Update
@ -231,6 +231,8 @@
|
||||
|[0101.对称二叉树](https://github.com/youngyangyang04/leetcode/blob/master/problems/0101.对称二叉树.md) |树 |简单|**递归** **迭代/队列/栈**|
|
||||
|[0102.二叉树的层序遍历](https://github.com/youngyangyang04/leetcode/blob/master/problems/0102.二叉树的层序遍历.md) |树 |中等|**广度优先搜索/队列**|
|
||||
|[0104.二叉树的最大深度](https://github.com/youngyangyang04/leetcode/blob/master/problems/0104.二叉树的最大深度.md) |树 |简单|**递归** **迭代/队列/BFS**|
|
||||
|[0105.从前序与中序遍历序列构造二叉树](https://github.com/youngyangyang04/leetcode/blob/master/problems/0105.从前序与中序遍历序列构造二叉树.md) |树 |中等|**递归**|
|
||||
|[0106.从中序与后序遍历序列构造二叉树](https://github.com/youngyangyang04/leetcode/blob/master/problems/0106.从中序与后序遍历序列构造二叉树.md) |树 |中等|**递归**|
|
||||
|[0107.二叉树的层次遍历II](https://github.com/youngyangyang04/leetcode/blob/master/problems/0107.二叉树的层次遍历II.md) |树 |简单|**广度优先搜索/队列/BFS**|
|
||||
|[0110.平衡二叉树](https://github.com/youngyangyang04/leetcode/blob/master/problems/0110.平衡二叉树.md) |树 |简单|**递归**|
|
||||
|[0111.二叉树的最小深度](https://github.com/youngyangyang04/leetcode/blob/master/problems/0111.二叉树的最小深度.md) |树 |简单|**递归** **队列/BFS**|
|
||||
@ -273,7 +275,8 @@
|
||||
|[0538.把二叉搜索树转换为累加树](https://github.com/youngyangyang04/leetcode/blob/master/problems/0538.把二叉搜索树转换为累加树.md) |二叉树 |简单|**递归** **迭代**|
|
||||
|[0541.反转字符串II](https://github.com/youngyangyang04/leetcode/blob/master/problems/0541.反转字符串II.md) |字符串 |简单| **模拟**|
|
||||
|[0575.分糖果](https://github.com/youngyangyang04/leetcode/blob/master/problems/0575.分糖果.md) |哈希表 |简单|**哈希**|
|
||||
|[0589.N叉树的前序遍历](https://github.com/youngyangyang04/leetcode/blob/master/problems/0589.N叉树的前序遍历.md) |树 |简单|**递归****栈/迭代**|
|
||||
|[0589.N叉树的前序遍历](https://github.com/youngyangyang04/leetcode/blob/master/problems/0589.N叉树的前序遍历.md) |树 |简单|**递归** **栈/迭代**|
|
||||
|[0590.N叉树的后序遍历](https://github.com/youngyangyang04/leetcode/blob/master/problems/0590.N叉树的后序遍历.md) |树 |简单|**递归** **栈/迭代**|
|
||||
|[0617.合并二叉树](https://github.com/youngyangyang04/leetcode/blob/master/problems/0617.合并二叉树.md) |树 |简单|**递归** **迭代**|
|
||||
|[0637.二叉树的层平均值](https://github.com/youngyangyang04/leetcode/blob/master/problems/0637.二叉树的层平均值.md) |树 |简单|**广度优先搜索/队列**|
|
||||
|[0654.最大二叉树](https://github.com/youngyangyang04/leetcode/blob/master/problems/0654.最大二叉树.md) |树 |中等|**递归**|
|
||||
|
BIN
pics/102.二叉树的层序遍历.png
Normal file
After Width: | Height: | Size: 31 KiB |
BIN
pics/106.从中序与后序遍历序列构造二叉树.png
Normal file
After Width: | Height: | Size: 109 KiB |
BIN
pics/107.二叉树的层次遍历II.png
Normal file
After Width: | Height: | Size: 33 KiB |
BIN
pics/199.二叉树的右视图.png
Normal file
After Width: | Height: | Size: 22 KiB |
BIN
pics/429. N叉树的层序遍历.png
Normal file
After Width: | Height: | Size: 30 KiB |
BIN
pics/637.二叉树的层平均值.png
Normal file
After Width: | Height: | Size: 36 KiB |
BIN
pics/我要打十个.gif
Normal file
After Width: | Height: | Size: 1.1 MiB |
@ -1,27 +1,41 @@
|
||||
## 题目地址
|
||||
https://leetcode-cn.com/problems/binary-tree-level-order-traversal/
|
||||
|
||||
> 我要打十个!
|
||||
|
||||
看完这篇文章虽然不能打十个,但是可以迅速打五个!而且够快!
