Merge branch 'youngyangyang04:master' into master

This commit is contained in:
chujia dang
2022-06-03 15:10:29 +08:00
committed by GitHub
58 changed files with 2028 additions and 170 deletions

View File

@ -274,6 +274,24 @@ class Solution {
}
}
```
C#:
```csharp
public class Solution {
public int[] TwoSum(int[] nums, int target) {
Dictionary<int ,int> dic= new Dictionary<int,int>();
for(int i=0;i<nums.Length;i++){
int imp= target-nums[i];
if(dic.ContainsKey(imp)&&dic[imp]!=i){
return new int[]{i, dic[imp]};
}
if(!dic.ContainsKey(nums[i])){
dic.Add(nums[i],i);
}
}
return new int[]{0, 0};
}
}
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -39,7 +39,7 @@
分为如下几步:
* 首先这里我推荐大家使用虚拟头结点,这样方处理删除实际头结点的逻辑,如果虚拟头结点不清楚,可以看这篇: [链表:听说用虚拟头节点会方便很多?](https://programmercarl.com/0203.移除链表元素.html)
* 首先这里我推荐大家使用虚拟头结点,这样方便处理删除实际头结点的逻辑,如果虚拟头结点不清楚,可以看这篇: [链表:听说用虚拟头节点会方便很多?](https://programmercarl.com/0203.移除链表元素.html)
* 定义fast指针和slow指针初始值为虚拟头结点如图
@ -289,6 +289,28 @@ func removeNthFromEnd(_ head: ListNode?, _ n: Int) -> ListNode? {
return dummyHead.next
}
```
Scala:
```scala
object Solution {
def removeNthFromEnd(head: ListNode, n: Int): ListNode = {
val dummy = new ListNode(-1, head) // 定义虚拟头节点
var fast = head // 快指针从头开始走
var slow = dummy // 慢指针从虚拟头开始头
// 因为参数 n 是不可变量,所以不能使用 while(n>0){n-=1}的方式
for (i <- 0 until n) {
fast = fast.next
}
// 快指针和满指针一起走直到fast走到null
while (fast != null) {
slow = slow.next
fast = fast.next
}
// 删除slow的下一个节点
slow.next = slow.next.next
// 返回虚拟头节点的下一个
dummy.next
}
}
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -311,7 +311,29 @@ func swapPairs(_ head: ListNode?) -> ListNode? {
return dummyHead.next
}
```
Scala:
```scala
// 虚拟头节点
object Solution {
def swapPairs(head: ListNode): ListNode = {
var dummy = new ListNode(0, head) // 虚拟头节点
var pre = dummy
var cur = head
// 当pre的下一个和下下个都不为空才进行两两转换
while (pre.next != null && pre.next.next != null) {
var tmp: ListNode = cur.next.next // 缓存下一次要进行转换的第一个节点
pre.next = cur.next // 步骤一
cur.next.next = cur // 步骤二
cur.next = tmp // 步骤三
// 下面是准备下一轮的交换
pre = cur
cur = tmp
}
// 最终返回dummy虚拟头节点的下一个return可以省略
dummy.next
}
}
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -81,7 +81,7 @@ public:
**双指针法(快慢指针法)在数组和链表的操作中是非常常见的,很多考察数组、链表、字符串等操作的面试题,都使用双指针法。**
都会一一介绍到,本题代码如下:
都会一一介绍到,本题代码如下:
```CPP
// 时间复杂度O(n)
@ -328,6 +328,20 @@ int removeElement(int* nums, int numsSize, int val){
return slow;
}
```
Scala:
```scala
object Solution {
def removeElement(nums: Array[Int], `val`: Int): Int = {
var slow = 0
for (fast <- 0 until nums.length) {
if (`val` != nums(fast)) {
nums(slow) = nums(fast)
slow += 1
}
}
slow
}
}
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -480,7 +480,52 @@ var searchRange = function(nums, target) {
return [-1, -1];
};
```
### Scala
```scala
object Solution {
def searchRange(nums: Array[Int], target: Int): Array[Int] = {
var left = getLeftBorder(nums, target)
var right = getRightBorder(nums, target)
if (left == -2 || right == -2) return Array(-1, -1)
if (right - left > 1) return Array(left + 1, right - 1)
Array(-1, -1)
}
// 寻找左边界
def getLeftBorder(nums: Array[Int], target: Int): Int = {
var leftBorder = -2
var left = 0
var right = nums.length - 1
while (left <= right) {
var mid = left + (right - left) / 2
if (nums(mid) >= target) {
right = mid - 1
leftBorder = right
} else {
left = mid + 1
}
}
leftBorder
}
// 寻找右边界
def getRightBorder(nums: Array[Int], target: Int): Int = {
var rightBorder = -2
var left = 0
var right = nums.length - 1
while (left <= right) {
var mid = left + (right - left) / 2
if (nums(mid) <= target) {
left = mid + 1
rightBorder = left
} else {
right = mid - 1
}
}
rightBorder
}
}
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -316,7 +316,26 @@ func searchInsert(_ nums: [Int], _ target: Int) -> Int {
return right + 1
}
```
### Scala
```scala
object Solution {
def searchInsert(nums: Array[Int], target: Int): Int = {
var left = 0
var right = nums.length - 1
while (left <= right) {
var mid = left + (right - left) / 2
if (target == nums(mid)) {
return mid
} else if (target > nums(mid)) {
left = mid + 1
} else {
right = mid - 1
}
}
right + 1
}
}
```
### PHP

View File

@ -217,18 +217,26 @@ class Solution:
### Go
```Go
func jump(nums []int) int {
dp:=make([]int ,len(nums))
dp[0]=0
dp := make([]int, len(nums))
dp[0] = 0//初始第一格跳跃数一定为0
for i:=1;i<len(nums);i++{
dp[i]=i
for j:=0;j<i;j++{
if nums[j]+j>i{
dp[i]=min(dp[j]+1,dp[i])
}
}
}
return dp[len(nums)-1]
for i := 1; i < len(nums); i++ {
dp[i] = i
for j := 0; j < i; j++ {
if nums[j] + j >= i {//nums[j]为起点,j为往右跳的覆盖范围,这行表示从j能跳到i
dp[i] = min(dp[j] + 1, dp[i])//更新最小能到i的跳跃次数
}
}
}
return dp[len(nums)-1]
}
func min(a, b int) int {
if a < b {
return a
} else {
return b
}
}
```

