mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-07-09 03:34:02 +08:00
Merge pull request #1772 from symdunstaz/master
更新 背包理论基础01背包-1.md 中 java版本
This commit is contained in:
@ -271,39 +271,64 @@ int main() {
|
|||||||
### java
|
### java
|
||||||
|
|
||||||
```java
|
```java
|
||||||
|
public class BagProblem {
|
||||||
public static void main(String[] args) {
|
public static void main(String[] args) {
|
||||||
int[] weight = {1, 3, 4};
|
int[] weight = {1,3,4};
|
||||||
int[] value = {15, 20, 30};
|
int[] value = {15,20,30};
|
||||||
int bagsize = 4;
|
int bagSize = 4;
|
||||||
testweightbagproblem(weight, value, bagsize);
|
testWeightBagProblem(weight,value,bagSize);
|
||||||
}
|
}
|
||||||
|
|
||||||
public static void testweightbagproblem(int[] weight, int[] value, int bagsize){
|
/**
|
||||||
int wlen = weight.length, value0 = 0;
|
* 动态规划获得结果
|
||||||
//定义dp数组:dp[i][j]表示背包容量为j时,前i个物品能获得的最大价值
|
* @param weight 物品的重量
|
||||||
int[][] dp = new int[wlen + 1][bagsize + 1];
|
* @param value 物品的价值
|
||||||
//初始化:背包容量为0时,能获得的价值都为0
|
* @param bagSize 背包的容量
|
||||||
for (int i = 0; i <= wlen; i++){
|
*/
|
||||||
dp[i][0] = value0;
|
public static void testWeightBagProblem(int[] weight, int[] value, int bagSize){
|
||||||
|
|
||||||
|
// 创建dp数组
|
||||||
|
int goods = weight.length; // 获取物品的数量
|
||||||
|
int[][] dp = new int[goods][bagSize + 1];
|
||||||
|
|
||||||
|
// 初始化dp数组
|
||||||
|
// 创建数组后,其中默认的值就是0
|
||||||
|
for (int j = weight[0]; j <= bagSize; j++) {
|
||||||
|
dp[0][j] = value[0];
|
||||||
}
|
}
|
||||||
//遍历顺序:先遍历物品,再遍历背包容量
|
|
||||||
for (int i = 1; i <= wlen; i++){
|
// 填充dp数组
|
||||||
for (int j = 1; j <= bagsize; j++){
|
for (int i = 1; i < weight.length; i++) {
|
||||||
if (j < weight[i - 1]){
|
for (int j = 1; j <= bagSize; j++) {
|
||||||
dp[i][j] = dp[i - 1][j];
|
if (j < weight[i]) {
|
||||||
}else{
|
/**
|
||||||
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i - 1]] + value[i - 1]);
|
* 当前背包的容量都没有当前物品i大的时候,是不放物品i的
|
||||||
|
* 那么前i-1个物品能放下的最大价值就是当前情况的最大价值
|
||||||
|
*/
|
||||||
|
dp[i][j] = dp[i-1][j];
|
||||||
|
} else {
|
||||||
|
/**
|
||||||
|
* 当前背包的容量可以放下物品i
|
||||||
|
* 那么此时分两种情况:
|
||||||
|
* 1、不放物品i
|
||||||
|
* 2、放物品i
|
||||||
|
* 比较这两种情况下,哪种背包中物品的最大价值最大
|
||||||
|
*/
|
||||||
|
dp[i][j] = Math.max(dp[i-1][j] , dp[i-1][j-weight[i]] + value[i]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
//打印dp数组
|
|
||||||
for (int i = 0; i <= wlen; i++){
|
// 打印dp数组
|
||||||
for (int j = 0; j <= bagsize; j++){
|
for (int i = 0; i < goods; i++) {
|
||||||
System.out.print(dp[i][j] + " ");
|
for (int j = 0; j <= bagSize; j++) {
|
||||||
|
System.out.print(dp[i][j] + "\t");
|
||||||
}
|
}
|
||||||
System.out.print("\n");
|
System.out.println("\n");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
### python
|
### python
|
||||||
|
Reference in New Issue
Block a user