ccdc..9a510a1b 100644 --- a/problems/0968.监控二叉树.md +++ b/problems/0968.监控二叉树.md @@ -476,7 +476,35 @@ var minCameraCover = function(root) { }; ``` +### TypeScript + +```typescript +function minCameraCover(root: TreeNode | null): number { + /** 0-无覆盖, 1-有摄像头, 2-有覆盖 */ + type statusCode = 0 | 1 | 2; + let resCount: number = 0; + if (recur(root) === 0) resCount++; + return resCount; + function recur(node: TreeNode | null): statusCode { + if (node === null) return 2; + const left: statusCode = recur(node.left), + right: statusCode = recur(node.right); + let resStatus: statusCode = 0; + if (left === 0 || right === 0) { + resStatus = 1; + resCount++; + } else if (left === 1 || right === 1) { + resStatus = 2; + } else { + resStatus = 0; + } + return resStatus; + } +}; +``` + ### C + ```c /* **函数后序遍历二叉树。判断一个结点状态时,根据其左右孩子结点的状态进行判断 diff --git a/problems/二叉树的迭代遍历.md b/problems/二叉树的迭代遍历.md index 8164724b..13ba5f1e 100644 --- a/problems/二叉树的迭代遍历.md +++ b/problems/二叉树的迭代遍历.md @@ -11,9 +11,9 @@ 看完本篇大家可以使用迭代法,再重新解决如下三道leetcode上的题目: -* 144.二叉树的前序遍历 -* 94.二叉树的中序遍历 -* 145.二叉树的后序遍历 +* [144.二叉树的前序遍历](https://leetcode-cn.com/problems/binary-tree-preorder-traversal/) +* [94.二叉树的中序遍历](https://leetcode-cn.com/problems/binary-tree-inorder-traversal/) +* [145.二叉树的后序遍历](https://leetcode-cn.com/problems/binary-tree-postorder-traversal/) 为什么可以用迭代法(非递归的方式)来实现二叉树的前后中序遍历呢? diff --git a/problems/二叉树的递归遍历.md b/problems/二叉树的递归遍历.md index 612f2394..186c39d3 100644 --- a/problems/二叉树的递归遍历.md +++ b/problems/二叉树的递归遍历.md @@ -99,9 +99,9 @@ void traversal(TreeNode* cur, vector& vec) { 此时大家可以做一做leetcode上三道题目,分别是: -* 144.二叉树的前序遍历 -* 145.二叉树的后序遍历 -* 94.二叉树的中序遍历 +* [144.二叉树的前序遍历](https://leetcode-cn.com/problems/binary-tree-preorder-traversal/) +* [145.二叉树的后序遍历](https://leetcode-cn.com/problems/binary-tree-postorder-traversal/) +* [94.二叉树的中序遍历](https://leetcode-cn.com/problems/binary-tree-inorder-traversal/) 可能有同学感觉前后中序遍历的递归太简单了,要打迭代法(非递归),别急,我们明天打迭代法,打个通透! diff --git a/problems/背包理论基础01背包-1.md b/problems/背包理论基础01背包-1.md index 43ad26be..16302b3f 100644 --- a/problems/背包理论基础01背包-1.md +++ b/problems/背包理论基础01背包-1.md @@ -380,28 +380,37 @@ func main() { ### javascript ```js -function testweightbagproblem (wight, value, size) { - const len = wight.length, - dp = array.from({length: len + 1}).map( - () => array(size + 1).fill(0) - ); - - for(let i = 1; i <= len; i++) { - for(let j = 0; j <= size; j++) { - if(wight[i - 1] <= j) { - dp[i][j] = math.max( - dp[i - 1][j], - value[i - 1] + dp[i - 1][j - wight[i - 1]] - ) - } else { - dp[i][j] = dp[i - 1][j]; - } - } - } +/** + * + * @param {Number []} weight + * @param {Number []} value + * @param {Number} size + * @returns + */ -// console.table(dp); +function testWeightBagProblem(weight, value, size) { +const len = weight.length, +dp = Array.from({length: len}).map( +() => Array(size + 1)) //JavaScript 数组是引用类型 +for(let i = 0; i < len; i++) { //初始化最左一列,即背包容量为0时的情况 +dp[i][0] = 0; +} +for(let j = 1; j < size+1; j++) { //初始化第0行, 只有一件物品的情况 +if(weight[0] <= j) { +dp[0][j] = value[0]; +} else { +dp[0][j] = 0; +} +} + +for(let i = 1; i < len; i++) { //dp[i][j]由其左上方元素推导得出 +for(let j = 1; j < size+1; j++) { +if(j < weight[i]) dp[i][j] = dp[i - 1][j]; +else dp[i][j] = Math.max(dp[i-1][j], dp[i-1][j - weight[i]] + value[i]); +} +} - return dp[len][size]; +return dp[len-1][size] //满足条件的最大值 } function testWeightBagProblem2 (wight, value, size) {