View File

@ -112,8 +112,8 @@ public:
};
```
* 时间复杂度$O(n\log n)$ 有一个快排
* 空间复杂度$O(1)$我没有算result数组返回值所需容器占的空间
* 时间复杂度O(nlog n) 有一个快排
* 空间复杂度O(n)有一个快排最差情况(倒序)需要n次递归调用因此确实需要O(n)的栈空间
## 总结

View File

@ -130,57 +130,37 @@ Java
```Java
class Solution {
public int[][] generateMatrix(int n) {
int loop = 0; // 控制循环次数
int[][] res = new int[n][n];
int start = 0; // 每次循环的开始点(start, start)
int count = 1; // 定义填充数字
int i, j;
// 循环次数
int loop = n / 2;
// 定义每次循环起始位置
int startX = 0;
int startY = 0;
// 定义偏移量
int offset = 1;
// 定义填充数字
int count = 1;
// 定义中间位置
int mid = n / 2;
while (loop > 0) {
int i = startX;
int j = startY;
while (loop++ < n / 2) { // 判断边界后loop从1开始
// 模拟上侧从左到右
for (; j<startY + n -offset; ++j) {
res[startX][j] = count++;
for (j = start; j < n - loop; j++) {
res[start][j] = count++;
}
// 模拟右侧从上到下
for (; i<startX + n -offset; ++i) {
for (i = start; i < n - loop; i++) {
res[i][j] = count++;
}
// 模拟下侧从右到左
for (; j > startY; j--) {
for (; j >= loop; j--) {
res[i][j] = count++;
}
// 模拟左侧从下到上
for (; i > startX; i--) {
for (; i >= loop; i--) {
res[i][j] = count++;
}
loop--;
startX += 1;
startY += 1;
offset += 2;
start++;
}
if (n % 2 == 1) {
res[mid][mid] = count;
res[start][start] = count;
}
return res;
@ -564,6 +544,57 @@ int** generateMatrix(int n, int* returnSize, int** returnColumnSizes){
return ans;
}
```
Scala:
```scala
object Solution {
def generateMatrix(n: Int): Array[Array[Int]] = {
var res = Array.ofDim[Int](n, n) // 定义一个n*n的二维矩阵
var num = 1 // 标志当前到了哪个数字
var i = 0 // 横坐标
var j = 0 // 竖坐标
while (num <= n * n) {
// 向右当j不越界并且下一个要填的数字是空白时
while (j < n && res(i)(j) == 0) {
res(i)(j) = num // 当前坐标等于num
num += 1 // num++
j += 1 // 竖坐标+1
}
i += 1 // 下移一行
j -= 1 // 左移一列
// 剩下的都同上
// 向下
while (i < n && res(i)(j) == 0) {
res(i)(j) = num
num += 1
i += 1
}
i -= 1
j -= 1
// 向左
while (j >= 0 && res(i)(j) == 0) {
res(i)(j) = num
num += 1
j -= 1
}
i -= 1
j += 1
// 向上
while (i >= 0 && res(i)(j) == 0) {
res(i)(j) = num
num += 1
i -= 1
}
i += 1
j += 1
}
res
}
}
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -199,6 +199,28 @@ var climbStairs = function(n) {
};
```
TypeScript
```typescript
function climbStairs(n: number): number {
const m: number = 2; // 本题m为2
const dp: number[] = new Array(n + 1).fill(0);
dp[0] = 1;
// 遍历背包
for (let i = 1; i <= n; i++) {
// 遍历物品
for (let j = 1; j <= m; j++) {
if (j <= i) {
dp[i] += dp[i - j];
}
}
}
return dp[n];
};
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -27,7 +27,7 @@
也可以直接看我的B站视频[带你学透回溯算法-组合问题对应力扣题目77.组合)](https://www.bilibili.com/video/BV1ti4y1L7cv#reply3733925949)
# 思路
## 思路
本题这是回溯法的经典题目。
@ -232,7 +232,7 @@ void backtracking(参数) {
**对比一下本题的代码,是不是发现有点像!** 所以有了这个模板,就有解题的大体方向,不至于毫无头绪。
# 总结
## 总结
组合问题是回溯法解决的经典问题我们开始的时候给大家列举一个很形象的例子就是n为100k为50的话直接想法就需要50层for循环。
@ -242,7 +242,7 @@ void backtracking(参数) {
接着用回溯法三部曲,逐步分析了函数参数、终止条件和单层搜索的过程。
# 剪枝优化
## 剪枝优化
我们说过,回溯法虽然是暴力搜索,但也有时候可以有点剪枝优化一下的。
@ -324,7 +324,7 @@ public:
};
```
# 剪枝总结
## 剪枝总结
本篇我们准对求组合问题的回溯法代码做了剪枝优化,这个优化如果不画图的话,其实不好理解,也不好讲清楚。
@ -334,10 +334,10 @@ public:
# 其他语言版本
## 其他语言版本
## Java
### Java
```java
class Solution {
List<List<Integer>> result = new ArrayList<>();
@ -366,6 +366,8 @@ class Solution {
}
```
### Python
Python2:
```python
class Solution(object):
@ -395,7 +397,6 @@ class Solution(object):
return result
```
## Python
```python
class Solution:
def combine(self, n: int, k: int) -> List[List[int]]:
@ -432,7 +433,7 @@ class Solution:
```
## javascript
### javascript
剪枝:
```javascript
@ -456,7 +457,7 @@ const combineHelper = (n, k, startIndex) => {
}
```
## TypeScript
### TypeScript
```typescript
function combine(n: number, k: number): number[][] {
@ -479,7 +480,7 @@ function combine(n: number, k: number): number[][] {
## Go
### Go
```Go
var res [][]int
func combine(n int, k int) [][]int {
@ -534,7 +535,7 @@ func backtrack(n,k,start int,track []int){
}
```
## C
### C
```c
int* path;
int pathTop;
@ -642,7 +643,7 @@ int** combine(int n, int k, int* returnSize, int** returnColumnSizes){
}
```
## Swift
### Swift
```swift
func combine(_ n: Int, _ k: Int) -> [[Int]] {

View File

@ -227,7 +227,33 @@ const numTrees =(n) => {
};
```
C:
TypeScript
```typescript
function numTrees(n: number): number {
/**
dp[i]: i个节点对应的种树
dp[0]: -1; 无意义;
dp[1]: 1;
...
dp[i]: 2 * dp[i - 1] +
(dp[1] * dp[i - 2] + dp[2] * dp[i - 3] + ... + dp[i - 2] * dp[1]); 从1加到i-2
*/
const dp: number[] = [];
dp[0] = -1; // 表示无意义
dp[1] = 1;
for (let i = 2; i <= n; i++) {
dp[i] = 2 * dp[i - 1];
for (let j = 1, end = i - 1; j < end; j++) {
dp[i] += dp[j] * dp[end - j];
}
}
return dp[n];
};
```
### C
```c
//开辟dp数组
int *initDP(int n) {

View File

@ -238,7 +238,7 @@ public:
};
```
# 总结
## 总结
这次我们又深度剖析了一道二叉树的“简单题”大家会发现真正的把题目搞清楚其实并不简单leetcode上accept了和真正掌握了还是有距离的。
@ -248,7 +248,7 @@ public:
如果已经做过这道题目的同学,读完文章可以再去看看这道题目,思考一下,会有不一样的发现!
# 相关题目推荐
## 相关题目推荐
这两道题目基本和本题是一样的只要稍加修改就可以AC。

View File

@ -82,6 +82,26 @@ public:
}
};
```
```CPP
# 递归法
class Solution {
public:
void order(TreeNode* cur, vector<vector<int>>& result, int depth)
{
if (cur == nullptr) return;
if (result.size() == depth) result.push_back(vector<int>());
result[depth].push_back(cur->val);
order(cur->left, result, depth + 1);
order(cur->right, result, depth + 1);
}
vector<vector<int>> levelOrder(TreeNode* root) {
vector<vector<int>> result;
int depth = 0;
order(root, result, depth);
return result;
}
};
```
python3代码

View File

@ -377,22 +377,22 @@ class solution {
```java
class solution {
public list<list<integer>> pathsum(treenode root, int targetsum) {
list<list<integer>> res = new arraylist<>();
public List<List<Integer>> pathsum(TreeNode root, int targetsum) {
List<List<Integer>> res = new ArrayList<>();
if (root == null) return res; // 非空判断
list<integer> path = new linkedlist<>();
List<Integer> path = new LinkedList<>();
preorderdfs(root, targetsum, res, path);
return res;
}
public void preorderdfs(treenode root, int targetsum, list<list<integer>> res, list<integer> path) {
public void preorderdfs(TreeNode root, int targetsum, List<List<Integer>> res, List<Integer> path) {
path.add(root.val);
// 遇到了叶子节点
if (root.left == null && root.right == null) {
// 找到了和为 targetsum 的路径
if (targetsum - root.val == 0) {
res.add(new arraylist<>(path));
res.add(new ArrayList<>(path));
}
return; // 如果和不为 targetsum返回
}
@ -1006,6 +1006,126 @@ func traversal(_ cur: TreeNode?, count: Int) {
}
```
## C
> 0112.路径总和
递归法:
```c
bool hasPathSum(struct TreeNode* root, int targetSum){
// 递归结束条件若当前节点不存在返回false
if(!root)
return false;
// 若当前节点为叶子节点且targetSum-root的值为0。当前路径上的节点值的和满足条件返回true
if(!root->right && !root->left && targetSum == root->val)
return true;
// 查看左子树和右子树的所有节点是否满足条件
return hasPathSum(root->right, targetSum - root->val) || hasPathSum(root->left, targetSum - root->val);
}
```
迭代法:
```c
// 存储一个节点以及当前的和
struct Pair {
struct TreeNode* node;
int sum;
};
bool hasPathSum(struct TreeNode* root, int targetSum){
struct Pair stack[1000];
int stackTop = 0;
// 若root存在则将节点和值封装成一个pair入栈
if(root) {
struct Pair newPair = {root, root->val};
stack[stackTop++] = newPair;
}
// 当栈不为空时
while(stackTop) {
// 出栈栈顶元素
struct Pair topPair = stack[--stackTop];
// 若栈顶元素为叶子节点且和为targetSum时返回true
if(!topPair.node->left && !topPair.node->right && topPair.sum == targetSum)
return true;
// 若当前栈顶节点有左右孩子,计算和并入栈
if(topPair.node->left) {
struct Pair newPair = {topPair.node->left, topPair.sum + topPair.node->left->val};
stack[stackTop++] = newPair;
}
if(topPair.node->right) {
struct Pair newPair = {topPair.node->right, topPair.sum + topPair.node->right->val};
stack[stackTop++] = newPair;
}
}
return false;
}
```
> 0113.路径总和 II
```c
int** ret;
int* path;
int* colSize;
int retTop;
int pathTop;
void traversal(const struct TreeNode* const node, int count) {
// 若当前节点为叶子节点
if(!node->right && !node->left) {
// 若当前path上的节点值总和等于targetSum。
if(count == 0) {
// 复制当前path
int *curPath = (int*)malloc(sizeof(int) * pathTop);
memcpy(curPath, path, sizeof(int) * pathTop);
// 记录当前path的长度为pathTop
colSize[retTop] = pathTop;
// 将当前path加入到ret数组中
ret[retTop++] = curPath;
}
return;
}
// 若节点有左/右孩子
if(node->left) {
// 将左孩子的值加入path中
path[pathTop++] = node->left->val;
traversal(node->left, count - node->left->val);
// 回溯
pathTop--;
}
if(node->right) {
// 将右孩子的值加入path中
path[pathTop++] = node->right->val;
traversal(node->right, count - node->right->val);
// 回溯
--pathTop;
}
}
int** pathSum(struct TreeNode* root, int targetSum, int* returnSize, int** returnColumnSizes){
// 初始化数组
ret = (int**)malloc(sizeof(int*) * 1000);
path = (int*)malloc(sizeof(int*) * 1000);
colSize = (int*)malloc(sizeof(int) * 1000);
retTop = pathTop = 0;
*returnSize = 0;
// 若根节点不存在返回空的ret
if(!root)
return ret;
// 将根节点加入到path中
path[pathTop++] = root->val;
traversal(root, targetSum - root->val);
// 设置返回ret数组大小以及其中每个一维数组元素的长度
*returnSize = retTop;
*returnColumnSizes = colSize;
return ret;
}
```
-----------------------

View File

@ -426,6 +426,46 @@ var maxProfit = function(prices) {
};
```
TypeScript
> 贪心法
```typescript
function maxProfit(prices: number[]): number {
if (prices.length === 0) return 0;
let buy: number = prices[0];
let profitMax: number = 0;
for (let i = 1, length = prices.length; i < length; i++) {
profitMax = Math.max(profitMax, prices[i] - buy);
buy = Math.min(prices[i], buy);
}
return profitMax;
};
```
> 动态规划
```typescript
function maxProfit(prices: number[]): number {
/**
dp[i][0]: 第i天持有股票的最大现金
dp[i][1]: 第i天不持有股票的最大现金
*/
const length = prices.length;
if (length === 0) return 0;
const dp: number[][] = [];
dp[0] = [-prices[0], 0];
for (let i = 1; i < length; i++) {
dp[i] = [];
dp[i][0] = Math.max(dp[i - 1][0], -prices[i]);
dp[i][1] = Math.max(dp[i - 1][0] + prices[i], dp[i - 1][1]);
}
return dp[length - 1][1];
};
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -295,6 +295,42 @@ const maxProfit = (prices) => {
}
```
TypeScript
> 动态规划
```typescript
function maxProfit(prices: number[]): number {
/**
dp[i][0]: 第i天持有股票
dp[i][1]: 第i天不持有股票
*/
const length: number = prices.length;
if (length === 0) return 0;
const dp: number[][] = new Array(length).fill(0).map(_ => []);
dp[0] = [-prices[0], 0];
for (let i = 1; i < length; i++) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
}
return dp[length - 1][1];
};
```
> 贪心法
```typescript
function maxProfit(prices: number[]): number {
let resProfit: number = 0;
for (let i = 1, length = prices.length; i < length; i++) {
if (prices[i] > prices[i - 1]) {
resProfit += prices[i] - prices[i - 1];
}
}
return resProfit;
};
```
-----------------------