|
||||
|
||||
|
||||
# 102.二叉树的层序遍历
|
||||
|
||||
给你一个二叉树,请你返回其按 层序遍历 得到的节点值。 (即逐层地,从左到右访问所有节点)。
|
||||
|
||||
<img src='../pics/102.二叉树的层序遍历.png' width=600> </img></div>
|
||||
|
||||
## 思路
|
||||
|
||||
我们之前讲过了,二叉树的深度优先遍历:[一文学通二叉树前中后序递归法与迭代法](https://github.com/youngyangyang04/leetcode/blob/master/problems/0144.二叉树的前序遍历.md)里面有前中后序遍历的方式,前中后序分辨可以使用递归和迭代的方法来实现,接下来我们再来介绍二叉树的另一种遍历方式,也就是层序遍历。
|
||||
我们之前讲过了三篇关于二叉树的深度优先遍历的文章:
|
||||
|
||||
相似题目:
|
||||
* [0102.二叉树的层序遍历](https://github.com/youngyangyang04/leetcode/blob/master/problems/0102.二叉树的层序遍历.md)
|
||||
* [0107.二叉树的层次遍历II](https://github.com/youngyangyang04/leetcode/blob/master/problems/0107.二叉树的层次遍历II.md)
|
||||
* [0199.二叉树的右视图](https://github.com/youngyangyang04/leetcode/blob/master/problems/0199.二叉树的右视图.md)
|
||||
* [0637.二叉树的层平均值](https://github.com/youngyangyang04/leetcode/blob/master/problems/0637.二叉树的层平均值.md)
|
||||
* [二叉树:前中后序递归法](https://mp.weixin.qq.com/s/PwVIfxDlT3kRgMASWAMGhA)
|
||||
* [二叉树:前中后序迭代法](https://mp.weixin.qq.com/s/c_zCrGHIVlBjUH_hJtghCg)
|
||||
* [二叉树:前中后序迭代方式统一写法](https://mp.weixin.qq.com/s/WKg0Ty1_3SZkztpHubZPRg)
|
||||
|
||||
接下来我们再来介绍二叉树的另一种遍历方式:层序遍历。
|
||||
|
||||
层序遍历一个二叉树。就是从左到右一层一层的去遍历二叉树。这种遍历的方式和我们之前讲过的都不太一样。
|
||||
|
||||
需要借用一个辅助数据结构队列来实现,**队列先进先出,符合一层一层遍历的逻辑,而是用栈先进后出适合模拟深度优先遍历也就是递归的逻辑。**
|
||||
需要借用一个辅助数据结构即队列来实现,**队列先进先出,符合一层一层遍历的逻辑,而是用栈先进后出适合模拟深度优先遍历也就是递归的逻辑。**
|
||||
|
||||
使用队列实现广度优先遍历,动画如下:
|
||||
**而这种层序遍历方式就是图论中的广度优先遍历,只不过我们应用在二叉树上。**
|
||||
|
||||
使用队列实现二叉树广度优先遍历,动画如下:
|
||||
|
||||

|
||||
<video src='../video/102二叉树的层序遍历.mp4' controls='controls' width='640' height='320' autoplay='autoplay'> Your browser does not support the video tag.</video></div>
|
||||
|
||||
这样就实现了层序从左到右遍历二叉树。
|
||||
|
||||
代码如下:这份代码也可以作为二叉树层序遍历的模板。
|
||||
代码如下:**这份代码也可以作为二叉树层序遍历的模板,以后在打四个就靠它了**。
|
||||
|
||||
## C++代码
|
||||
|
||||
@ -35,7 +49,8 @@ public:
|
||||
while (!que.empty()) {
|
||||
int size = que.size();
|
||||
vector<int> vec;
|
||||
for (int i = 0; i < size; i++) {// 这里一定要使用固定大小size,不要使用que.size()
|
||||
// 这里一定要使用固定大小size,不要使用que.size(),因为que.size是不断变化的
|
||||
for (int i = 0; i < size; i++) {
|
||||
TreeNode* node = que.front();
|
||||
que.pop();
|
||||
vec.push_back(node->val);
|
||||
@ -49,4 +64,186 @@ public:
|
||||
};
|
||||
```
|
||||
|
||||
**此时我们就掌握了二叉树的层序遍历了,那么如下四道leetcode上的题目,只需要修改模板的一两行代码(不能再多了),便可打倒!**
|
||||
|
||||
# 107.二叉树的层次遍历 II
|
||||
|
||||
给定一个二叉树,返回其节点值自底向上的层次遍历。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)
|
||||
|
||||
<img src='../pics/107.二叉树的层次遍历II.png' width=600> </img></div>
|
||||
|
||||
## 思路
|
||||
|
||||
相对于102.二叉树的层序遍历,就是最后把result数组反转一下就可以了。
|
||||
|
||||
## C++代码
|
||||
|
||||
```
|
||||
class Solution {
|
||||
public:
|
||||
vector<vector<int>> levelOrderBottom(TreeNode* root) {
|
||||
queue<TreeNode*> que;
|
||||
if (root != NULL) que.push(root);
|
||||
vector<vector<int>> result;
|
||||
while (!que.empty()) {
|
||||
int size = que.size();
|
||||
vector<int> vec;
|
||||
for (int i = 0; i < size; i++) {
|
||||
TreeNode* node = que.front();
|
||||
que.pop();
|
||||
vec.push_back(node->val);
|
||||
if (node->left) que.push(node->left);
|
||||
if (node->right) que.push(node->right);
|
||||
}
|
||||
result.push_back(vec);
|
||||
}
|
||||
