diff --git a/problems/0019.删除链表的倒数第N个节点.md b/problems/0019.删除链表的倒数第N个节点.md
index 813e9b02..b3030a81 100644
--- a/problems/0019.删除链表的倒数第N个节点.md
+++ b/problems/0019.删除链表的倒数第N个节点.md
@@ -39,7 +39,7 @@
分为如下几步:
-* 首先这里我推荐大家使用虚拟头结点,这样方面处理删除实际头结点的逻辑,如果虚拟头结点不清楚,可以看这篇: [链表:听说用虚拟头节点会方便很多?](https://programmercarl.com/0203.移除链表元素.html)
+* 首先这里我推荐大家使用虚拟头结点,这样方便处理删除实际头结点的逻辑,如果虚拟头结点不清楚,可以看这篇: [链表:听说用虚拟头节点会方便很多?](https://programmercarl.com/0203.移除链表元素.html)
* 定义fast指针和slow指针,初始值为虚拟头结点,如图:
diff --git a/problems/0027.移除元素.md b/problems/0027.移除元素.md
index 590cf0b9..3a93ac88 100644
--- a/problems/0027.移除元素.md
+++ b/problems/0027.移除元素.md
@@ -81,7 +81,7 @@ public:
**双指针法(快慢指针法)在数组和链表的操作中是非常常见的,很多考察数组、链表、字符串等操作的面试题,都使用双指针法。**
-后序都会一一介绍到,本题代码如下:
+后续都会一一介绍到,本题代码如下:
```CPP
// 时间复杂度:O(n)
diff --git a/problems/0112.路径总和.md b/problems/0112.路径总和.md
index 2fdd7741..d3eec16b 100644
--- a/problems/0112.路径总和.md
+++ b/problems/0112.路径总和.md
@@ -1006,6 +1006,126 @@ func traversal(_ cur: TreeNode?, count: Int) {
}
```
+## C
+> 0112.路径总和
+递归法:
+```c
+bool hasPathSum(struct TreeNode* root, int targetSum){
+ // 递归结束条件:若当前节点不存在,返回false
+ if(!root)
+ return false;
+ // 若当前节点为叶子节点,且targetSum-root的值为0。(当前路径上的节点值的和满足条件)返回true
+ if(!root->right && !root->left && targetSum == root->val)
+ return true;
+
+ // 查看左子树和右子树的所有节点是否满足条件
+ return hasPathSum(root->right, targetSum - root->val) || hasPathSum(root->left, targetSum - root->val);
+}
+```
+
+迭代法:
+```c
+// 存储一个节点以及当前的和
+struct Pair {
+ struct TreeNode* node;
+ int sum;
+};
+
+bool hasPathSum(struct TreeNode* root, int targetSum){
+ struct Pair stack[1000];
+ int stackTop = 0;
+
+ // 若root存在,则将节点和值封装成一个pair入栈
+ if(root) {
+ struct Pair newPair = {root, root->val};
+ stack[stackTop++] = newPair;
+ }
+
+ // 当栈不为空时
+ while(stackTop) {
+ // 出栈栈顶元素
+ struct Pair topPair = stack[--stackTop];
+ // 若栈顶元素为叶子节点,且和为targetSum时,返回true
+ if(!topPair.node->left && !topPair.node->right && topPair.sum == targetSum)
+ return true;
+
+ // 若当前栈顶节点有左右孩子,计算和并入栈
+ if(topPair.node->left) {
+ struct Pair newPair = {topPair.node->left, topPair.sum + topPair.node->left->val};
+ stack[stackTop++] = newPair;
+ }
+ if(topPair.node->right) {
+ struct Pair newPair = {topPair.node->right, topPair.sum + topPair.node->right->val};
+ stack[stackTop++] = newPair;
+ }
+ }
+ return false;
+}
+```
+> 0113.路径总和 II
+```c
+int** ret;
+int* path;
+int* colSize;
+int retTop;
+int pathTop;
+
+void traversal(const struct TreeNode* const node, int count) {
+ // 若当前节点为叶子节点
+ if(!node->right && !node->left) {
+ // 若当前path上的节点值总和等于targetSum。
+ if(count == 0) {
+ // 复制当前path
+ int *curPath = (int*)malloc(sizeof(int) * pathTop);
+ memcpy(curPath, path, sizeof(int) * pathTop);