View File

@ -352,6 +352,36 @@ const maxProfit = prices => {
};
```
TypeScript
> 版本一
```typescript
function maxProfit(prices: number[]): number {
/**
dp[i][0]: 无操作;
dp[i][1]: 第一次买入;
dp[i][2]: 第一次卖出;
dp[i][3]: 第二次买入;
dp[i][4]: 第二次卖出;
*/
const length: number = prices.length;
if (length === 0) return 0;
const dp: number[][] = new Array(length).fill(0)
.map(_ => new Array(5).fill(0));
dp[0][1] = -prices[0];
dp[0][3] = -prices[0];
for (let i = 1; i < length; i++) {
dp[i][0] = dp[i - 1][0];
dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);
dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
}
return Math.max(dp[length - 1][2], dp[length - 1][4]);
};
```
Go:
> 版本一:

View File

@ -345,6 +345,48 @@ const wordBreak = (s, wordDict) => {
}
```
TypeScript
> 动态规划
```typescript
function wordBreak(s: string, wordDict: string[]): boolean {
const dp: boolean[] = new Array(s.length + 1).fill(false);
dp[0] = true;
for (let i = 1; i <= s.length; i++) {
for (let j = 0; j < i; j++) {
const tempStr: string = s.slice(j, i);
if (wordDict.includes(tempStr) && dp[j] === true) {
dp[i] = true;
break;
}
}
}
return dp[s.length];
};
```
> 记忆化回溯
```typescript
function wordBreak(s: string, wordDict: string[]): boolean {
// 只需要记忆结果为false的情况
const memory: boolean[] = [];
return backTracking(s, wordDict, 0, memory);
function backTracking(s: string, wordDict: string[], startIndex: number, memory: boolean[]): boolean {
if (startIndex >= s.length) return true;
if (memory[startIndex] === false) return false;
for (let i = startIndex + 1, length = s.length; i <= length; i++) {
const str: string = s.slice(startIndex, i);
if (wordDict.includes(str) && backTracking(s, wordDict, i, memory))
return true;
}
memory[startIndex] = false;
return false;
}
};
```
-----------------------

View File

@ -370,7 +370,31 @@ ListNode *detectCycle(ListNode *head) {
}
```
Scala:
```scala
object Solution {
def detectCycle(head: ListNode): ListNode = {
var fast = head // 快指针
var slow = head // 慢指针
while (fast != null && fast.next != null) {
fast = fast.next.next // 快指针一次走两步
slow = slow.next // 慢指针一次走一步
// 如果相遇fast快指针回到头
if (fast == slow) {
fast = head
// 两个指针一步一步的走,第一次相遇的节点必是入环节点
while (fast != slow) {
fast = fast.next
slow = slow.next
}
return fast
}
}
// 如果fast指向空值必然无环返回null
null
}
}
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -136,19 +136,19 @@ java:
class Solution {
public int evalRPN(String[] tokens) {
Deque<Integer> stack = new LinkedList();
for (int i = 0; i < tokens.length; ++i) {
if ("+".equals(tokens[i])) { // leetcode 内置jdk的问题不能使用==判断字符串是否相等
for (String s : tokens) {
if ("+".equals(s)) { // leetcode 内置jdk的问题不能使用==判断字符串是否相等
stack.push(stack.pop() + stack.pop()); // 注意 - 和/ 需要特殊处理
} else if ("-".equals(tokens[i])) {
} else if ("-".equals(s)) {
stack.push(-stack.pop() + stack.pop());
} else if ("*".equals(tokens[i])) {
} else if ("*".equals(s)) {
stack.push(stack.pop() * stack.pop());
} else if ("/".equals(tokens[i])) {
} else if ("/".equals(s)) {
int temp1 = stack.pop();
int temp2 = stack.pop();
stack.push(temp2 / temp1);
} else {
stack.push(Integer.valueOf(tokens[i]));
stack.push(Integer.valueOf(s));
}
}
return stack.pop();

