mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-07-06 15:09:40 +08:00
Merge pull request #2675 from learnerInTheFirstStage/master
更新0094.城市间货物运输I.md Java版本解法
This commit is contained in:
@ -352,6 +352,77 @@ SPFA(队列优化版Bellman_ford) 在理论上 时间复杂度更胜一筹
|
||||
## 其他语言版本
|
||||
|
||||
### Java
|
||||
```Java
|
||||
import java.util.*;
|
||||
|
||||
public class Main {
|
||||
|
||||
// Define an inner class Edge
|
||||
static class Edge {
|
||||
int from;
|
||||
int to;
|
||||
int val;
|
||||
public Edge(int from, int to, int val) {
|
||||
this.from = from;
|
||||
this.to = to;
|
||||
this.val = val;
|
||||
}
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
// Input processing
|
||||
Scanner sc = new Scanner(System.in);
|
||||
int n = sc.nextInt();
|
||||
int m = sc.nextInt();
|
||||
List<List<Edge>> graph = new ArrayList<>();
|
||||
|
||||
for (int i = 0; i <= n; i++) {
|
||||
graph.add(new ArrayList<>());
|
||||
}
|
||||
|
||||
for (int i = 0; i < m; i++) {
|
||||
int from = sc.nextInt();
|
||||
int to = sc.nextInt();
|
||||
int val = sc.nextInt();
|
||||
graph.get(from).add(new Edge(from, to, val));
|
||||
}
|
||||
|
||||
// Declare the minDist array to record the minimum distance form current node to the original node
|
||||
int[] minDist = new int[n + 1];
|
||||
Arrays.fill(minDist, Integer.MAX_VALUE);
|
||||
minDist[1] = 0;
|
||||
|
||||
// Declare a queue to store the updated nodes instead of traversing all nodes each loop for more efficiency
|
||||
Queue<Integer> queue = new LinkedList<>();
|
||||
queue.offer(1);
|
||||
|
||||
// Declare a boolean array to record if the current node is in the queue to optimise the processing
|
||||
boolean[] isInQueue = new boolean[n + 1];
|
||||
|
||||
while (!queue.isEmpty()) {
|
||||
int curNode = queue.poll();
|
||||
isInQueue[curNode] = false; // Represents the current node is not in the queue after being polled
|
||||
for (Edge edge : graph.get(curNode)) {
|
||||
if (minDist[edge.to] > minDist[edge.from] + edge.val) { // Start relaxing the edge
|
||||
minDist[edge.to] = minDist[edge.from] + edge.val;
|
||||
if (!isInQueue[edge.to]) { // Don't add the node if it's already in the queue
|
||||
queue.offer(edge.to);
|
||||
isInQueue[edge.to] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Outcome printing
|
||||
if (minDist[n] == Integer.MAX_VALUE) {
|
||||
System.out.println("unconnected");
|
||||
} else {
|
||||
System.out.println(minDist[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
### Python
|
||||
|
||||
|
@ -392,6 +392,63 @@ Bellman_ford 是可以计算 负权值的单源最短路算法。
|
||||
## 其他语言版本
|
||||
|
||||
### Java
|
||||
```Java
|
||||
public class Main {
|
||||
|
||||
// Define an inner class Edge
|
||||
static class Edge {
|
||||
int from;
|
||||
int to;
|
||||
int val;
|
||||
public Edge(int from, int to, int val) {
|
||||
this.from = from;
|
||||
this.to = to;
|
||||
this.val = val;
|
||||
}
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
// Input processing
|
||||
Scanner sc = new Scanner(System.in);
|
||||
int n = sc.nextInt();
|
||||
int m = sc.nextInt();
|
||||
List<Edge> edges = new ArrayList<>();
|
||||
|
||||
for (int i = 0; i < m; i++) {
|
||||
int from = sc.nextInt();
|
||||
int to = sc.nextInt();
|
||||
int val = sc.nextInt();
|
||||
edges.add(new Edge(from, to, val));
|
||||
}
|
||||
|
||||
// Represents the minimum distance from the current node to the original node
|
||||
int[] minDist = new int[n + 1];
|
||||
|
||||
// Initialize the minDist array
|
||||
Arrays.fill(minDist, Integer.MAX_VALUE);
|
||||
minDist[1] = 0;
|
||||
|
||||
// Starts the loop to relax all edges n - 1 times to update minDist array
|
||||
for (int i = 1; i < n; i++) {
|
||||
|
||||
for (Edge edge : edges) {
|
||||
// Updates the minDist array
|
||||
if (minDist[edge.from] != Integer.MAX_VALUE && (minDist[edge.from] + edge.val) < minDist[edge.to]) {
|
||||
minDist[edge.to] = minDist[edge.from] + edge.val;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Outcome printing
|
||||
if (minDist[n] == Integer.MAX_VALUE) {
|
||||
System.out.println("unconnected");
|
||||
} else {
|
||||
System.out.println(minDist[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
### Python
|
||||
|
||||
|
@ -244,6 +244,92 @@ int main() {
|
||||
## 其他语言版本
|
||||
|
||||
### Java
|
||||
```Java
|
||||
import java.util.*;
|
||||
|
||||
public class Main {
|
||||
// 基于Bellman_ford-SPFA方法
|
||||
// Define an inner class Edge
|
||||
static class Edge {
|
||||
int from;