+ // 记录当前path的长度为pathTop
+ colSize[retTop] = pathTop;
+ // 将当前path加入到ret数组中
+ ret[retTop++] = curPath;
+ }
+ return;
+ }
+
+ // 若节点有左/右孩子
+ if(node->left) {
+ // 将左孩子的值加入path中
+ path[pathTop++] = node->left->val;
+ traversal(node->left, count - node->left->val);
+ // 回溯
+ pathTop--;
+ }
+ if(node->right) {
+ // 将右孩子的值加入path中
+ path[pathTop++] = node->right->val;
+ traversal(node->right, count - node->right->val);
+ // 回溯
+ --pathTop;
+ }
+}
+
+int** pathSum(struct TreeNode* root, int targetSum, int* returnSize, int** returnColumnSizes){
+ // 初始化数组
+ ret = (int**)malloc(sizeof(int*) * 1000);
+ path = (int*)malloc(sizeof(int*) * 1000);
+ colSize = (int*)malloc(sizeof(int) * 1000);
+ retTop = pathTop = 0;
+ *returnSize = 0;
+
+ // 若根节点不存在,返回空的ret
+ if(!root)
+ return ret;
+ // 将根节点加入到path中
+ path[pathTop++] = root->val;
+ traversal(root, targetSum - root->val);
+
+ // 设置返回ret数组大小,以及其中每个一维数组元素的长度
+ *returnSize = retTop;
+ *returnColumnSizes = colSize;
+
+ return ret;
+}
+```
+
-----------------------
diff --git a/problems/0139.单词拆分.md b/problems/0139.单词拆分.md
index ac834f04..5b4e92b9 100644
--- a/problems/0139.单词拆分.md
+++ b/problems/0139.单词拆分.md
@@ -345,6 +345,48 @@ const wordBreak = (s, wordDict) => {
}
```
+TypeScript:
+
+> 动态规划
+
+```typescript
+function wordBreak(s: string, wordDict: string[]): boolean {
+ const dp: boolean[] = new Array(s.length + 1).fill(false);
+ dp[0] = true;
+ for (let i = 1; i <= s.length; i++) {
+ for (let j = 0; j < i; j++) {
+ const tempStr: string = s.slice(j, i);
+ if (wordDict.includes(tempStr) && dp[j] === true) {
+ dp[i] = true;
+ break;
+ }
+ }
+ }
+ return dp[s.length];
+};
+```
+
+> 记忆化回溯
+
+```typescript
+function wordBreak(s: string, wordDict: string[]): boolean {
+ // 只需要记忆结果为false的情况
+ const memory: boolean[] = [];
+ return backTracking(s, wordDict, 0, memory);
+ function backTracking(s: string, wordDict: string[], startIndex: number, memory: boolean[]): boolean {
+ if (startIndex >= s.length) return true;
+ if (memory[startIndex] === false) return false;
+ for (let i = startIndex + 1, length = s.length; i <= length; i++) {
+ const str: string = s.slice(startIndex, i);
+ if (wordDict.includes(str) && backTracking(s, wordDict, i, memory))
+ return true;
+ }
+ memory[startIndex] = false;
+ return false;
+ }
+};
+```
+
-----------------------
diff --git a/problems/0198.打家劫舍.md b/problems/0198.打家劫舍.md
index dfe1f3a0..a828b9a9 100644
--- a/problems/0198.打家劫舍.md
+++ b/problems/0198.打家劫舍.md
@@ -189,6 +189,29 @@ const rob = nums => {
};
```
+TypeScript:
+
+```typescript
+function rob(nums: number[]): number {
+ /**
+ dp[i]: 前i个房屋能偷到的最大金额
+ dp[0]: nums[0];
+ dp[1]: max(nums[0], nums[1]);
+ ...
