mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-07-09 03:34:02 +08:00
@ -296,24 +296,91 @@ class Solution {
|
|||||||
```
|
```
|
||||||
|
|
||||||
## Python
|
## Python
|
||||||
```python
|
**回溯+巧妙去重(省去使用used**
|
||||||
|
```python3
|
||||||
class Solution:
|
class Solution:
|
||||||
|
def __init__(self):
|
||||||
|
self.paths = []
|
||||||
|
self.path = []
|
||||||
|
|
||||||
def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
|
def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
|
||||||
res = []
|
'''
|
||||||
path = []
|
类似于求三数之和,求四数之和,为了避免重复组合,需要提前进行数组排序
|
||||||
def backtrack(candidates,target,sum,startIndex):
|
'''
|
||||||
if sum == target: res.append(path[:])
|
self.paths.clear()
|
||||||
for i in range(startIndex,len(candidates)): #要对同一树层使用过的元素进行跳过
|
self.path.clear()
|
||||||
if sum + candidates[i] > target: return
|
# 必须提前进行数组排序,避免重复
|
||||||
if i > startIndex and candidates[i] == candidates[i-1]: continue #直接用startIndex来去重,要对同一树层使用过的元素进行跳过
|
candidates.sort()
|
||||||
sum += candidates[i]
|
self.backtracking(candidates, target, 0, 0)
|
||||||
path.append(candidates[i])
|
return self.paths
|
||||||
backtrack(candidates,target,sum,i+1) #i+1:每个数字在每个组合中只能使用一次
|
|
||||||
sum -= candidates[i] #回溯
|
def backtracking(self, candidates: List[int], target: int, sum_: int, start_index: int) -> None:
|
||||||
path.pop() #回溯
|
# Base Case
|
||||||
candidates = sorted(candidates) #首先把给candidates排序,让其相同的元素都挨在一起。
|
if sum_ == target:
|
||||||
backtrack(candidates,target,0,0)
|
self.paths.append(self.path[:])
|
||||||
return res
|
return
|
||||||
|
|
||||||
|
# 单层递归逻辑
|
||||||
|
for i in range(start_index, len(candidates)):
|
||||||
|
# 剪枝,同39.组合总和
|
||||||
|
if sum_ + candidates[i] > target:
|
||||||
|
return
|
||||||
|
|
||||||
|
# 跳过同一树层使用过的元素
|
||||||
|
if i > start_index and candidates[i] == candidates[i-1]:
|
||||||
|
continue
|
||||||
|
|
||||||
|
sum_ += candidates[i]
|
||||||
|
self.path.append(candidates[i])
|
||||||
|
self.backtracking(candidates, target, sum_, i+1)
|
||||||
|
self.path.pop() # 回溯,为了下一轮for loop
|
||||||
|
sum_ -= candidates[i] # 回溯,为了下一轮for loop
|
||||||
|
```
|
||||||
|
**回溯+去重(使用used)**
|
||||||
|
```python3
|
||||||
|
class Solution:
|
||||||
|
def __init__(self):
|
||||||
|
self.paths = []
|
||||||
|
self.path = []
|
||||||
|
self.used = []
|
||||||
|
|
||||||
|
def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
|
||||||
|
'''
|
||||||
|
类似于求三数之和,求四数之和,为了避免重复组合,需要提前进行数组排序
|
||||||
|
本题需要使用used,用来标记区别同一树层的元素使用重复情况:注意区分递归纵向遍历遇到的重复元素,和for循环遇到的重复元素,这两者的区别
|
||||||
|
'''
|
||||||
|
self.paths.clear()
|
||||||
|
self.path.clear()
|
||||||
|
self.usage_list = [False] * len(candidates)
|
||||||
|
# 必须提前进行数组排序,避免重复
|
||||||
|
candidates.sort()
|
||||||
|
self.backtracking(candidates, target, 0, 0)
|
||||||
|
return self.paths
|
||||||
|
|
||||||
|
def backtracking(self, candidates: List[int], target: int, sum_: int, start_index: int) -> None:
|
||||||
|
# Base Case
|
||||||
|
if sum_ == target:
|
||||||
|
self.paths.append(self.path[:])
|
||||||
|
return
|
||||||
|
|
||||||
|
# 单层递归逻辑
|
||||||
|
for i in range(start_index, len(candidates)):
|
||||||
|
# 剪枝,同39.组合总和
|
||||||
|
if sum_ + candidates[i] > target:
|
||||||
|
return
|
||||||
|
|
||||||
|
# 检查同一树层是否出现曾经使用过的相同元素
|
||||||
|
# 若数组中前后元素值相同,但前者却未被使用(used == False),说明是for loop中的同一树层的相同元素情况
|
||||||
|
if i > 0 and candidates[i] == candidates[i-1] and self.usage_list[i-1] == False:
|
||||||
|
continue
|
||||||
|
|
||||||
|
sum_ += candidates[i]
|
||||||
|
self.path.append(candidates[i])
|
||||||
|
self.usage_list[i] = True
|
||||||
|
self.backtracking(candidates, target, sum_, i+1)
|
||||||
|
self.usage_list[i] = False # 回溯,为了下一轮for loop
|
||||||
|
self.path.pop() # 回溯,为了下一轮for loop
|
||||||
|
sum_ -= candidates[i] # 回溯,为了下一轮for loop
|
||||||
```
|
```
|
||||||
|
|
||||||
## Go:
|
## Go:
|
||||||
|
Reference in New Issue
Block a user