View File

@ -409,5 +409,27 @@ var maxProfit = function(k, prices) {
};
```
TypeScript
```typescript
function maxProfit(k: number, prices: number[]): number {
const length: number = prices.length;
if (length === 0) return 0;
const dp: number[][] = new Array(length).fill(0)
.map(_ => new Array(k * 2 + 1).fill(0));
for (let i = 1; i <= k; i++) {
dp[0][i * 2 - 1] = -prices[0];
}
for (let i = 1; i < length; i++) {
for (let j = 1; j < 2 * k + 1; j++) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - 1] + Math.pow(-1, j) * prices[i]);
}
}
return dp[length - 1][2 * k];
};
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -189,6 +189,29 @@ const rob = nums => {
};
```
TypeScript
```typescript
function rob(nums: number[]): number {
/**
dp[i]: 前i个房屋能偷到的最大金额
dp[0]: nums[0];
dp[1]: max(nums[0], nums[1]);
...
dp[i]: max(dp[i-1], dp[i-2]+nums[i]);
*/
const length: number = nums.length;
if (length === 1) return nums[0];
const dp: number[] = [];
dp[0] = nums[0];
dp[1] = Math.max(nums[0], nums[1]);
for (let i = 2; i < length; i++) {
dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
}
return dp[length - 1];
};
```

View File

@ -385,5 +385,61 @@ bool isHappy(int n){
return bHappy;
}
```
Scala:
```scala
object Solution {
// 引入mutable
import scala.collection.mutable
def isHappy(n: Int): Boolean = {
// 存放每次计算后的结果
val set: mutable.HashSet[Int] = new mutable.HashSet[Int]()
var tmp = n // 因为形参是不可变量,所以需要找到一个临时变量
// 开始进入循环
while (true) {
val sum = getSum(tmp) // 获取这个数每个值的平方和
if (sum == 1) return true // 如果最终等于 1则返回true
// 如果set里面已经有这个值了说明进入无限循环可以返回false否则添加这个值到set
if (set.contains(sum)) return false
else set.add(sum)
tmp = sum
}
// 最终需要返回值直接返回个false
false
}
def getSum(n: Int): Int = {
var sum = 0
var tmp = n
while (tmp != 0) {
sum += (tmp % 10) * (tmp % 10)
tmp = tmp / 10
}
sum
}
C#
```csharp
public class Solution {
private int getSum(int n) {
int sum = 0;
//每位数的换算
while (n > 0) {
sum += (n % 10) * (n % 10);
n /= 10;
}
return sum;
}
public bool IsHappy(int n) {
HashSet <int> set = new HashSet<int>();
while(n != 1 && !set.Contains(n)) { //判断避免循环
set.Add(n);
n = getSum(n);
}
return n == 1;
}
}
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -478,6 +478,36 @@ impl Solution {
}
}
```
Scala:
```scala
/**
* Definition for singly-linked list.
* class ListNode(_x: Int = 0, _next: ListNode = null) {
* var next: ListNode = _next
* var x: Int = _x
* }
*/
object Solution {
def removeElements(head: ListNode, `val`: Int): ListNode = {
if (head == null) return head
var dummy = new ListNode(-1, head) // 定义虚拟头节点
var cur = head // cur 表示当前节点
var pre = dummy // pre 表示cur前一个节点
while (cur != null) {
if (cur.x == `val`) {
// 相等就删除那么cur的前一个节点pre执行cur的下一个
pre.next = cur.next
} else {
// 不相等pre就等于当前cur节点
pre = cur
}
// 向下迭代
cur = cur.next
}
// 最终返回dummy的下一个就是链表的头
dummy.next
}
}
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -496,6 +496,40 @@ struct ListNode* reverseList(struct ListNode* head){
return reverse(NULL, head);
}
```
Scala:
双指针法:
```scala
object Solution {
def reverseList(head: ListNode): ListNode = {
var pre: ListNode = null
var cur = head
while (cur != null) {
var tmp = cur.next
cur.next = pre
pre = cur
cur = tmp
}
pre
}
}
```
递归法:
```scala
object Solution {
def reverseList(head: ListNode): ListNode = {
reverse(null, head)
}
def reverse(pre: ListNode, cur: ListNode): ListNode = {
if (cur == null) {
return pre // 如果当前cur为空则返回pre
}
val tmp: ListNode = cur.next
cur.next = pre
reverse(cur, tmp) // 此时cur成为前一个节点tmp是当前节点
}
}
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -400,6 +400,54 @@ class Solution {
}
}
```
Scala:
滑动窗口:
```scala
object Solution {
def minSubArrayLen(target: Int, nums: Array[Int]): Int = {
var result = Int.MaxValue // 返回结果,默认最大值
var left = 0 // 慢指针当sum>=target向右移动
var sum = 0 // 窗口值的总和
for (right <- 0 until nums.length) {
sum += nums(right)
while (sum >= target) {
result = math.min(result, right - left + 1) // 产生新结果
sum -= nums(left) // 左指针移动,窗口总和减去左指针的值
left += 1 // 左指针向右移动
}
}
// 相当于三元运算符return关键字可以省略
if (result == Int.MaxValue) 0 else result
}
}
```
暴力解法:
```scala
object Solution {
def minSubArrayLen(target: Int, nums: Array[Int]): Int = {
import scala.util.control.Breaks
var res = Int.MaxValue
var subLength = 0
for (i <- 0 until nums.length) {
var sum = 0
Breaks.breakable(
for (j <- i until nums.length) {
sum += nums(j)
if (sum >= target) {
subLength = j - i + 1
res = math.min(subLength, res)
Breaks.break()
}
}
)
}
// 相当于三元运算符
if (res == Int.MaxValue) 0 else res
}
}
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -165,7 +165,30 @@ const robRange = (nums, start, end) => {
return dp[end]
}
```
TypeScript
```typescript
function rob(nums: number[]): number {
const length: number = nums.length;
if (length === 0) return 0;
if (length === 1) return nums[0];
return Math.max(robRange(nums, 0, length - 2),
robRange(nums, 1, length - 1));
};
function robRange(nums: number[], start: number, end: number): number {
if (start === end) return nums[start];
const dp: number[] = [];
dp[start] = nums[start];
dp[start + 1] = Math.max(nums[start], nums[start + 1]);
for (let i = start + 2; i <= end; i++) {
dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
}
return dp[end];
}
```
Go
```go
// 打家劫舍Ⅱ 动态规划
// 时间复杂度O(n) 空间复杂度O(n)