+ dp[i]: max(dp[i-1], dp[i-2]+nums[i]);
+ */
+ const length: number = nums.length;
+ if (length === 1) return nums[0];
+ const dp: number[] = [];
+ dp[0] = nums[0];
+ dp[1] = Math.max(nums[0], nums[1]);
+ for (let i = 2; i < length; i++) {
+ dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
+ }
+ return dp[length - 1];
+};
+```
+
diff --git a/problems/0209.长度最小的子数组.md b/problems/0209.长度最小的子数组.md
index d31cba3f..fbef7692 100644
--- a/problems/0209.长度最小的子数组.md
+++ b/problems/0209.长度最小的子数组.md
@@ -400,6 +400,54 @@ class Solution {
}
}
```
+Scala:
+
+滑动窗口:
+```scala
+object Solution {
+ def minSubArrayLen(target: Int, nums: Array[Int]): Int = {
+ var result = Int.MaxValue // 返回结果,默认最大值
+ var left = 0 // 慢指针,当sum>=target,向右移动
+ var sum = 0 // 窗口值的总和
+ for (right <- 0 until nums.length) {
+ sum += nums(right)
+ while (sum >= target) {
+ result = math.min(result, right - left + 1) // 产生新结果
+ sum -= nums(left) // 左指针移动,窗口总和减去左指针的值
+ left += 1 // 左指针向右移动
+ }
+ }
+ // 相当于三元运算符,return关键字可以省略
+ if (result == Int.MaxValue) 0 else result
+ }
+}
+```
+
+暴力解法:
+```scala
+object Solution {
+ def minSubArrayLen(target: Int, nums: Array[Int]): Int = {
+ import scala.util.control.Breaks
+ var res = Int.MaxValue
+ var subLength = 0
+ for (i <- 0 until nums.length) {
+ var sum = 0
+ Breaks.breakable(
+ for (j <- i until nums.length) {
+ sum += nums(j)
+ if (sum >= target) {
+ subLength = j - i + 1
+ res = math.min(subLength, res)
+ Breaks.break()
+ }
+ }
+ )
+ }
+ // 相当于三元运算符
+ if (res == Int.MaxValue) 0 else res
+ }
+}
+```
-----------------------
diff --git a/problems/0213.打家劫舍II.md b/problems/0213.打家劫舍II.md
index 8e569e46..9e698d01 100644
--- a/problems/0213.打家劫舍II.md
+++ b/problems/0213.打家劫舍II.md
@@ -165,7 +165,30 @@ const robRange = (nums, start, end) => {
return dp[end]
}
```
+TypeScript:
+
+```typescript
+function rob(nums: number[]): number {
+ const length: number = nums.length;
+ if (length === 0) return 0;
+ if (length === 1) return nums[0];
+ return Math.max(robRange(nums, 0, length - 2),
+ robRange(nums, 1, length - 1));
+};
+function robRange(nums: number[], start: number, end: number): number {
+ if (start === end) return nums[start];
+ const dp: number[] = [];
+ dp[start] = nums[start];
+ dp[start + 1] = Math.max(nums[start], nums[start + 1]);
+ for (let i = start + 2; i <= end; i++) {
+ dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
+ }
+ return dp[end];
+}
+```
+
Go:
+
```go
// 打家劫舍Ⅱ 动态规划
// 时间复杂度O(n) 空间复杂度O(n)
diff --git a/problems/0279.完全平方数.md b/problems/0279.完全平方数.md
index 9bad2085..5b15639c 100644
--- a/problems/0279.完全平方数.md
+++ b/problems/0279.完全平方数.md
@@ -355,5 +355,24 @@ var numSquares2 = function(n) {
};
```
+TypeScript:
+
+```typescript
+function numSquares(n: number): number {
+ const goodsNum: number = Math.floor(Math.sqrt(n));