reverse(result.begin(), result.end()); // 在这里反转一下数组即可
|
||||
return result;
|
||||
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
|
||||
# 199.二叉树的右视图
|
||||
|
||||
给定一棵二叉树,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。
|
||||
|
||||
<img src='../pics/199.二叉树的右视图.png' width=600> </img></div>
|
||||
|
||||
## 思路
|
||||
|
||||
层序遍历的时候,判断是否遍历到单层的最后面的元素,如果是,就放进result数组中,随后返回result就可以了。
|
||||
|
||||
## C++代码
|
||||
|
||||
```
|
||||
class Solution {
|
||||
public:
|
||||
vector<int> rightSideView(TreeNode* root) {
|
||||
queue<TreeNode*> que;
|
||||
if (root != NULL) que.push(root);
|
||||
vector<int> result;
|
||||
while (!que.empty()) {
|
||||
int size = que.size();
|
||||
for (int i = 0; i < size; i++) {
|
||||
TreeNode* node = que.front();
|
||||
que.pop();
|
||||
if (i == (size - 1)) result.push_back(node->val); // 将每一层的最后元素放入result数组中
|
||||
if (node->left) que.push(node->left);
|
||||
if (node->right) que.push(node->right);
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
# 637.二叉树的层平均值
|
||||
|
||||
给定一个非空二叉树, 返回一个由每层节点平均值组成的数组。
|
||||
|
||||
<img src='../pics/637.二叉树的层平均值.png' width=600> </img></div>
|
||||
|
||||
## 思路
|
||||
|
||||
本题就是层序遍历的时候把一层求个总和在取一个均值。
|
||||
|
||||
## C++代码
|
||||
|
||||
```
|
||||
class Solution {
|
||||
public:
|
||||
vector<double> averageOfLevels(TreeNode* root) {
|
||||
queue<TreeNode*> que;
|
||||
if (root != NULL) que.push(root);
|
||||
vector<double> result;
|
||||
while (!que.empty()) {
|
||||
int size = que.size();
|
||||
double sum = 0; // 统计每一层的和
|
||||
for (int i = 0; i < size; i++) {
|
||||
TreeNode* node = que.front();
|
||||
que.pop();
|
||||
sum += node->val;
|
||||
if (node->left) que.push(node->left);
|
||||
if (node->right) que.push(node->right);
|
||||
}
|
||||
result.push_back(sum / size); // 将每一层均值放进结果集
|
||||
}
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
```
|
||||
|
||||
# 429.N叉树的层序遍历
|
||||
|
||||
给定一个 N 叉树,返回其节点值的层序遍历。 (即从左到右,逐层遍历)。
|
||||
|
||||
例如,给定一个 3叉树 :
|
||||
|
||||
|
||||
<img src='../pics/429. N叉树的层序遍历.png' width=600> </img></div>
|
||||
|
||||
返回其层序遍历:
|
||||
|
||||
[
|
||||
[1],
|
||||
[3,2,4],
|
||||
[5,6]
|
||||
]
|
||||
|
||||
|
||||
## 思路
|
||||
|
||||
这道题依旧是模板题,只不过一个节点有多个孩子了
|
||||
|
||||
## C++代码
|
||||
|
||||
```
|
||||
class Solution {
|
||||
public:
|
||||
vector<vector<int>> levelOrder(Node* root) {
|
||||
queue<Node*> que;
|
||||
if (root != NULL) que.push(root);
|
||||
vector<vector<int>> result;
|
||||
while (!que.empty()) {
|
||||
int size = que.size();
|
||||
vector<int> vec;
|
||||
for (int i = 0; i < size; i++) {
|
||||
Node* node = que.front();
|
||||
que.pop();
|
||||
vec.push_back(node->val);
|
||||
for (int i = 0; i < node->children.size(); i++) { // 将节点孩子加入队列
|
||||
if (node->children[i]) que.push(node->children[i]);
|
||||
}
|
||||
}
|
||||
result.push_back(vec);
|
||||
}
|
||||
return result;
|
||||
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
# 总结
|
||||
|
||||
二叉树的层序遍历,就是图论中的广度优先搜索在二叉树中的应用,需要借助队列来实现(此时是不是又发现队列的应用了)。
|
||||
|
||||
学会二叉树的层序遍历,可以一口气撸完leetcode上五道题目:
|
||||
|
||||
* 102.二叉树的层序遍历
|
||||
* 107.二叉树的层次遍历II
|
||||
* 199.二叉树的右视图
|
||||
* 637.二叉树的层平均值
|
||||
* 589.N叉树的前序遍历
|
||||
|
||||
虽然不能一口气打十个,打五个也还行。
|
||||
|
||||
如果非要打十个,还得找叶师傅!
