Merge branch 'youngyangyang04:master' into master

This commit is contained in:
X-shuffle
2021-06-14 21:55:14 +08:00
4 changed files with 117 additions and 2 deletions

View File

@ -332,6 +332,66 @@ func maxSlidingWindow(nums []int, k int) []int {
```
```go
// 封装单调队列的方式解题
type MyQueue struct {
queue []int
}
func NewMyQueue() *MyQueue {
return &MyQueue{
queue: make([]int, 0),
}
}
func (m *MyQueue) Front() int {
return m.queue[0]
}
func (m *MyQueue) Back() int {
return m.queue[len(m.queue)-1]
}
func (m *MyQueue) Empty() bool {
return len(m.queue) == 0
}
func (m *MyQueue) Push(val int) {
for !m.Empty() && val > m.Back() {
m.queue = m.queue[:len(m.queue)-1]
}
m.queue = append(m.queue, val)
}
func (m *MyQueue) Pop(val int) {
if !m.Empty() && val == m.Front() {
m.queue = m.queue[1:]
}
}
func maxSlidingWindow(nums []int, k int) []int {
queue := NewMyQueue()
length := len(nums)
res := make([]int, 0)
// 先将前k个元素放入队列
for i := 0; i < k; i++ {
queue.Push(nums[i])
}
// 记录前k个元素的最大值
res = append(res, queue.Front())
for i := k; i < length; i++ {
// 滑动窗口移除最前面的元素
queue.Pop(nums[i-k])
// 滑动窗口添加最后面的元素
queue.Push(nums[i])
// 记录最大值
res = append(res, queue.Front())
}
return res
}
```
Javascript:
```javascript
var maxSlidingWindow = function (nums, k) {

View File

@ -130,7 +130,27 @@ class Solution:
return True
```
Python写法二没有使用数组作为哈希表只是介绍defaultdict这样一种解题思路
```python
class Solution:
def isAnagram(self, s: str, t: str) -> bool:
from collections import defaultdict
s_dict = defaultdict(int)
t_dict = defaultdict(int)
for x in s:
s_dict[x] += 1
for x in t:
t_dict[x] += 1
return s_dict == t_dict
```
Go
```go
func isAnagram(s string, t string) bool {
if len(s)!=len(t){

View File

@ -218,7 +218,7 @@ class Solution:
# 假设对正整数 i 拆分出的第一个正整数是 j1 <= j < i则有以下两种方案
# 1) 将 i 拆分成 j 和 ij 的和,且 ij 不再拆分成多个正整数,此时的乘积是 j * (i-j)
# 2) 将 i 拆分成 j 和 ij 的和,且 ij 继续拆分成多个正整数,此时的乘积是 j * dp[i-j]
for j in range(1, i):
for j in range(1, i - 1):
dp[i] = max(dp[i], max(j * (i - j), j * dp[i - j]))
return dp[n]
```

View File

@ -307,6 +307,41 @@ Java
Python
```python
def test_2_wei_bag_problem1(bag_size, weight, value) -> int:
rows, cols = len(weight), bag_size + 1
dp = [[0 for _ in range(cols)] for _ in range(rows)]
res = 0
# 初始化dp数组.
for i in range(rows):
dp[i][0] = 0
first_item_weight, first_item_value = weight[0], value[0]
for j in range(1, cols):
if first_item_weight <= j:
dp[0][j] = first_item_value
# 更新dp数组: 先遍历物品, 再遍历背包.
for i in range(1, len(weight)):
cur_weight, cur_val = weight[i], value[i]
for j in range(1, cols):
if cur_weight > j: # 说明背包装不下当前物品.
dp[i][j] = dp[i - 1][j] # 所以不装当前物品.
else:
# 定义dp数组: dp[i][j] 前i个物品里放进容量为j的背包价值总和最大是多少。
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - cur_weight]+ cur_val)
if dp[i][j] > res:
res = dp[i][j]
print(dp)
if __name__ == "__main__":
bag_size = 4
weight = [1, 3, 4]
value = [15, 20, 30]
test_2_wei_bag_problem1(bag_size, weight, value)
```
Go