View File

@ -307,6 +307,52 @@ impl Solution {
}
}
```
Scala:
```scala
object Solution {
def isAnagram(s: String, t: String): Boolean = {
// 如果两个字符串的长度不等直接返回false
if (s.length != t.length) return false
val record = new Array[Int](26) // 记录每个单词出现了多少次
// 遍历字符串对于s字符串单词对应的记录+=1t字符串对应的记录-=1
for (i <- 0 until s.length) {
record(s(i) - 97) += 1
record(t(i) - 97) -= 1
}
// 如果不等于则直接返回false
for (i <- 0 until 26) {
if (record(i) != 0) {
return false
}
}
// 如果前面不返回false说明匹配成功返回truereturn可以省略
true
}
}
```
C#
```csharp
public bool IsAnagram(string s, string t) {
int sl=s.Length,tl=t.Length;
if(sl!=tl) return false;
int[] a = new int[26];
for(int i = 0; i < sl; i++){
a[s[i] - 'a']++;
a[t[i] - 'a']--;
}
foreach (int i in a)
{
if (i != 0)
return false;
}
return true;
}
```
## 相关题目
* 383.赎金信

View File

@ -355,5 +355,24 @@ var numSquares2 = function(n) {
};
```
TypeScript
```typescript
function numSquares(n: number): number {
const goodsNum: number = Math.floor(Math.sqrt(n));
const dp: number[] = new Array(n + 1).fill(Infinity);
dp[0] = 0;
for (let i = 1; i <= goodsNum; i++) {
const tempVal: number = i * i;
for (let j = tempVal; j <= n; j++) {
dp[j] = Math.min(dp[j], dp[j - tempVal] + 1);
}
}
return dp[n];
};
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -325,6 +325,66 @@ const maxProfit = (prices) => {
};
```
TypeScript
> 版本一,与本文思路一致
```typescript
function maxProfit(prices: number[]): number {
/**
dp[i][0]: 持股状态;
dp[i][1]: 无股状态,当天为非冷冻期;
dp[i][2]: 无股状态,当天卖出;
dp[i][3]: 无股状态,当天为冷冻期;
*/
const length: number = prices.length;
const dp: number[][] = new Array(length).fill(0).map(_ => []);
dp[0][0] = -prices[0];
dp[0][1] = dp[0][2] = dp[0][3] = 0;
for (let i = 1; i < length; i++) {
dp[i][0] = Math.max(
dp[i - 1][0],
Math.max(dp[i - 1][1], dp[i - 1][3]) - prices[i]
);
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][3]);
dp[i][2] = dp[i - 1][0] + prices[i];
dp[i][3] = dp[i - 1][2];
}
const lastEl: number[] = dp[length - 1];
return Math.max(lastEl[1], lastEl[2], lastEl[3]);
};
```
> 版本二,状态定义略有不同,可以帮助理解
```typescript
function maxProfit(prices: number[]): number {
/**
dp[i][0]: 持股状态,当天买入;
dp[i][1]: 持股状态,当天未买入;
dp[i][2]: 无股状态,当天卖出;
dp[i][3]: 无股状态,当天未卖出;
买入有冷冻期限制,其实就是状态[0]只能由前一天的状态[3]得到;
如果卖出有冷冻期限制,其实就是[2]由[1]得到。
*/
const length: number = prices.length;
const dp: number[][] = new Array(length).fill(0).map(_ => []);
dp[0][0] = -prices[0];
dp[0][1] = -Infinity;
dp[0][2] = dp[0][3] = 0;
for (let i = 1; i < length; i++) {
dp[i][0] = dp[i - 1][3] - prices[i];
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0]);
dp[i][2] = Math.max(dp[i - 1][0], dp[i - 1][1]) + prices[i];
dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2]);
}
return Math.max(dp[length - 1][2], dp[length - 1][3]);
};
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -340,7 +340,21 @@ const coinChange = (coins, amount) => {
}
```
TypeScript
```typescript
function coinChange(coins: number[], amount: number): number {
const dp: number[] = new Array(amount + 1).fill(Infinity);
dp[0] = 0;
for (let i = 0; i < coins.length; i++) {
for (let j = coins[i]; j <= amount; j++) {
if (dp[j - coins[i]] === Infinity) continue;
dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);
}
}
return dp[amount] === Infinity ? -1 : dp[amount];
};
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -429,7 +429,50 @@ const rob = root => {
};
```
### TypeScript
> 记忆化后序遍历
```typescript
const memory: Map<TreeNode, number> = new Map();
function rob(root: TreeNode | null): number {
if (root === null) return 0;
if (memory.has(root)) return memory.get(root);
// 不取当前节点
const res1: number = rob(root.left) + rob(root.right);
// 取当前节点
let res2: number = root.val;
if (root.left !== null) res2 += rob(root.left.left) + rob(root.left.right);
if (root.right !== null) res2 += rob(root.right.left) + rob(root.right.right);
const res: number = Math.max(res1, res2);
memory.set(root, res);
return res;
};
```
> 状态标记化后序遍历
```typescript
function rob(root: TreeNode | null): number {
return Math.max(...robNode(root));
};
// [0]-不偷当前节点能获得的最大金额; [1]-偷~~
type MaxValueArr = [number, number];
function robNode(node: TreeNode | null): MaxValueArr {
if (node === null) return [0, 0];
const leftArr: MaxValueArr = robNode(node.left);
const rightArr: MaxValueArr = robNode(node.right);
// 不偷
const val1: number = Math.max(leftArr[0], leftArr[1]) +
Math.max(rightArr[0], rightArr[1]);
// 偷
const val2: number = leftArr[0] + rightArr[0] + node.val;
return [val1, val2];
}
```
### Go
```go
// 打家劫舍Ⅲ 动态规划
// 时间复杂度O(n) 空间复杂度O(logn)

View File

@ -274,7 +274,33 @@ var integerBreak = function(n) {
};
```
C:
### TypeScript
```typescript
function integerBreak(n: number): number {
/**
dp[i]: i对应的最大乘积
dp[2]: 1;
...
dp[i]: max(
1 * dp[i - 1], 1 * (i - 1),
2 * dp[i - 2], 2 * (i - 2),
..., (i - 2) * dp[2], (i - 2) * 2
);
*/
const dp: number[] = new Array(n + 1).fill(0);
dp[2] = 1;
for (let i = 3; i <= n; i++) {
for (let j = 1; j <= i - 2; j++) {
dp[i] = Math.max(dp[i], j * dp[i - j], j * (i - j));
}
}
return dp[n];
};
```
### C
```c
//初始化DP数组
int *initDP(int num) {

View File

@ -313,6 +313,69 @@ int* intersection1(int* nums1, int nums1Size, int* nums2, int nums2Size, int* re
}
```
Scala:
正常解法:
```scala
object Solution {
def intersection(nums1: Array[Int], nums2: Array[Int]): Array[Int] = {
// 导入mutable
import scala.collection.mutable
// 临时Set用于记录数组1出现的每个元素
val tmpSet: mutable.HashSet[Int] = new mutable.HashSet[Int]()
// 结果Set存储最终结果
val resSet: mutable.HashSet[Int] = new mutable.HashSet[Int]()
// 遍历nums1把每个元素添加到tmpSet
nums1.foreach(tmpSet.add(_))
// 遍历nums2如果在tmpSet存在就添加到resSet
nums2.foreach(elem => {
if (tmpSet.contains(elem)) {
resSet.add(elem)
}
})
// 将结果转换为Array返回return可以省略
resSet.toArray
}
}
```
骚操作1:
```scala
object Solution {
def intersection(nums1: Array[Int], nums2: Array[Int]): Array[Int] = {
// 先转为Set然后取交集最后转换为Array
(nums1.toSet).intersect(nums2.toSet).toArray
}
}
```
骚操作2:
```scala
object Solution {
def intersection(nums1: Array[Int], nums2: Array[Int]): Array[Int] = {
// distinct去重然后取交集
(nums1.distinct).intersect(nums2.distinct)
}
}
C#:
```csharp
public int[] Intersection(int[] nums1, int[] nums2) {
if(nums1==null||nums1.Length==0||nums2==null||nums1.Length==0)
return new int[0]; //注意数组条件
HashSet<int> one = Insert(nums1);
HashSet<int> two = Insert(nums2);
one.IntersectWith(two);
return one.ToArray();
}
public HashSet<int> Insert(int[] nums){
HashSet<int> one = new HashSet<int>();
foreach(int num in nums){
one.Add(num);
}
return one;
}
```
## 相关题目
* 350.两个数组的交集 II

View File

@ -221,7 +221,27 @@ const combinationSum4 = (nums, target) => {
};
```
TypeScript
```typescript
function combinationSum4(nums: number[], target: number): number {
const dp: number[] = new Array(target + 1).fill(0);
dp[0] = 1;
// 遍历背包
for (let i = 1; i <= target; i++) {
// 遍历物品
for (let j = 0, length = nums.length; j < length; j++) {
if (i >= nums[j]) {
dp[i] += dp[i - nums[j]];
}
}
}
return dp[target];
};
```
Rust
```Rust
impl Solution {
pub fn combination_sum4(nums: Vec<i32>, target: i32) -> i32 {

View File

@ -363,5 +363,22 @@ impl Solution {
}
```
C#
```csharp
public bool CanConstruct(string ransomNote, string magazine) {
if(ransomNote.Length > magazine.Length) return false;
int[] letters = new int[26];
foreach(char c in magazine){
letters[c-'a']++;
}
foreach(char c in ransomNote){
letters[c-'a']--;
if(letters[c-'a']<0){
return false;
}
}
return true;
}
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -417,6 +417,163 @@ var canPartition = function(nums) {
```
C:
二维dp
```c
/**
1. dp数组含义dp[i][j]为背包重量为j时从[0-i]元素和最大值
2. 递推公式dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - nums[i]] + nums[i])
3. 初始化dp[i][0]初始化为0。因为背包重量为0时不可能放入元素。dp[0][j] = nums[0]当j >= nums[0] && j < target时
4. 遍历顺序:先遍历物品,再遍历背包
*/
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
int getSum(int* nums, int numsSize) {
int sum = 0;
int i;
for(i = 0; i < numsSize; ++i) {
sum += nums[i];
}
return sum;
}
bool canPartition(int* nums, int numsSize){
// 求出元素总和
int sum = getSum(nums, numsSize);
// 若元素总和为奇数,则不可能得到两个和相等的子数组
if(sum % 2)
return false;
// 若子数组的和等于target则nums可以被分割
int target = sum / 2;
// 初始化dp数组
int dp[numsSize][target + 1];
// dp[j][0]都应被设置为0。因为当背包重量为0时不可放入元素
memset(dp, 0, sizeof(int) * numsSize * (target + 1));
int i, j;
// 当背包重量j大于nums[0]时可以在dp[0][j]中放入元素nums[0]
for(j = nums[0]; j <= target; ++j) {
dp[0][j] = nums[0];
}
for(i = 1; i < numsSize; ++i) {
for(j = 1; j <= target; ++j) {
// 若当前背包重量j小于nums[i]则其值等于只考虑0到i-1物品时的值
if(j < nums[i])
dp[i][j] = dp[i - 1][j];
// 否则背包重量等于在背包中放入num[i]/不放入nums[i]的较大值
else
dp[i][j] = MAX(dp[i - 1][j], dp[i - 1][j - nums[i]] + nums[i]);
}
}
// 判断背包重量为target且考虑到所有物品时放入的元素和是否等于target
return dp[numsSize - 1][target] == target;
}
```
滚动数组:
```c
/**
1. dp数组含义dp[j]为背包重量为j时其中可放入元素的最大值
2. 递推公式dp[j] = max(dp[j], dp[j - nums[i]] + nums[i])
3. 初始化均初始化为0即可
4. 遍历顺序:先遍历物品,再后序遍历背包
*/
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
int getSum(int* nums, int numsSize) {
int sum = 0;
int i;
for(i = 0; i < numsSize; ++i) {
sum += nums[i];
}
return sum;
}
bool canPartition(int* nums, int numsSize){
// 求出元素总和
int sum = getSum(nums, numsSize);
// 若元素总和为奇数,则不可能得到两个和相等的子数组
if(sum % 2)
return false;
// 背包容量
int target = sum / 2;
// 初始化dp数组元素均为0
int dp[target + 1];
memset(dp, 0, sizeof(int) * (target + 1));
int i, j;
// 先遍历物品,后遍历背包
for(i = 0; i < numsSize; ++i) {
for(j = target; j >= nums[i]; --j) {
dp[j] = MAX(dp[j], dp[j - nums[i]] + nums[i]);
}
}
// 查看背包容量为target时元素总和是否等于target
return dp[target] == target;
}
```
TypeScript:
> 一维数组,简洁
```typescript
function canPartition(nums: number[]): boolean {
const sum: number = nums.reduce((pre, cur) => pre + cur);
if (sum % 2 === 1) return false;
const bagSize: number = sum / 2;
const goodsNum: number = nums.length;
const dp: number[] = new Array(bagSize + 1).fill(0);
for (let i = 0; i < goodsNum; i++) {
for (let j = bagSize; j >= nums[i]; j--) {
dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);
}
}
return dp[bagSize] === bagSize;
};
```
> 二维数组,易懂
```typescript
function canPartition(nums: number[]): boolean {
/**
weightArr = nums;
valueArr = nums;
bagSize = sum / 2; (sum为nums各元素总和);
按照0-1背包处理
*/
const sum: number = nums.reduce((pre, cur) => pre + cur);
if (sum % 2 === 1) return false;
const bagSize: number = sum / 2;
const weightArr: number[] = nums;
const valueArr: number[] = nums;
const goodsNum: number = weightArr.length;
const dp: number[][] = new Array(goodsNum)
.fill(0)
.map(_ => new Array(bagSize + 1).fill(0));
for (let i = weightArr[0]; i <= bagSize; i++) {
dp[0][i] = valueArr[0];
}
for (let i = 1; i < goodsNum; i++) {
for (let j = 0; j <= bagSize; j++) {
if (j < weightArr[i]) {
dp[i][j] = dp[i - 1][j];
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weightArr[i]] + valueArr[i]);
}
}
}
return dp[goodsNum - 1][bagSize] === bagSize;
};
```
-----------------------