|
||||
|
||||
<img src='../pics/我要打十个.gif' width=600> </img></div>
|
||||
|
||||
|
||||
|
||||
> 更多算法干货文章持续更新,可以微信搜索「代码随想录」第一时间围观,关注后,回复「Java」「C++」 「python」「简历模板」「数据结构与算法」等等,就可以获得我多年整理的学习资料。
|
||||
|
8
problems/0105.从前序与中序遍历序列构造二叉树.md
Normal file
@ -0,0 +1,8 @@
|
||||
# 链接
|
||||
|
||||
https://leetcode-cn.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/
|
||||
|
||||
# 思路:
|
||||
|
||||
详细见
|
||||
[0106.从中序与后序遍历序列构造二叉树](https://github.com/youngyangyang04/leetcode/blob/master/problems/0106.从中序与后序遍历序列构造二叉树.md)
|
495
problems/0106.从中序与后序遍历序列构造二叉树.md
Normal file
@ -0,0 +1,495 @@
|
||||
## 题目地址
|
||||
https://leetcode-cn.com/problems/construct-binary-tree-from-inorder-and-postorder-traversal/
|
||||
|
||||
## 思路
|
||||
|
||||
首先回忆一下如何根据两个顺序构造一个唯一的二叉树,相信理论知识大家应该都清楚,就是以后序数组最后一个元素为切割点,先切中序数组,根据中序数组,反过来在切后序数组。一层一层切下去,每次后序数组最后一个元素就是节点元素。
|
||||
|
||||
如果让我们肉眼看两个序列,画一颗二叉树的话,应该分分钟都可以画出来。
|
||||
|
||||
流程如图:
|
||||
|
||||
|
||||
<img src='../pics/106.从中序与后序遍历序列构造二叉树.png' width=600> </img></div>
|
||||
|
||||
那么代码应该怎么写呢?
|
||||
|
||||
说道一层一层切割,就应该想到了递归。
|
||||
|
||||
来看一下一共分几步:
|
||||
|
||||
* 第一步:如果数组大小为零的话,说明是空节点了。
|
||||
|
||||
* 第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。
|
||||
|
||||
* 第三步:找到后序数组最后一个元素在后序数组的位置,作为切割点
|
||||
|
||||
* 第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)
|
||||
|
||||
* 第五步:切割后序数组,切成后序左数组和后序右数组
|
||||
|
||||
* 第六步:递归处理左区间和右区间
|
||||
|
||||
不难写出如下代码:(先把框架写出来)
|
||||
|
||||
```
|
||||
TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {
|
||||
|
||||
if (postorder.size() == 0) return NULL;
|
||||
|
||||
// 后序遍历数组最后一个元素,就是当前的中间节点
|
||||
int rootValue = postorder[postorder.size() - 1];
|
||||
TreeNode* root = new TreeNode(rootValue);
|
||||
|
||||
// 叶子节点
|
||||
if (postorder.size() == 1) return root;
|
||||
|
||||
找切割点
|
||||
int delimiterIndex;
|
||||
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
|
||||
if (inorder[delimiterIndex] == rootValue) break;
|
||||
}
|
||||
|
||||
切割中序数组,得到 中序左数组和中序右数组
|
||||
切割后序数组,得到 后序左数组和后序右数组
|
||||
|
||||
root->left = traversal(中序左数组, 后序左数组);
|
||||
root->right = traversal(中序右数组, 后序右数组);
|
||||
|
||||
return root;
|
||||
}
|
||||
```
|
||||
|
||||
难点大家应该发现了,如何切割呢,边界值找不好很容易乱套。
|
||||
|
||||
此时应该注意确定切割的标准,是左闭右开,还有左开又闭,还是左闭又闭,这个就是不变量,要在递归中保持这个不变量。
|
||||
|
||||
在切割的过程中会产生四个区间,把握不好不变量的话,一会左闭右开,一会左闭又闭,必要乱套!
|
||||
|
||||
我在[数组:每次遇到二分法,都是一看就会,一写就废](https://mp.weixin.qq.com/s/fCf5QbPDtE6SSlZ1yh_q8Q)和[数组:这个循环可以转懵很多人!](https://mp.weixin.qq.com/s/KTPhaeqxbMK9CxHUUgFDmg)中都强调过循环不变量的重要性,在二分查找以及螺旋矩阵的求解中,坚持循环不变量非常重要,本题也是。
|
||||
|
||||
|
||||
首先要切割中序数组,为什么先切割中序数组呢?
|
||||
|
||||
切割点在后序数组的最后一个元素,就是用这个元素来切割中序数组的,所以必要先切割中序数组。
|
||||
|
||||
中序数组相对比较好切,找到切割点(后序数组的最后一个元素)在中序数组的位置,然后切割,如下代码中我坚持左闭右开的原则:
|
||||
|
||||
|
||||
```
|
||||
// 找到中序遍历的切割点
|
||||
int delimiterIndex;
|
||||
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
|
||||
if (inorder[delimiterIndex] == rootValue) break;
|
||||
}
|
||||
|
||||
// 左闭右开区间
|
||||
// [0, delimiterIndex)
|
||||
vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
|
||||
// [delimiterIndex + 1, end)
|
||||
vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );
|
||||
```
|
||||
|
||||
接下来就要切割后序数组了。
|
||||
|
||||
首先后序数组的最后一个元素指定不能要了,这是切割点 也是 当前二叉树中间节点的元素,已经用了。
|
||||
|
||||
后序数组的切割点怎么找?