+ const dp: number[] = new Array(n + 1).fill(Infinity);
+ dp[0] = 0;
+ for (let i = 1; i <= goodsNum; i++) {
+ const tempVal: number = i * i;
+ for (let j = tempVal; j <= n; j++) {
+ dp[j] = Math.min(dp[j], dp[j - tempVal] + 1);
+ }
+ }
+ return dp[n];
+};
+```
+
+
+
-----------------------
diff --git a/problems/0416.分割等和子集.md b/problems/0416.分割等和子集.md
index 61565bc2..eb6601e1 100644
--- a/problems/0416.分割等和子集.md
+++ b/problems/0416.分割等和子集.md
@@ -416,6 +416,108 @@ var canPartition = function(nums) {
};
```
+
+C:
+二维dp:
+```c
+/**
+1. dp数组含义:dp[i][j]为背包重量为j时,从[0-i]元素和最大值
+2. 递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - nums[i]] + nums[i])
+3. 初始化:dp[i][0]初始化为0。因为背包重量为0时,不可能放入元素。dp[0][j] = nums[0],当j >= nums[0] && j < target时
+4. 遍历顺序:先遍历物品,再遍历背包
+*/
+#define MAX(a, b) (((a) > (b)) ? (a) : (b))
+
+int getSum(int* nums, int numsSize) {
+ int sum = 0;
+
+ int i;
+ for(i = 0; i < numsSize; ++i) {
+ sum += nums[i];
+ }
+ return sum;
+}
+
+bool canPartition(int* nums, int numsSize){
+ // 求出元素总和
+ int sum = getSum(nums, numsSize);
+ // 若元素总和为奇数,则不可能得到两个和相等的子数组
+ if(sum % 2)
+ return false;
+
+ // 若子数组的和等于target,则nums可以被分割
+ int target = sum / 2;
+ // 初始化dp数组
+ int dp[numsSize][target + 1];
+ // dp[j][0]都应被设置为0。因为当背包重量为0时,不可放入元素
+ memset(dp, 0, sizeof(int) * numsSize * (target + 1));
+
+ int i, j;
+ // 当背包重量j大于nums[0]时,可以在dp[0][j]中放入元素nums[0]
+ for(j = nums[0]; j <= target; ++j) {
+ dp[0][j] = nums[0];
+ }
+
+ for(i = 1; i < numsSize; ++i) {
+ for(j = 1; j <= target; ++j) {
+ // 若当前背包重量j小于nums[i],则其值等于只考虑0到i-1物品时的值
+ if(j < nums[i])
+ dp[i][j] = dp[i - 1][j];
+ // 否则,背包重量等于在背包中放入num[i]/不放入nums[i]的较大值
+ else
+ dp[i][j] = MAX(dp[i - 1][j], dp[i - 1][j - nums[i]] + nums[i]);
+ }
+ }
+ // 判断背包重量为target,且考虑到所有物品时,放入的元素和是否等于target
+ return dp[numsSize - 1][target] == target;
+}
+```
+滚动数组:
+```c
+/**
+1. dp数组含义:dp[j]为背包重量为j时,其中可放入元素的最大值
+2. 递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i])
+3. 初始化:均初始化为0即可
+4. 遍历顺序:先遍历物品,再后序遍历背包
+*/
+#define MAX(a, b) (((a) > (b)) ? (a) : (b))
+
+int getSum(int* nums, int numsSize) {
+ int sum = 0;
+
+ int i;
+ for(i = 0; i < numsSize; ++i) {
+ sum += nums[i];
+ }
+ return sum;
+}
+
+bool canPartition(int* nums, int numsSize){
+ // 求出元素总和
+ int sum = getSum(nums, numsSize);
+ // 若元素总和为奇数,则不可能得到两个和相等的子数组
+ if(sum % 2)
+ return false;
+ // 背包容量
+ int target = sum / 2;
+
+ // 初始化dp数组,元素均为0
+ int dp[target + 1];
+ memset(dp, 0, sizeof(int) * (target + 1));
+
+ int i, j;
+ // 先遍历物品,后遍历背包
+ for(i = 0; i < numsSize; ++i) {
+ for(j = target; j >= nums[i]; --j) {
+ dp[j] = MAX(dp[j], dp[j - nums[i]] + nums[i]);
+ }
+ }
+
+ // 查看背包容量为target时,元素总和是否等于target
+ return dp[target] == target;
+}
+```
+
TypeScript:
> 一维数组,简洁
diff --git a/problems/0701.二叉搜索树中的插入操作.md b/problems/0701.二叉搜索树中的插入操作.md
index df6a3954..50e39ade 100644
