From 98264b444ccff7f1f3f10f9ffd253385a2e12b4c Mon Sep 17 00:00:00 2001 From: youngyangyang04 <826123027@qq.com> Date: Sun, 4 Apr 2021 09:40:52 +0800 Subject: [PATCH] Update --- .../背包理论基础01背包-二维DP.md | 292 ++++++++++++++++++ 1 file changed, 292 insertions(+) create mode 100644 problems/背包理论基础01背包-二维DP.md diff --git a/problems/背包理论基础01背包-二维DP.md b/problems/背包理论基础01背包-二维DP.md new file mode 100644 index 00000000..4a1243cd --- /dev/null +++ b/problems/背包理论基础01背包-二维DP.md @@ -0,0 +1,292 @@ +# 背包问题理论基础 + +> 通知:我已经将刷题指南全部整理到了Github :https://github.com/youngyangyang04/leetcode-master,方便大家在电脑上阅读,这个仓库每天都会更新,大家快去给一个star支持一下吧! + +这周我们正式开始讲解背包问题! + +背包问题的经典资料当然是:背包九讲。在公众号「代码随想录」后台回复:背包九讲,就可以获得背包九讲的PDF。 + +但说实话,背包九讲对于小白来说确实不太友好,看起来还是有点费劲的,而且都是伪代码理解起来也吃力。 + +对于面试的话,其实掌握01背包,和完全背包,就够用了,最多可以再来一个多重背包。 + +如果这几种背包,分不清,我这里画了一个图,如下: + +![416.分割等和子集1](https://img-blog.csdnimg.cn/20210117171307407.png) + +至于背包九讲其其他背包,面试几乎不会问,都是竞赛级别的了,leetcode上连多重背包的题目都没有,所以题库也告诉我们,01背包和完全背包就够用了。 + +而完全背包又是也是01背包稍作变化而来,即:完全背包的物品数量是无限的。 + +**所以背包问题的理论基础重中之重是01背包,一定要理解透!** + +leetcode上没有纯01背包的问题,都是01背包应用方面的题目,也就是需要转化为01背包问题。 + +**所以我先通过纯01背包问题,把01背包原理讲清楚,后续再讲解leetcode题目的时候,重点就是讲解如何转化为01背包问题了**。 + +之前可能有些录友已经可以熟练写出背包了,但只要把这个文章仔细看完,相信你会意外收获! + +## 01 背包 + +有N件物品和一个最多能被重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。**每件物品只能用一次**,求解将哪些物品装入背包里物品价值总和最大。 + +![动态规划-背包问题](https://img-blog.csdnimg.cn/20210117175428387.jpg) + +这是标准的背包问题,以至于很多同学看了这个自然就会想到背包,甚至都不知道暴力的解法应该怎么解了。 + +这样其实是没有从底向上去思考,而是习惯性想到了背包,那么暴力的解法应该是怎么样的呢? + +每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是O(2^n),这里的n表示物品数量。 + +**所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!** + +在下面的讲解中,我举一个例子: + +背包最大重量为4。 + +物品为: + +| | 重量 | 价值 | +| --- | --- | --- | +| 物品0 | 1 | 15 | +| 物品1 | 3 | 20 | +| 物品2 | 4 | 30 | + +问背包能背的物品最大价值是多少? + +以下讲解和图示中出现的数字都是以这个例子为例。 + +## 二维dp数组01背包 + +依然动规五部曲分析一波。 + +1. 确定dp数组以及下标的含义 + +对于背包问题,有一种写法, 是使用二维数组,即**dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少**。 + +只看这个二维数组的定义,大家一定会有点懵,看下面这个图: + +![动态规划-背包问题1](https://img-blog.csdnimg.cn/20210110103003361.png) + +**要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的**,如果哪里看懵了,就来回顾一下i代表什么,j又代表什么。 + +2. 确定递推公式 + +再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。 + +那么可以有两个方向推出来dp[i][j], + +* 由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j] +* 由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值 + +所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); + +3. dp数组如何初始化 + +**关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱**。 + +首先从dp[i][j]的定义触发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图: + +![动态规划-背包问题2](https://img-blog.csdnimg.cn/2021011010304192.png) + +在看其他情况。 + +状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。 + +dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。 + +代码如下: + +``` +// 倒叙遍历 +for (int j = bagWeight; j >= weight[0]; j--) { + dp[0][j] = dp[0][j - weight[0]] + value[0]; // 初始化i为0时候的情况 +} +``` + +**大家应该发现,这个初始化为什么是倒叙的遍历的?正序遍历就不行么?** + +正序遍历还真就不行,dp[0][j]表示容量为j的背包存放物品0时候的最大价值,物品0的价值就是15,因为题目中说了**每个物品只有一个!**所以dp[0][j]如果不是初始值的话,就应该都是物品0的价值,也就是15。 + +但如果一旦正序遍历了,那么物品0就会被重复加入多次! 例如代码如下: +``` +// 正序遍历 +for (int j = weight[0]; j <= bagWeight; j++) { + dp[0][j] = dp[0][j - weight[0]] + value[0]; +} +``` + +例如dp[0][1] 是15,到了dp[0][2] = dp[0][2 - 1] + 15; 也就是dp[0][2] = 30 了,那么就是物品0被重复放入了。 + +**所以一定要倒叙遍历,保证物品0只被放入一次!这一点对01背包很重要,后面在讲解滚动数组的时候,还会用到倒叙遍历来保证物品使用一次!** + + +此时dp数组初始化情况如图所示: + +![动态规划-背包问题7](https://img-blog.csdnimg.cn/20210110103109140.png) + +dp[0][j] 和 dp[i][0] 都已经初始化了,那么其他下标应该初始化多少呢? + + +dp[i][j]在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,因为0就是最小的了,不会影响取最大价值的结果。 + +如果题目给的价值有负数,那么非0下标就要初始化为负无穷了。例如:一个物品的价值是-2,但对应的位置依然初始化为0,那么取最大值的时候,就会取0而不是-2了,所以要初始化为负无穷。 + +**这样才能让dp数组在递归公式的过程中取最大的价值,而不是被初始值覆盖了**。 + +最后初始化代码如下: + +``` +// 初始化 dp +vector> dp(weight.size() + 1, vector(bagWeight + 1, 0)); +for (int j = bagWeight; j >= weight[0]; j--) { + dp[0][j] = dp[0][j - weight[0]] + value[0]; +} +``` + +**费了这么大的功夫,才把如何初始化讲清楚,相信不少同学平时初始化dp数组是凭感觉来的,但有时候感觉是不靠谱的**。 + +4. 确定遍历顺序 + + +在如下图中,可以看出,有两个遍历的维度:物品与背包重量 + +![动态规划-背包问题3](https://img-blog.csdnimg.cn/2021011010314055.png) + +那么问题来了,**先遍历 物品还是先遍历背包重量呢?** + +**其实都可以!! 但是先遍历物品更好理解**。 + +那么我先给出先遍历物品,然后遍历背包重量的代码。 + +``` +// weight数组的大小 就是物品个数 +for(int i = 1; i < weight.size(); i++) { // 遍历物品 + for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量 + if (j < weight[i]) dp[i][j] = dp[i - 1][j]; // 这个是为了展现dp数组里元素的变化 + else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); + + } +} +``` + +**先遍历背包,再遍历物品,也是可以的!(注意我这里使用的二维dp数组)** + +例如这样: + +``` +// weight数组的大小 就是物品个数 +for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量 + for(int i = 1; i < weight.size(); i++) { // 遍历物品 + if (j < weight[i]) dp[i][j] = dp[i - 1][j]; + else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); + } +} +``` + +为什么也是可以的呢? + +**要理解递归的本质和递推的方向**。 + +dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。 + +dp[i-1][j]和dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正左和正上两个方向),那么先遍历物品,再遍历背包的过程如图所示: + +![动态规划-背包问题5](https://img-blog.csdnimg.cn/202101101032124.png) + +再来看看先遍历背包,再遍历物品呢,如图: + +![动态规划-背包问题6](https://img-blog.csdnimg.cn/20210110103244701.png) + +**大家可以看出,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!** + +但先遍历物品再遍历背包这个顺序更好理解。 + +**其实背包问题里,两个for循环的先后循序是非常有讲究的,理解遍历顺序其实比理解推导公式难多了**。 + +5. 举例推导dp数组 + +来看一下对应的dp数组的数值,如图: + +![动态规划-背包问题4](https://img-blog.csdnimg.cn/20210118163425129.jpg) + +最终结果就是dp[2][4]。 + +建议大家此时自己在纸上推导一遍,看看dp数组里每一个数值是不是这样的。 + +**做动态规划的题目,最好的过程就是自己在纸上举一个例子把对应的dp数组的数值推导一下,然后在动手写代码!** + +很多同学做dp题目,遇到各种问题,然后凭感觉东改改西改改,怎么改都不对,或者稀里糊涂就改过了。 + +主要就是自己没有动手推导一下dp数组的演变过程,如果推导明白了,代码写出来就算有问题,只要把dp数组打印出来,对比一下和自己推导的有什么差异,很快就可以发现问题了。 + + +## 完整C++测试代码 + +```C++ +void test_2_wei_bag_problem1() { + vector weight = {1, 3, 4}; + vector value = {15, 20, 30}; + int bagWeight = 4; + + // 二维数组 + vector> dp(weight.size() + 1, vector(bagWeight + 1, 0)); + + // 初始化 + for (int j = bagWeight; j >= weight[0]; j--) { + dp[0][j] = dp[0][j - weight[0]] + value[0]; + } + + // weight数组的大小 就是物品个数 + for(int i = 1; i < weight.size(); i++) { // 遍历物品 + for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量 + if (j < weight[i]) dp[i][j] = dp[i - 1][j]; + else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); + + } + } + + cout << dp[weight.size() - 1][bagWeight] << endl; +} + +int main() { + test_2_wei_bag_problem1(); +} + +``` + + +以上遍历的过程也可以这么写: + +``` +// 遍历过程 +for(int i = 1; i < weight.size(); i++) { // 遍历物品 + for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量 + if (j - weight[i] >= 0) { + dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); + } + } +} +``` + +这么写打印出来的dp数据这就是这样: + +![动态规划-背包问题8](https://img-blog.csdnimg.cn/2021011010344372.png) + +空出来的0其实是用不上的,版本一 能把完整的dp数组打印出来,出来我用版本一来讲解。 + + +## 总结 + +讲了这么多才刚刚把二维dp的01背包讲完,**这里大家其实可以发现最简单的是推导公式了,推导公式估计看一遍就记下来了,但难就难在如何初始化和遍历顺序上**。 + +可能有的同学并没有注意到初始化 和 遍历顺序的重要性,我们后面做力扣上背包面试题目的时候,大家就会感受出来了。 + +下一篇 还是理论基础,我们再来讲一维dp数组实现的01背包(滚动数组),分析一下和二维有什么区别,在初始化和遍历顺序上又有什么差异,敬请期待! + +就酱,学算法,认准「代码随想录」,值得推荐给身边的朋友同学们,关注后都会发现相见恨晚! + + + + +