|
||||
|
||||
后序数组没有明确的切割元素来进行左右切割,不想中序数组有明确的切割左右,左右分开就可以了。
|
||||
|
||||
**此时有一个很重的点,就是中序数组大小一定是和后序数组的大小相同的(这是必然)。**
|
||||
|
||||
中序数组我们都切成了左中序数组和右中序数组了,那么后序数组就可以按照左中序数组的大小来切割,切成左后序数组和右后序数组。
|
||||
|
||||
代码如下:
|
||||
|
||||
```
|
||||
// postorder 舍弃末尾元素
|
||||
postorder.resize(postorder.size() - 1);
|
||||
|
||||
// 依然左闭右开,注意这里使用了左中序数组大小作为切割点
|
||||
// [0, leftInorder.size)
|
||||
vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
|
||||
// [leftInorder.size(), end)
|
||||
vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());
|
||||
```
|
||||
|
||||
此时,中序数组切成了左中序数组和右中序数组,后序数组切割成序数组和右后序数组。
|
||||
|
||||
接下来可以递归了,代码如下:
|
||||
|
||||
```
|
||||
root->left = traversal(leftInorder, leftPostorder);
|
||||
root->right = traversal(rightInorder, rightPostorder);
|
||||
```
|
||||
|
||||
完整代码如下:
|
||||
|
||||
## C++ 完整代码
|
||||
|
||||
```
|
||||
class Solution {
|
||||
private:
|
||||
TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {
|
||||
if (postorder.size() == 0) return NULL;
|
||||
|
||||
// 后序遍历数组最后一个元素,就是当前的中间节点
|
||||
int rootValue = postorder[postorder.size() - 1];
|
||||
TreeNode* root = new TreeNode(rootValue);
|
||||
|
||||
// 叶子节点
|
||||
if (postorder.size() == 1) return root;
|
||||
|
||||
// 找到中序遍历的切割点
|
||||
int delimiterIndex;
|
||||
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
|
||||
if (inorder[delimiterIndex] == rootValue) break;
|
||||
}
|
||||
|
||||
// 切割中序数组
|
||||
// 左闭右开区间:[0, delimiterIndex)
|
||||
vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
|
||||
// [delimiterIndex + 1, end)
|
||||
vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );
|
||||
|
||||
// postorder 舍弃末尾元素
|
||||
postorder.resize(postorder.size() - 1);
|
||||
|
||||
// 切割后序数组
|
||||
// 依然左闭右开,注意这里使用了左中序数组大小作为切割点
|
||||
// [0, leftInorder.size)
|
||||
vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
|
||||
// [leftInorder.size(), end)
|
||||
vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());
|
||||
|
||||
root->left = traversal(leftInorder, leftPostorder);
|
||||
root->right = traversal(rightInorder, rightPostorder);
|
||||
|
||||
return root;
|
||||
}
|
||||
public:
|
||||
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
|
||||
if (inorder.size() == 0 || postorder.size() == 0) return NULL;
|
||||
return traversal(inorder, postorder);
|
||||
}
|
||||
};
|
||||
|
||||
```
|
||||
|
||||
相信大家自己就算是思路清晰, 代码写出来一定是各种问题,所以一定要加日志来调试,看看是不是按照自己思路来切割的,不要大脑模拟,那样越想越糊涂。
|
||||
|
||||
加了日志的代码如下:(加了日志的代码不要在leetcode上提交,容易超时)
|
||||
|
||||
|
||||
```
|
||||
class Solution {
|
||||
private:
|
||||
TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {
|
||||
if (postorder.size() == 0) return NULL;
|
||||
|
||||
int rootValue = postorder[postorder.size() - 1];
|
||||
TreeNode* root = new TreeNode(rootValue);
|
||||
|
||||
if (postorder.size() == 1) return root;
|
||||
|
||||
int delimiterIndex;
|
||||
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
|
||||
if (inorder[delimiterIndex] == rootValue) break;
|
||||
}
|
||||
|
||||
vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
|
||||
vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );
|
||||
|
||||
postorder.resize(postorder.size() - 1);
|
||||
|
||||
vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
|
||||
vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());
|
||||
|
||||
cout << "----------" << endl;
|
||||
|
||||
cout << "leftInorder :";
|
||||
for (int i : leftInorder) {
|
||||
cout << i << " ";
|
||||
}
|
||||
cout << endl;
|
||||
|
||||
cout << "rightInorder :";
|
||||
for (int i : rightInorder) {
|
||||
cout << i << " ";
|
||||
}
|
||||
cout << endl;
|
||||
|
||||
cout << "leftPostorder :";
|
||||
for (int i : leftPostorder) {
|
||||
cout << i << " ";
|
||||
}
|
||||
cout << endl;
|
||||
cout << "rightPostorder :";
|
||||
for (int i : rightPostorder) {
|
||||
cout << i << " ";
|
||||
}
|
||||
cout << endl;
|
||||
|
||||
root->left = traversal(leftInorder, leftPostorder);
|
||||
root->right = traversal(rightInorder, rightPostorder);
|
||||
|
||||
return root;
|
||||
}
|
||||
public:
|
||||
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
|
||||
if (inorder.size() == 0 || postorder.size() == 0) return NULL;
|
||||
return traversal(inorder, postorder);