View File

@ -93,7 +93,7 @@ public:
};
```
* 时间复杂度O(nlog n) ,有一个快排
* 空间复杂度O(1)
* 空间复杂度O(n),有一个快排,最差情况(倒序)时需要n次递归调用。因此确实需要O(n)的栈空间
大家此时会发现如此复杂的一个问题,代码实现却这么简单!

View File

@ -105,8 +105,8 @@ public:
};
```
* 时间复杂度$O(n\log n)$因为有一个快排
* 空间复杂度$O(1)$
* 时间复杂度O(nlog n)因为有一个快排
* 空间复杂度O(1)有一个快排最差情况(倒序)需要n次递归调用因此确实需要O(n)的栈空间
可以看出代码并不复杂

View File

@ -318,5 +318,32 @@ impl Solution {
}
```
C#
```csharp
public int FourSumCount(int[] nums1, int[] nums2, int[] nums3, int[] nums4) {
Dictionary<int, int> dic = new Dictionary<int, int>();
foreach(var i in nums1){
foreach(var j in nums2){
int sum = i + j;
if(dic.ContainsKey(sum)){
dic[sum]++;
}else{
dic.Add(sum, 1);
}
}
}
int res = 0;
foreach(var a in nums3){
foreach(var b in nums4){
int sum = a+b;
if(dic.TryGetValue(-sum, out var result)){
res += result;
}
}
}
return res;
}
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -323,6 +323,129 @@ const findMaxForm = (strs, m, n) => {
};
```
TypeScript
> 滚动数组,二维数组法
```typescript
type BinaryInfo = { numOfZero: number, numOfOne: number };
function findMaxForm(strs: string[], m: number, n: number): number {
const goodsNum: number = strs.length;
const dp: number[][] = new Array(m + 1).fill(0)
.map(_ => new Array(n + 1).fill(0));
for (let i = 0; i < goodsNum; i++) {
const { numOfZero, numOfOne } = countBinary(strs[i]);
for (let j = m; j >= numOfZero; j--) {
for (let k = n; k >= numOfOne; k--) {
dp[j][k] = Math.max(dp[j][k], dp[j - numOfZero][k - numOfOne] + 1);
}
}
}
return dp[m][n];
};
function countBinary(str: string): BinaryInfo {
let numOfZero: number = 0,
numOfOne: number = 0;
for (let s of str) {
if (s === '0') {
numOfZero++;
} else {
numOfOne++;
}
}
return { numOfZero, numOfOne };
}
```
> 传统背包,三维数组法
```typescript
type BinaryInfo = { numOfZero: number, numOfOne: number };
function findMaxForm(strs: string[], m: number, n: number): number {
/**
dp[i][j][k]: 前i个物品中, 背包的0容量为j, 1容量为k, 最多能放的物品数量
*/
const goodsNum: number = strs.length;
const dp: number[][][] = new Array(goodsNum).fill(0)
.map(_ => new Array(m + 1)
.fill(0)
.map(_ => new Array(n + 1).fill(0))
);
const { numOfZero, numOfOne } = countBinary(strs[0]);
for (let i = numOfZero; i <= m; i++) {
for (let j = numOfOne; j <= n; j++) {
dp[0][i][j] = 1;
}
}
for (let i = 1; i < goodsNum; i++) {
const { numOfZero, numOfOne } = countBinary(strs[i]);
for (let j = 0; j <= m; j++) {
for (let k = 0; k <= n; k++) {
if (j < numOfZero || k < numOfOne) {
dp[i][j][k] = dp[i - 1][j][k];
} else {
dp[i][j][k] = Math.max(dp[i - 1][j][k], dp[i - 1][j - numOfZero][k - numOfOne] + 1);
}
}
}
}
return dp[dp.length - 1][m][n];
};
function countBinary(str: string): BinaryInfo {
let numOfZero: number = 0,
numOfOne: number = 0;
for (let s of str) {
if (s === '0') {
numOfZero++;
} else {
numOfOne++;
}
}
return { numOfZero, numOfOne };
}
```
> 回溯法(会超时)
```typescript
function findMaxForm(strs: string[], m: number, n: number): number {
/**
思路暴力枚举strs的所有子集记录符合条件子集的最大长度
*/
let resMax: number = 0;
backTrack(strs, m, n, 0, []);
return resMax;
function backTrack(
strs: string[], m: number, n: number,
startIndex: number, route: string[]
): void {
if (startIndex === strs.length) return;
for (let i = startIndex, length = strs.length; i < length; i++) {
route.push(strs[i]);
if (isValidSubSet(route, m, n)) {
resMax = Math.max(resMax, route.length);
backTrack(strs, m, n, i + 1, route);
}
route.pop();
}
}
};
function isValidSubSet(strs: string[], m: number, n: number): boolean {
let zeroNum: number = 0,
oneNum: number = 0;
strs.forEach(str => {
for (let s of str) {
if (s === '0') {
zeroNum++;
} else {
oneNum++;
}
}
});
return zeroNum <= m && oneNum <= n;
}
```
-----------------------

View File

@ -351,6 +351,25 @@ const findTargetSumWays = (nums, target) => {
};
```
TypeScript
```typescript
function findTargetSumWays(nums: number[], target: number): number {
const sum: number = nums.reduce((pre, cur) => pre + cur);
if (Math.abs(target) > sum) return 0;
if ((target + sum) % 2 === 1) return 0;
const bagSize: number = (target + sum) / 2;
const dp: number[] = new Array(bagSize + 1).fill(0);
dp[0] = 1;
for (let i = 0; i < nums.length; i++) {
for (let j = bagSize; j >= nums[i]; j--) {
dp[j] += dp[j - nums[i]];
}
}
return dp[bagSize];
};
```
-----------------------

View File

@ -274,6 +274,21 @@ const change = (amount, coins) => {
}
```
TypeScript
```typescript
function change(amount: number, coins: number[]): number {
const dp: number[] = new Array(amount + 1).fill(0);
dp[0] = 1;
for (let i = 0, length = coins.length; i < length; i++) {
for (let j = coins[i]; j <= amount; j++) {
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
};
```
-----------------------

View File

@ -279,7 +279,7 @@ class Solution:
root.right = self.insertIntoBST(root.right, val)
# 返回更新后的以当前root为根节点的新树
return roo
return root
```
**递归法** - 无返回值