--- a/problems/0701.二叉搜索树中的插入操作.md
+++ b/problems/0701.二叉搜索树中的插入操作.md
@@ -279,7 +279,7 @@ class Solution:
root.right = self.insertIntoBST(root.right, val)
# 返回更新后的以当前root为根节点的新树
- return roo
+ return root
```
**递归法** - 无返回值
diff --git a/problems/0977.有序数组的平方.md b/problems/0977.有序数组的平方.md
index 24276bcf..0e79a3d6 100644
--- a/problems/0977.有序数组的平方.md
+++ b/problems/0977.有序数组的平方.md
@@ -358,7 +358,41 @@ class Solution {
}
}
```
+Scala:
+双指针:
+```scala
+object Solution {
+ def sortedSquares(nums: Array[Int]): Array[Int] = {
+ val res: Array[Int] = new Array[Int](nums.length)
+ var top = nums.length - 1
+ var i = 0
+ var j = nums.length - 1
+ while (i <= j) {
+ if (nums(i) * nums(i) <= nums(j) * nums(j)) {
+ // 当左侧平方小于等于右侧,res数组顶部放右侧的平方,并且top下移,j左移
+ res(top) = nums(j) * nums(j)
+ top -= 1
+ j -= 1
+ } else {
+ // 当左侧平方大于右侧,res数组顶部放左侧的平方,并且top下移,i右移
+ res(top) = nums(i) * nums(i)
+ top -= 1
+ i += 1
+ }
+ }
+ res
+ }
+}
+```
+骚操作(暴力思路):
+```scala
+object Solution {
+ def sortedSquares(nums: Array[Int]): Array[Int] = {
+ nums.map(x=>{x*x}).sortWith(_ < _)
+ }
+}
+```
-----------------------
diff --git a/problems/背包理论基础01背包-1.md b/problems/背包理论基础01背包-1.md
index 36daffcf..d2ab191a 100644
--- a/problems/背包理论基础01背包-1.md
+++ b/problems/背包理论基础01背包-1.md
@@ -432,6 +432,54 @@ function test () {
test();
```
+
+### C
+```c
+#include
+#include
+#include
+
+#define MAX(a, b) (((a) > (b)) ? (a) : (b))
+#define ARR_SIZE(a) (sizeof((a)) / sizeof((a)[0]))
+#define BAG_WEIGHT 4
+
+void backPack(int* weights, int weightSize, int* costs, int costSize, int bagWeight) {
+ // 开辟dp数组
+ int dp[weightSize][bagWeight + 1];
+ memset(dp, 0, sizeof(int) * weightSize * (bagWeight + 1));
+
+ int i, j;
+ // 当背包容量大于物品0的重量时,将物品0放入到背包中
+ for(j = weights[0]; j <= bagWeight; ++j) {
+ dp[0][j] = costs[0];
+ }
+
+ // 先遍历物品,再遍历重量
+ for(j = 1; j <= bagWeight; ++j) {
+ for(i = 1; i < weightSize; ++i) {
+ // 如果当前背包容量小于物品重量
+ if(j < weights[i])
+ // 背包物品的价值等于背包不放置当前物品时的价值
+ dp[i][j] = dp[i-1][j];
+ // 若背包当前重量可以放置物品
+ else
+ // 背包的价值等于放置该物品或不放置该物品的最大值
+ dp[i][j] = MAX(dp[i - 1][j], dp[i - 1][j - weights[i]] + costs[i]);
+ }
+ }
+
+ printf("%d\n", dp[weightSize - 1][bagWeight]);
+}
+
+int main(int argc, char* argv[]) {
+ int weights[] = {1, 3, 4};
+ int costs[] = {15, 20, 30};
+ backPack(weights, ARR_SIZE(weights), costs, ARR_SIZE(costs), BAG_WEIGHT);
+ return 0;
+}
+```
+
+
### TypeScript
```typescript
diff --git a/problems/背包理论基础01背包-2.md b/problems/背包理论基础01背包-2.md
index bb5e3a03..b66b74a6 100644
--- a/problems/背包理论基础01背包-2.md
+++ b/problems/背包理论基础01背包-2.md
@@ -137,6 +137,8 @@ dp[1] = dp[1 - weight[0]] + value[0] = 15
因为一维dp的写法,背包容量一定是要倒序遍历(原因上面已经讲了),如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。
+倒序遍历的原因是,本质上还是一个对二维数组的遍历,并且右下角的值依赖上一层左上角的值,因此需要保证左边的值仍然是上一层的,从右向左覆盖。
+
(这里如果读不懂,就在回想一下dp[j]的定义,或者就把两个for循环顺序颠倒一下试试!)