|
||||
int to;
|
||||
int val;
|
||||
public Edge(int from, int to, int val) {
|
||||
this.from = from;
|
||||
this.to = to;
|
||||
this.val = val;
|
||||
}
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
// Input processing
|
||||
Scanner sc = new Scanner(System.in);
|
||||
int n = sc.nextInt();
|
||||
int m = sc.nextInt();
|
||||
List<List<Edge>> graph = new ArrayList<>();
|
||||
|
||||
for (int i = 0; i <= n; i++) {
|
||||
graph.add(new ArrayList<>());
|
||||
}
|
||||
|
||||
for (int i = 0; i < m; i++) {
|
||||
int from = sc.nextInt();
|
||||
int to = sc.nextInt();
|
||||
int val = sc.nextInt();
|
||||
graph.get(from).add(new Edge(from, to, val));
|
||||
}
|
||||
|
||||
// Declare the minDist array to record the minimum distance form current node to the original node
|
||||
int[] minDist = new int[n + 1];
|
||||
Arrays.fill(minDist, Integer.MAX_VALUE);
|
||||
minDist[1] = 0;
|
||||
|
||||
// Declare a queue to store the updated nodes instead of traversing all nodes each loop for more efficiency
|
||||
Queue<Integer> queue = new LinkedList<>();
|
||||
queue.offer(1);
|
||||
|
||||
// Declare an array to record the times each node has been offered in the queue
|
||||
int[] count = new int[n + 1];
|
||||
count[1]++;
|
||||
|
||||
// Declare a boolean array to record if the current node is in the queue to optimise the processing
|
||||
boolean[] isInQueue = new boolean[n + 1];
|
||||
|
||||
// Declare a boolean value to check if there is a negative weight loop inside the graph
|
||||
boolean flag = false;
|
||||
|
||||
while (!queue.isEmpty()) {
|
||||
int curNode = queue.poll();
|
||||
isInQueue[curNode] = false; // Represents the current node is not in the queue after being polled
|
||||
for (Edge edge : graph.get(curNode)) {
|
||||
if (minDist[edge.to] > minDist[edge.from] + edge.val) { // Start relaxing the edge
|
||||
minDist[edge.to] = minDist[edge.from] + edge.val;
|
||||
if (!isInQueue[edge.to]) { // Don't add the node if it's already in the queue
|
||||
queue.offer(edge.to);
|
||||
count[edge.to]++;
|
||||
isInQueue[edge.to] = true;
|
||||
}
|
||||
|
||||
if (count[edge.to] == n) { // If some node has been offered in the queue more than n-1 times
|
||||
flag = true;
|
||||
while (!queue.isEmpty()) queue.poll();
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (flag) {
|
||||
System.out.println("circle");
|
||||
} else if (minDist[n] == Integer.MAX_VALUE) {
|
||||
System.out.println("unconnected");
|
||||
} else {
|
||||
System.out.println(minDist[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
### Python
|
||||
|
||||
|
@ -636,6 +636,71 @@ dijkstra 是贪心的思路 每一次搜索都只会找距离源点最近的非
|
||||
## 其他语言版本
|
||||
|
||||
### Java
|
||||
```Java
|
||||
import java.util.*;
|
||||
|
||||
public class Main {
|
||||
// 基于Bellman_for一般解法解决单源最短路径问题
|
||||
// Define an inner class Edge
|
||||
static class Edge {
|
||||
int from;
|
||||
int to;
|
||||
int val;
|
||||
public Edge(int from, int to, int val) {
|
||||
this.from = from;
|
||||
this.to = to;
|
||||
this.val = val;
|
||||
}
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
// Input processing
|
||||
Scanner sc = new Scanner(System.in);
|
||||
int n = sc.nextInt();
|
||||
int m = sc.nextInt();
|
||||
|
||||
List<Edge> graph = new ArrayList<>();
|
||||
|
||||
for (int i = 0; i < m; i++) {
|
||||
int from = sc.nextInt();
|
||||
int to = sc.nextInt();
|
||||
int val = sc.nextInt();
|
||||
graph.add(new Edge(from, to, val));
|
||||
}
|
||||
|
||||
int src = sc.nextInt();
|
||||
int dst = sc.nextInt();
|
||||
int k = sc.nextInt();
|
||||
|
||||
int[] minDist = new int[n + 1];
|
||||
int[] minDistCopy;
|
||||
|
||||
Arrays.fill(minDist, Integer.MAX_VALUE);
|
||||
minDist[src] = 0;
|
||||
|
||||
for (int i = 0; i < k + 1; i++) { // Relax all edges k + 1 times
|
||||
minDistCopy = Arrays.copyOf(minDist, n + 1);
|
||||
for (Edge edge : graph) {
|
||||
int from = edge.from;
|
||||
int to = edge.to;
|
||||
int val = edge.val;
|
||||
// Use minDistCopy to calculate minDist
|
||||
if (minDistCopy[from] != Integer.MAX_VALUE && minDist[to] > minDistCopy[from] + val) {
|
||||
minDist[to] = minDistCopy[from] + val;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Output printing
|
||||
if (minDist[dst] == Integer.MAX_VALUE) {
|
||||
System.out.println("unreachable");
|
||||
} else {
|
||||
System.out.println(minDist[dst]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
### Python
|
||||
|
||||
|
Reference in New Issue
Block a user