View File

@ -610,7 +610,48 @@ public class Solution{
}
}
```
**Scala:**
(版本一)左闭右闭区间
```scala
object Solution {
def search(nums: Array[Int], target: Int): Int = {
var left = 0
var right = nums.length - 1
while (left <= right) {
var mid = left + ((right - left) / 2)
if (target == nums(mid)) {
return mid
} else if (target < nums(mid)) {
right = mid - 1
} else {
left = mid + 1
}
}
-1
}
}
```
(版本二)左闭右开区间
```scala
object Solution {
def search(nums: Array[Int], target: Int): Int = {
var left = 0
var right = nums.length
while (left < right) {
val mid = left + (right - left) / 2
if (target == nums(mid)) {
return mid
} else if (target < nums(mid)) {
right = mid
} else {
left = mid + 1
}
}
-1
}
}
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -1154,7 +1154,75 @@ class MyLinkedList {
}
```
Scala:
```scala
class ListNode(_x: Int = 0, _next: ListNode = null) {
var next: ListNode = _next
var x: Int = _x
}
class MyLinkedList() {
var size = 0 // 链表尺寸
var dummy: ListNode = new ListNode(0) // 虚拟头节点
// 获取第index个节点的值
def get(index: Int): Int = {
if (index < 0 || index >= size) {
return -1;
}
var cur = dummy
for (i <- 0 to index) {
cur = cur.next
}
cur.x // 返回cur的值
}
// 在链表最前面插入一个节点
def addAtHead(`val`: Int) {
addAtIndex(0, `val`)
}
// 在链表最后面插入一个节点
def addAtTail(`val`: Int) {
addAtIndex(size, `val`)
}
// 在第index个节点之前插入一个新节点
// 如果index等于链表长度则说明新插入的节点是尾巴
// 如果index等于0则说明新插入的节点是头
// 如果index>链表长度,则说明为空
def addAtIndex(index: Int, `val`: Int) {
if (index > size) {
return
}
var loc = index // 因为参数index是val不可变类型所以需要赋值给一个可变类型
if (index < 0) {
loc = 0
}
size += 1 //链表尺寸+1
var pre = dummy
for (i <- 0 until loc) {
pre = pre.next
}
val node: ListNode = new ListNode(`val`, pre.next)
pre.next = node
}
// 删除第index个节点
def deleteAtIndex(index: Int) {
if (index < 0 || index >= size) {
return
}
size -= 1
var pre = dummy
for (i <- 0 until index) {
pre = pre.next
}
pre.next = pre.next.next
}
}
```
-----------------------

View File

@ -358,7 +358,41 @@ class Solution {
}
}
```
Scala:
双指针:
```scala
object Solution {
def sortedSquares(nums: Array[Int]): Array[Int] = {
val res: Array[Int] = new Array[Int](nums.length)
var top = nums.length - 1
var i = 0
var j = nums.length - 1
while (i <= j) {
if (nums(i) * nums(i) <= nums(j) * nums(j)) {
// 当左侧平方小于等于右侧res数组顶部放右侧的平方并且top下移j左移
res(top) = nums(j) * nums(j)
top -= 1
j -= 1
} else {
// 当左侧平方大于右侧res数组顶部放左侧的平方并且top下移i右移
res(top) = nums(i) * nums(i)
top -= 1
i += 1
}
}
res
}
}
```
骚操作(暴力思路):
```scala
object Solution {
def sortedSquares(nums: Array[Int]): Array[Int] = {
nums.map(x=>{x*x}).sortWith(_ < _)
}
}
```
-----------------------

View File

@ -418,6 +418,38 @@ char ** commonChars(char ** words, int wordsSize, int* returnSize){
return ret;
}
```
Scala:
```scala
object Solution {
def commonChars(words: Array[String]): List[String] = {
// 声明返回结果的不可变List集合因为res要重新赋值所以声明为var
var res = List[String]()
var hash = new Array[Int](26) // 统计字符出现的最小频率
// 统计第一个字符串中字符出现的次数
for (i <- 0 until words(0).length) {
hash(words(0)(i) - 'a') += 1
}
// 统计其他字符串出现的频率
for (i <- 1 until words.length) {
// 统计其他字符出现的频率
var hashOtherStr = new Array[Int](26)
for (j <- 0 until words(i).length) {
hashOtherStr(words(i)(j) - 'a') += 1
}
// 更新hash取26个字母最小出现的频率
for (k <- 0 until 26) {
hash(k) = math.min(hash(k), hashOtherStr(k))
}
}
// 根据hash的结果转换输出的形式
for (i <- 0 until 26) {
for (j <- 0 until hash(i)) {
res = res :+ (i + 'a').toChar.toString
}
}
res
}
}
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -209,6 +209,22 @@ var largestSumAfterKNegations = function(nums, k) {
return a + b
})
};
// 版本二 (优化: 一次遍历)
var largestSumAfterKNegations = function(nums, k) {
nums.sort((a, b) => Math.abs(b) - Math.abs(a)); // 排序
let sum = 0;
for(let i = 0; i < nums.length; i++) {
if(nums[i] < 0 && k-- > 0) { // 负数取反k 数量足够时)
nums[i] = -nums[i];
}
sum += nums[i]; // 求和
}
if(k % 2 > 0) { // k 有多余的k若消耗完则应为 -1
sum -= 2 * nums[nums.length - 1]; // 减去两倍的最小值(因为之前加过一次)
}
return sum;
};
```

View File

@ -277,5 +277,26 @@ var lastStoneWeightII = function (stones) {
};
```
TypeScript
```typescript
function lastStoneWeightII(stones: number[]): number {
const sum: number = stones.reduce((pre, cur) => pre + cur);
const bagSize: number = Math.floor(sum / 2);
const weightArr: number[] = stones;
const valueArr: number[] = stones;
const goodsNum: number = weightArr.length;
const dp: number[] = new Array(bagSize + 1).fill(0);
for (let i = 0; i < goodsNum; i++) {
for (let j = bagSize; j >= weightArr[i]; j--) {
dp[j] = Math.max(dp[j], dp[j - weightArr[i]] + valueArr[i]);
}
}
return sum - dp[bagSize] * 2;
};
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -380,57 +380,125 @@ func main() {
### javascript
```js
/**
*
* @param {Number []} weight
* @param {Number []} value
* @param {Number} size
* @returns
*/
function testWeightBagProblem (weight, value, size) {
// 定义 dp 数组
const len = weight.length,
dp = Array(len).fill().map(() => Array(size + 1).fill(0));
function testWeightBagProblem(weight, value, size) {
const len = weight.length,
dp = Array.from({length: len}).map(
() => Array(size + 1)) //JavaScript 数组是引用类型
for(let i = 0; i < len; i++) { //初始化最左一列即背包容量为0时的情况
dp[i][0] = 0;
}
for(let j = 1; j < size+1; j++) { //初始化第0行, 只有一件物品的情况
if(weight[0] <= j) {
dp[0][j] = value[0];
} else {
dp[0][j] = 0;
}
}
for(let i = 1; i < len; i++) { //dp[i][j]由其左上方元素推导得出
for(let j = 1; j < size+1; j++) {
if(j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = Math.max(dp[i-1][j], dp[i-1][j - weight[i]] + value[i]);
}
}
return dp[len-1][size] //满足条件的最大值
}
function testWeightBagProblem2 (wight, value, size) {
const len = wight.length,
dp = Array(size + 1).fill(0);
for(let i = 1; i <= len; i++) {
for(let j = size; j >= wight[i - 1]; j--) {
dp[j] = Math.max(dp[j], value[i - 1] + dp[j - wight[i - 1]]);
// 初始化
for(let j = weight[0]; j <= size; j++) {
dp[0][j] = value[0];
}
}
return dp[size];
}
// weight 数组的长度len 就是物品个数
for(let i = 1; i < len; i++) { // 遍历物品
for(let j = 0; j <= size; j++) { // 遍历背包容量
if(j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
console.table(dp)
return dp[len - 1][size];
}
function test () {
console.log(testWeightBagProblem([1, 3, 4, 5], [15, 20, 30, 55], 6));
console.log(testWeightBagProblem([1, 3, 4, 5], [15, 20, 30, 55], 6));
}
test();
```
### C
```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#define ARR_SIZE(a) (sizeof((a)) / sizeof((a)[0]))
#define BAG_WEIGHT 4
void backPack(int* weights, int weightSize, int* costs, int costSize, int bagWeight) {
// 开辟dp数组
int dp[weightSize][bagWeight + 1];
memset(dp, 0, sizeof(int) * weightSize * (bagWeight + 1));
int i, j;
// 当背包容量大于物品0的重量时将物品0放入到背包中
for(j = weights[0]; j <= bagWeight; ++j) {
dp[0][j] = costs[0];
}
// 先遍历物品,再遍历重量
for(j = 1; j <= bagWeight; ++j) {
for(i = 1; i < weightSize; ++i) {
// 如果当前背包容量小于物品重量
if(j < weights[i])
// 背包物品的价值等于背包不放置当前物品时的价值
dp[i][j] = dp[i-1][j];
// 若背包当前重量可以放置物品
else
// 背包的价值等于放置该物品或不放置该物品的最大值
dp[i][j] = MAX(dp[i - 1][j], dp[i - 1][j - weights[i]] + costs[i]);
}
}
printf("%d\n", dp[weightSize - 1][bagWeight]);
}
int main(int argc, char* argv[]) {
int weights[] = {1, 3, 4};
int costs[] = {15, 20, 30};
backPack(weights, ARR_SIZE(weights), costs, ARR_SIZE(costs), BAG_WEIGHT);
return 0;
}
```
### TypeScript
```typescript
function testWeightBagProblem(
weight: number[],
value: number[],
size: number
): number {
/**
* dp[i][j]: 前i个物品背包容量为j能获得的最大价值
* dp[0][*]: u=weight[0],u之前为0u之后含u为value[0]
* dp[*][0]: 0
* ...
* dp[i][j]: max(dp[i-1][j], dp[i-1][j-weight[i]]+value[i]);
*/
const goodsNum: number = weight.length;
const dp: number[][] = new Array(goodsNum)
.fill(0)
.map((_) => new Array(size + 1).fill(0));
for (let i = weight[0]; i <= size; i++) {
dp[0][i] = value[0];
}
for (let i = 1; i < goodsNum; i++) {
for (let j = 1; j <= size; j++) {
if (j < weight[i]) {
dp[i][j] = dp[i - 1][j];
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
}
return dp[goodsNum - 1][size];
}
// test
const weight = [1, 3, 4];
const value = [15, 20, 30];
const size = 4;
console.log(testWeightBagProblem(weight, value, size));
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -137,6 +137,8 @@ dp[1] = dp[1 - weight[0]] + value[0] = 15
因为一维dp的写法背包容量一定是要倒序遍历原因上面已经讲了如果遍历背包容量放在上一层那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。
倒序遍历的原因是,本质上还是一个对二维数组的遍历,并且右下角的值依赖上一层左上角的值,因此需要保证左边的值仍然是上一层的,从右向左覆盖。
这里如果读不懂就在回想一下dp[j]的定义或者就把两个for循环顺序颠倒一下试试
**所以一维dp数组的背包在遍历顺序上和二维其实是有很大差异的**,这一点大家一定要注意。
@ -315,6 +317,64 @@ function test () {
test();
```
### C
```c
#include <stdio.h>
#include <string.h>
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#define ARR_SIZE(arr) ((sizeof((arr))) / sizeof((arr)[0]))
#define BAG_WEIGHT 4
void test_back_pack(int* weights, int weightSize, int* values, int valueSize, int bagWeight) {
int dp[bagWeight + 1];
memset(dp, 0, sizeof(int) * (bagWeight + 1));
int i, j;
// 先遍历物品
for(i = 0; i < weightSize; ++i) {
// 后遍历重量。从后向前遍历
for(j = bagWeight; j >= weights[i]; --j) {
dp[j] = MAX(dp[j], dp[j - weights[i]] + values[i]);
}
}
// 打印最优结果
printf("%d\n", dp[bagWeight]);
}
int main(int argc, char** argv) {
int weights[] = {1, 3, 4};
int values[] = {15, 20, 30};
test_back_pack(weights, ARR_SIZE(weights), values, ARR_SIZE(values), BAG_WEIGHT);
return 0;
}
```
### TypeScript
```typescript
function testWeightBagProblem(
weight: number[],
value: number[],
size: number
): number {
const goodsNum: number = weight.length;
const dp: number[] = new Array(size + 1).fill(0);
for (let i = 0; i < goodsNum; i++) {
for (let j = size; j >= weight[i]; j--) {
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
}
}
return dp[size];
}
const weight = [1, 3, 4];
const value = [15, 20, 30];
const size = 4;
console.log(testWeightBagProblem(weight, value, size));
```
-----------------------

View File

@ -334,6 +334,64 @@ func Test_multiplePack(t *testing.T) {
PASS
```
TypeScript
> 版本一(改变数据源):
```typescript
function testMultiPack() {
const bagSize: number = 10;
const weightArr: number[] = [1, 3, 4],
valueArr: number[] = [15, 20, 30],
amountArr: number[] = [2, 3, 2];
for (let i = 0, length = amountArr.length; i < length; i++) {
while (amountArr[i] > 1) {
weightArr.push(weightArr[i]);
valueArr.push(valueArr[i]);
amountArr[i]--;
}
}
const goodsNum: number = weightArr.length;
const dp: number[] = new Array(bagSize + 1).fill(0);
// 遍历物品
for (let i = 0; i < goodsNum; i++) {
// 遍历背包容量
for (let j = bagSize; j >= weightArr[i]; j--) {
dp[j] = Math.max(dp[j], dp[j - weightArr[i]] + valueArr[i]);
}
}
console.log(dp);
}
testMultiPack();
```
> 版本二(改变遍历方式):
```typescript
function testMultiPack() {
const bagSize: number = 10;
const weightArr: number[] = [1, 3, 4],
valueArr: number[] = [15, 20, 30],
amountArr: number[] = [2, 3, 2];
const goodsNum: number = weightArr.length;
const dp: number[] = new Array(bagSize + 1).fill(0);
// 遍历物品
for (let i = 0; i < goodsNum; i++) {
// 遍历物品个数
for (let j = 0; j < amountArr[i]; j++) {
// 遍历背包容量
for (let k = bagSize; k >= weightArr[i]; k--) {
dp[k] = Math.max(dp[k], dp[k - weightArr[i]] + valueArr[i]);
}
}
}
console.log(dp);
}
testMultiPack();
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -340,6 +340,27 @@ function test_completePack2() {
}
```
TypeScript
```typescript
// 先遍历物品,再遍历背包容量
function test_CompletePack(): void {
const weight: number[] = [1, 3, 4];
const value: number[] = [15, 20, 30];
const bagSize: number = 4;
const dp: number[] = new Array(bagSize + 1).fill(0);
for (let i = 0; i < weight.length; i++) {
for (let j = weight[i]; j <= bagSize; j++) {
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
}
}
console.log(dp);
}
test_CompletePack();
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -210,6 +210,13 @@ type ListNode struct {
}
```
Scala:
```scala
class ListNode(_x: Int = 0, _next: ListNode = null) {
var next: ListNode = _next
var x: Int = _x
}
```
-----------------------