**所以一维dp数组的背包在遍历顺序上和二维其实是有很大差异的!**,这一点大家一定要注意。
@@ -315,6 +317,40 @@ function test () {
test();
```
+### C
+```c
+#include
+#include
+
+#define MAX(a, b) (((a) > (b)) ? (a) : (b))
+#define ARR_SIZE(arr) ((sizeof((arr))) / sizeof((arr)[0]))
+#define BAG_WEIGHT 4
+
+void test_back_pack(int* weights, int weightSize, int* values, int valueSize, int bagWeight) {
+ int dp[bagWeight + 1];
+ memset(dp, 0, sizeof(int) * (bagWeight + 1));
+
+ int i, j;
+ // 先遍历物品
+ for(i = 0; i < weightSize; ++i) {
+ // 后遍历重量。从后向前遍历
+ for(j = bagWeight; j >= weights[i]; --j) {
+ dp[j] = MAX(dp[j], dp[j - weights[i]] + values[i]);
+ }
+ }
+
+ // 打印最优结果
+ printf("%d\n", dp[bagWeight]);
+}
+
+int main(int argc, char** argv) {
+ int weights[] = {1, 3, 4};
+ int values[] = {15, 20, 30};
+ test_back_pack(weights, ARR_SIZE(weights), values, ARR_SIZE(values), BAG_WEIGHT);
+ return 0;
+}
+```
+
### TypeScript
```typescript
diff --git a/problems/背包问题理论基础多重背包.md b/problems/背包问题理论基础多重背包.md
index a988db2c..712380f4 100644
--- a/problems/背包问题理论基础多重背包.md
+++ b/problems/背包问题理论基础多重背包.md
@@ -334,6 +334,64 @@ func Test_multiplePack(t *testing.T) {
PASS
```
+TypeScript:
+
+> 版本一(改变数据源):
+
+```typescript
+function testMultiPack() {
+ const bagSize: number = 10;
+ const weightArr: number[] = [1, 3, 4],
+ valueArr: number[] = [15, 20, 30],
+ amountArr: number[] = [2, 3, 2];
+ for (let i = 0, length = amountArr.length; i < length; i++) {
+ while (amountArr[i] > 1) {
+ weightArr.push(weightArr[i]);
+ valueArr.push(valueArr[i]);
+ amountArr[i]--;
+ }
+ }
+ const goodsNum: number = weightArr.length;
+ const dp: number[] = new Array(bagSize + 1).fill(0);
+ // 遍历物品
+ for (let i = 0; i < goodsNum; i++) {
+ // 遍历背包容量
+ for (let j = bagSize; j >= weightArr[i]; j--) {
+ dp[j] = Math.max(dp[j], dp[j - weightArr[i]] + valueArr[i]);
+ }
+ }
+ console.log(dp);
+}
+testMultiPack();
+```
+
+> 版本二(改变遍历方式):
+
+```typescript
+function testMultiPack() {
+ const bagSize: number = 10;
+ const weightArr: number[] = [1, 3, 4],
+ valueArr: number[] = [15, 20, 30],
+ amountArr: number[] = [2, 3, 2];
+ const goodsNum: number = weightArr.length;
+ const dp: number[] = new Array(bagSize + 1).fill(0);
+ // 遍历物品
+ for (let i = 0; i < goodsNum; i++) {
+ // 遍历物品个数
+ for (let j = 0; j < amountArr[i]; j++) {
+ // 遍历背包容量
+ for (let k = bagSize; k >= weightArr[i]; k--) {
+ dp[k] = Math.max(dp[k], dp[k - weightArr[i]] + valueArr[i]);
+ }
+ }
+ }
+ console.log(dp);
+}
+testMultiPack();
+```
+
+
+
-----------------------