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
**此时应该发现了,如上的代码性能并不好,应为每层递归定定义了新的vector,既耗时又耗空间,但是上面的代码是最好理解的,为了方便读者理解,所以用如上的代码来讲解。**
|
||||
|
||||
下面给出用下表索引写出的代码版本:(思路是一样的,只不过不用重复定义vector了,每次用下表索引来分割)
|
||||
|
||||
## C++最终优化版本
|
||||
```
|
||||
class Solution {
|
||||
private:
|
||||
// 中序区间:[inorderBegin, inorderEnd),后序区间[postorderBegin, postorderEnd)
|
||||
TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& postorder, int postorderBegin, int postorderEnd) {
|
||||
if (postorderBegin == postorderEnd) return NULL;
|
||||
|
||||
int rootValue = postorder[postorderEnd - 1];
|
||||
TreeNode* root = new TreeNode(rootValue);
|
||||
|
||||
if (postorderEnd - postorderBegin == 1) return root;
|
||||
|
||||
int delimiterIndex;
|
||||
for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
|
||||
if (inorder[delimiterIndex] == rootValue) break;
|
||||
}
|
||||
// 切割中序数组
|
||||
// 左中序区间,左闭右开[leftInorderBegin, leftInorderEnd)
|
||||
int leftInorderBegin = inorderBegin;
|
||||
int leftInorderEnd = delimiterIndex;
|
||||
// 右中序区间,左闭右开[rightInorderBegin, rightInorderEnd)
|
||||
int rightInorderBegin = delimiterIndex + 1;
|
||||
int rightInorderEnd = inorderEnd;
|
||||
|
||||
// 切割后序数组
|
||||
// 左后序区间,左闭右开[leftPostorderBegin, leftPostorderEnd)
|
||||
int leftPostorderBegin = postorderBegin;
|
||||
int leftPostorderEnd = postorderBegin + delimiterIndex - inorderBegin; // 终止位置是 需要加上 中序区间的大小size
|
||||
// 右后序区间,左闭右开[rightPostorderBegin, rightPostorderEnd)
|
||||
int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);
|
||||
int rightPostorderEnd = postorderEnd - 1; // 排除最后一个元素,已经作为节点了
|
||||
|
||||
root->left = traversal(inorder, leftInorderBegin, leftInorderEnd, postorder, leftPostorderBegin, leftPostorderEnd);
|
||||
root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);
|
||||
|
||||
return root;
|
||||
}
|
||||
public:
|
||||
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
|
||||
if (inorder.size() == 0 || postorder.size() == 0) return NULL;
|
||||
// 左闭右开的原则
|
||||
return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
那么这个版本写出来依然要打日志进行调试,打日志的版本如下:(**该版本不要在leetcode上提交,容易超时**)
|
||||
|
||||
```
|
||||
class Solution {
|
||||
private:
|
||||
TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& postorder, int postorderBegin, int postorderEnd) {
|
||||
if (postorderBegin == postorderEnd) return NULL;
|
||||
|
||||
int rootValue = postorder[postorderEnd - 1];
|
||||
TreeNode* root = new TreeNode(rootValue);
|
||||
|
||||
if (postorderEnd - postorderBegin == 1) return root;
|
||||
|
||||
int delimiterIndex;
|
||||
for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
|
||||
if (inorder[delimiterIndex] == rootValue) break;
|
||||
}
|
||||
// 切割中序数组
|
||||
// 左中序区间,左闭右开[leftInorderBegin, leftInorderEnd)
|
||||
int leftInorderBegin = inorderBegin;
|
||||
int leftInorderEnd = delimiterIndex;
|
||||
// 右中序区间,左闭右开[rightInorderBegin, rightInorderEnd)
|
||||
int rightInorderBegin = delimiterIndex + 1;
|
||||
int rightInorderEnd = inorderEnd;
|
||||
|
||||
// 切割后序数组
|
||||
// 左后序区间,左闭右开[leftPostorderBegin, leftPostorderEnd)
|
||||
int leftPostorderBegin = postorderBegin;
|
||||
int leftPostorderEnd = postorderBegin + delimiterIndex - inorderBegin; // 终止位置是 需要加上 中序区间的大小size
|
||||
// 右后序区间,左闭右开[rightPostorderBegin, rightPostorderEnd)
|
||||
int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);
|
||||
int rightPostorderEnd = postorderEnd - 1; // 排除最后一个元素,已经作为节点了
|
||||
|
||||
cout << "----------" << endl;
|
||||
cout << "leftInorder :";
|
||||
for (int i = leftInorderBegin; i < leftInorderEnd; i++) {
|
||||
cout << inorder[i] << " ";
|
||||
}
|
||||
cout << endl;
|
||||
|
||||
cout << "rightInorder :";
|
||||
for (int i = rightInorderBegin; i < rightInorderEnd; i++) {
|
||||
cout << inorder[i] << " ";
|
||||
}
|
||||
cout << endl;
|
||||
|
||||
cout << "leftpostorder :";
|
||||
for (int i = leftPostorderBegin; i < leftPostorderEnd; i++) {
|
||||
cout << postorder[i] << " ";
|
||||
}
|
||||
cout << endl;
|
||||
|
||||
cout << "rightpostorder :";
|
||||
for (int i = rightPostorderBegin; i < rightPostorderEnd; i++) {
|
||||
cout << postorder[i] << " ";
|
||||
}
|
||||
cout << endl;
|
||||
|
||||
root->left = traversal(inorder, leftInorderBegin, leftInorderEnd, postorder, leftPostorderBegin, leftPostorderEnd);