View File

@ -1,41 +0,0 @@
# 双指针,不计算链表长度
设置指向headA和headB的指针pa、pb分别遍历两个链表每次循环同时更新pa和pb。
* 当链表A遍历完之后即pa为空时将pa指向headB
* 当链表B遍历完之后即pa为空时将pb指向headA
* 当pa与pb相等时即指向同一个节点该节点即为相交起始节点。
* 若链表不相交则pa、pb同时为空时退出循环即如果链表不相交pa与pb在遍历过全部节点后同时指向结尾空节点此时退出循环返回空。
# 证明思路
设链表A不相交部分长度为a链表B不相交部分长度为b两个链表相交部分长度为c。<br>
在pa指向链表A时即pa为空之前pa经过链表A不相交部分和相交部分走过的长度为a+c<br>
pa指向链表B后在移动相交节点之前经过链表B不相交部分走过的长度为b总合为a+c+b。<br>
同理pb走过长度的总合为b+c+a。二者相等即pa与pb可同时到达相交起始节点。 <br>
该方法可避免计算具体链表长度。
```cpp
class Solution {
public:
ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
//链表为空时,返回空指针
if(headA == nullptr || headB == nullptr) return nullptr;
ListNode* pa = headA;
ListNode* pb = headB;
//pa与pb在遍历过全部节点后,同时指向结尾空节点时退出循环
while(pa != nullptr || pb != nullptr){
//pa为空时将pa指向headB
if(pa == nullptr){
pa = headB;
}
//pa为空时将pb指向headA
if(pb == nullptr){
pb = headA;
}
//pa与pb相等时返回相交起始节点
if(pa == pb){
return pa;
}
pa = pa->next;
pb = pb->next;
}
return nullptr;
}
};
```

View File

@ -317,7 +317,55 @@ ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
}
```
Scala:
```scala
object Solution {
def getIntersectionNode(headA: ListNode, headB: ListNode): ListNode = {
var lenA = 0 // headA链表的长度
var lenB = 0 // headB链表的长度
var tmp = headA // 临时变量
// 统计headA的长度
while (tmp != null) {
lenA += 1;
tmp = tmp.next
}
// 统计headB的长度
tmp = headB // 临时变量赋值给headB
while (tmp != null) {
lenB += 1
tmp = tmp.next
}
// 因为传递过来的参数是不可变量,所以需要重新定义
var listA = headA
var listB = headB
// 两个链表的长度差
// 如果gap>0lenA>lenBheadA(listA)链表往前移动gap步
// 如果gap<0lenA<lenBheadB(listB)链表往前移动-gap步
var gap = lenA - lenB
if (gap > 0) {
// 因为不可以i-=1所以可以使用for
for (i <- 0 until gap) {
listA = listA.next // 链表headA(listA) 移动
}
} else {
gap = math.abs(gap) // 此刻gap为负值取绝对值
for (i <- 0 until gap) {
listB = listB.next
}
}
// 现在两个链表同时往前走,如果相等则返回
while (listA != null && listB != null) {
if (listA == listB) {
return listA
}
listA = listA.next
listB = listB.next
}
// 如果链表没有相交则返回nullreturn可以省略
null
}
}
```
-----------------------