|
||||
root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);
|
||||
|
||||
return root;
|
||||
}
|
||||
public:
|
||||
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
|
||||
if (inorder.size() == 0 || postorder.size() == 0) return NULL;
|
||||
return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
# 105. 从前序与中序遍历序列构造二叉树
|
||||
|
||||
同样的道理
|
||||
|
||||
带日志的版本C++代码如下: (**带日志的版本仅用于调试,不要在leetcode上提交,会超时**)
|
||||
|
||||
```
|
||||
class Solution {
|
||||
private:
|
||||
TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& preorder, int preorderBegin, int preorderEnd) {
|
||||
if (preorderBegin == preorderEnd) return NULL;
|
||||
|
||||
int rootValue = preorder[preorderBegin]; // 注意用preorderBegin 不要用0
|
||||
TreeNode* root = new TreeNode(rootValue);
|
||||
|
||||
if (preorderEnd - preorderBegin == 1) return root;
|
||||
|
||||
int delimiterIndex;
|
||||
for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
|
||||
if (inorder[delimiterIndex] == rootValue) break;
|
||||
}
|
||||
// 切割中序数组
|
||||
// 中序左区间,左闭右开[leftInorderBegin, leftInorderEnd)
|
||||
int leftInorderBegin = inorderBegin;
|
||||
int leftInorderEnd = delimiterIndex;
|
||||
// 中序右区间,左闭右开[rightInorderBegin, rightInorderEnd)
|
||||
int rightInorderBegin = delimiterIndex + 1;
|
||||
int rightInorderEnd = inorderEnd;
|
||||
|
||||
// 切割前序数组
|
||||
// 前序左区间,左闭右开[leftPreorderBegin, leftPreorderEnd)
|
||||
int leftPreorderBegin = preorderBegin + 1;
|
||||
int leftPreorderEnd = preorderBegin + 1 + delimiterIndex - inorderBegin; // 终止位置是起始位置加上中序左区间的大小size
|
||||
// 前序右区间, 左闭右开[rightPreorderBegin, rightPreorderEnd)
|
||||
int rightPreorderBegin = preorderBegin + 1 + (delimiterIndex - inorderBegin);
|
||||
int rightPreorderEnd = preorderEnd;
|
||||
|
||||
cout << "----------" << endl;
|
||||
cout << "leftInorder :";
|
||||
for (int i = leftInorderBegin; i < leftInorderEnd; i++) {
|
||||
cout << inorder[i] << " ";
|
||||
}
|
||||
cout << endl;
|
||||
|
||||
cout << "rightInorder :";
|
||||
for (int i = rightInorderBegin; i < rightInorderEnd; i++) {
|
||||
cout << inorder[i] << " ";
|
||||
}
|
||||
cout << endl;
|
||||
|
||||
cout << "leftPreorder :";
|
||||
for (int i = leftPreorderBegin; i < leftPreorderEnd; i++) {
|
||||
cout << preorder[i] << " ";
|
||||
}
|
||||
cout << endl;
|
||||
|
||||
cout << "rightPreorder :";
|
||||
for (int i = rightPreorderBegin; i < rightPreorderEnd; i++) {
|
||||
cout << preorder[i] << " ";
|
||||
}
|
||||
cout << endl;
|
||||
|
||||
|
||||
root->left = traversal(inorder, leftInorderBegin, leftInorderEnd, preorder, leftPreorderBegin, leftPreorderEnd);
|
||||
root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, preorder, rightPreorderBegin, rightPreorderEnd);
|
||||
|
||||
return root;
|
||||
}
|
||||
|
||||
public:
|
||||
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
|
||||
if (inorder.size() == 0 || preorder.size() == 0) return NULL;
|
||||
return traversal(inorder, 0, inorder.size(), preorder, 0, preorder.size());
|
||||
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
105. 从前序与中序遍历序列构造二叉树,最后版本:
|
||||
|
||||
C++代码:
|
||||
```
|
||||
class Solution {
|
||||
private:
|
||||
TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& preorder, int preorderBegin, int preorderEnd) {
|
||||
if (preorderBegin == preorderEnd) return NULL;
|
||||
|
||||
int rootValue = preorder[preorderBegin]; // 注意用preorderBegin 不要用0
|
||||
TreeNode* root = new TreeNode(rootValue);
|
||||
|
||||
if (preorderEnd - preorderBegin == 1) return root;
|
||||
|
||||
int delimiterIndex;
|
||||
for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
|
||||
if (inorder[delimiterIndex] == rootValue) break;
|
||||
}
|
||||
// 切割中序数组
|
||||
// 中序左区间,左闭右开[leftInorderBegin, leftInorderEnd)
|
||||
int leftInorderBegin = inorderBegin;
|
||||
int leftInorderEnd = delimiterIndex;
|
||||
// 中序右区间,左闭右开[rightInorderBegin, rightInorderEnd)
|
||||
int rightInorderBegin = delimiterIndex + 1;
|
||||
int rightInorderEnd = inorderEnd;
|
||||
|
||||
// 切割前序数组
|
||||
// 前序左区间,左闭右开[leftPreorderBegin, leftPreorderEnd)
|
||||
int leftPreorderBegin = preorderBegin + 1;
|
||||
int leftPreorderEnd = preorderBegin + 1 + delimiterIndex - inorderBegin; // 终止位置是起始位置加上中序左区间的大小size
|
||||
// 前序右区间, 左闭右开[rightPreorderBegin, rightPreorderEnd)
|
||||
int rightPreorderBegin = preorderBegin + 1 + (delimiterIndex - inorderBegin);
|
||||
int rightPreorderEnd = preorderEnd;
|
||||
|
||||
root->left = traversal(inorder, leftInorderBegin, leftInorderEnd, preorder, leftPreorderBegin, leftPreorderEnd);
|
||||
root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, preorder, rightPreorderBegin, rightPreorderEnd);
|
||||
|
||||
return root;
|
||||
}
|
||||
|
||||
public:
|
||||
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
|
||||
if (inorder.size() == 0 || preorder.size() == 0) return NULL;
|
||||
|
||||
// 参数坚持左闭右开的原则
|
||||
return traversal(inorder, 0, inorder.size(), preorder, 0, preorder.size());
|
||||
}
|
||||
};
|
||||
```
|
35
problems/0429.N叉树的层序遍历.md
Normal file
@ -0,0 +1,35 @@
|
||||
|
||||
## 题目地址
|
||||
https://leetcode-cn.com/problems/sum-of-left-leaves/
|
||||
|
||||
## 思路
|
||||
|
||||
层序遍历,和 102题目一个套路
|
||||
|
||||
## C++代码
|
||||
|
||||
```
|
||||
class Solution {
|
||||
public:
|
||||
vector<vector<int>> levelOrder(Node* root) {
|
||||
queue<Node*> que;
|
||||
if (root != NULL) que.push(root);
|
||||
vector<vector<int>> result;
|
||||
while (!que.empty()) {
|
||||
int size = que.size();
|
||||
vector<int> vec;
|
||||
for (int i = 0; i < size; i++) { // 这里一定要使用固定大小size,不要使用que.size()
|
||||
Node* node = que.front();
|
||||
que.pop();
|
||||
vec.push_back(node->val);
|
||||
for (int i = 0; i < node->children.size(); i++) {
|
||||
if (node->children[i]) que.push(node->children[i]);
|
||||
}
|
||||
}
|
||||
result.push_back(vec);
|
||||
}
|
||||
return result;
|
||||
|
||||
}
|
||||
};
|
||||
```
|
56
problems/0589.N叉树的前序遍历.md
Normal file
@ -0,0 +1,56 @@
|
||||
## 题目地址
|
||||
https://leetcode-cn.com/problems/n-ary-tree-preorder-traversal/
|
||||
|
||||
## 思路
|
||||
|
||||
|
||||
|
||||
## 递归C++代码
|
||||
|
||||
```
|
||||
class Solution {
|
||||
private:
|
||||
vector<int> result;
|
||||
void traversal (Node* root) {
|
||||
if (root == NULL) return;
|
||||
result.push_back(root->val);
|
||||
for (int i = 0; i < root->children.size(); i++) {
|
||||
traversal(root->children[i]);
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
vector<int> preorder(Node* root) {
|
||||
result.clear();
|
||||
traversal(root);
|
||||
return result;
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
## 迭代法C++代码
|
||||
|
||||
```
|
||||
class Solution {
|
||||
|
||||
public:
|
||||
vector<int> preorder(Node* root) {
|
||||
vector<int> result;
|
||||
if (root == NULL) return result;
|
||||
stack<Node*> st;
|
||||
st.push(root);
|
||||
while (!st.empty()) {
|
||||
Node* node = st.top();
|
||||
st.pop();
|
||||
result.push_back(node->val);
|
||||
// 注意要倒叙,这样才能达到前序(中左右)的效果
|
||||
for (int i = node->children.size() - 1; i >= 0; i--) {
|
||||
if (node->children[i] != NULL) {
|
||||
st.push(node->children[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
};
|
||||
```
|
54
problems/0590.N叉树的后序遍历.md
Normal file
@ -0,0 +1,54 @@
|
||||
## 题目地址
|
||||
https://leetcode-cn.com/problems/n-ary-tree-postorder-traversal/
|
||||
## 思路
|
||||
|
||||
## 递归C++代码
|
||||
|
||||
```
|
||||
class Solution {
|
||||
private:
|
||||
vector<int> result;
|
||||
void traversal (Node* root) {
|
||||
if (root == NULL) return;
|
||||
for (int i = 0; i < root->children.size(); i++) { // 子孩子
|
||||
traversal(root->children[i]);
|
||||
}
|
||||
result.push_back(root->val); // 中
|
||||
|
||||
}
|
||||
|
||||
public:
|
||||
vector<int> postorder(Node* root) {
|
||||
result.clear();
|
||||
traversal(root);
|
||||
return result;
|
||||
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
## 迭代法C++代码
|
||||
|
||||
```
|
||||
class Solution {
|
||||
public:
|
||||
vector<int> postorder(Node* root) {
|
||||
vector<int> result;
|
||||
if (root == NULL) return result;
|
||||
stack<Node*> st;
|
||||
st.push(root);
|
||||
while (!st.empty()) {
|
||||
Node* node = st.top();
|
||||
st.pop();
|
||||
result.push_back(node->val);
|
||||
for (int i = 0; i < node->children.size(); i++) { // 相对于前序遍历,这里反过来
|
||||
if (node->children[i] != NULL) {
|
||||
st.push(node->children[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
reverse(result.begin(), result.end()); // 反转数组
|
||||
return result;
|
||||
}
|
||||
};
|
||||
```
|