mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-07-13 14:10:38 +08:00
Update 0763.划分字母区间.md
This commit is contained in:
@ -231,83 +231,56 @@ class Solution{
|
||||
```
|
||||
|
||||
### Python
|
||||
贪心(版本一)
|
||||
```python
|
||||
class Solution:
|
||||
def partitionLabels(self, s: str) -> List[int]:
|
||||
hash = [0] * 26
|
||||
for i in range(len(s)):
|
||||
hash[ord(s[i]) - ord('a')] = i
|
||||
last_occurrence = {} # 存储每个字符最后出现的位置
|
||||
for i, ch in enumerate(s):
|
||||
last_occurrence[ch] = i
|
||||
|
||||
result = []
|
||||
left = 0
|
||||
right = 0
|
||||
for i in range(len(s)):
|
||||
right = max(right, hash[ord(s[i]) - ord('a')])
|
||||
if i == right:
|
||||
result.append(right - left + 1)
|
||||
left = i + 1
|
||||
start = 0
|
||||
end = 0
|
||||
for i, ch in enumerate(s):
|
||||
end = max(end, last_occurrence[ch]) # 找到当前字符出现的最远位置
|
||||
if i == end: # 如果当前位置是最远位置,表示可以分割出一个区间
|
||||
result.append(end - start + 1)
|
||||
start = i + 1
|
||||
|
||||
return result
|
||||
|
||||
# 解法二(不相交区间法)
|
||||
```
|
||||
贪心(版本二)与452.用最少数量的箭引爆气球 (opens new window)、435.无重叠区间 (opens new window)相同的思路。
|
||||
```python
|
||||
class Solution:
|
||||
def partitionLabels(self, s: str) -> List[int]:
|
||||
# 记录每个字母出现的区间
|
||||
def getBord(s):
|
||||
hash = [[-float('inf')] * 2 for _ in range(26)]
|
||||
for i in range(len(s)):
|
||||
if hash[ord(s[i]) - ord('a')][0] == -float('inf'):
|
||||
hash[ord(s[i]) - ord('a')][0] = i
|
||||
hash[ord(s[i]) - ord('a')][1] = i
|
||||
# 去除字符串中未出现的字母所占用区间
|
||||
hash_filter = []
|
||||
for item in hash:
|
||||
if item[0] != -float('inf'): hash_filter.append(item)
|
||||
return hash_filter
|
||||
|
||||
# 得到无重叠区间题意中的输入样例格式:区间列表
|
||||
hash = getBord(s)
|
||||
# 按照左边界从小到大排序
|
||||
hash.sort(key= lambda x: x[0])
|
||||
res = []
|
||||
left = 0
|
||||
# 记录最大右边界
|
||||
right = hash[0][1]
|
||||
def countLabels(self, s):
|
||||
# 初始化一个长度为26的区间列表,初始值为负无穷
|
||||
hash = [[float('-inf'), float('-inf')] for _ in range(26)]
|
||||
hash_filter = []
|
||||
for i in range(len(s)):
|
||||
if hash[ord(s[i]) - ord('a')][0] == float('-inf'):
|
||||
hash[ord(s[i]) - ord('a')][0] = i
|
||||
hash[ord(s[i]) - ord('a')][1] = i
|
||||
for i in range(len(hash)):
|
||||
# 一旦下一区间左边界大于当前右边界,即可认为出现分割点
|
||||
if hash[i][0] > right:
|
||||
res.append(right - left + 1)
|
||||
left = hash[i][0]
|
||||
# 实时更新最大右边界
|
||||
right = max(right, hash[i][1])
|
||||
# 最右侧区间(字符串长度为1时的特殊情况也包含于其中)
|
||||
res.append(right - left + 1)
|
||||
if hash[i][0] != float('-inf'):
|
||||
hash_filter.append(hash[i])
|
||||
return hash_filter
|
||||
|
||||
def partitionLabels(self, s):
|
||||
res = []
|
||||
hash = self.countLabels(s)
|
||||
hash.sort(key=lambda x: x[0]) # 按左边界从小到大排序
|
||||
rightBoard = hash[0][1] # 记录最大右边界
|
||||
leftBoard = 0
|
||||
for i in range(1, len(hash)):
|
||||
if hash[i][0] > rightBoard: # 出现分割点
|
||||
res.append(rightBoard - leftBoard + 1)
|
||||
leftBoard = hash[i][0]
|
||||
rightBoard = max(rightBoard, hash[i][1])
|
||||
res.append(rightBoard - leftBoard + 1) # 最右端
|
||||
return res
|
||||
|
||||
# 解法三:区间合并法 (结合下一题 56. Merge Intervals 的写法)
|
||||
class Solution: #
|
||||
def partitionLabels(self, s: str) -> List[int]:
|
||||
aaa = list(set(s))
|
||||
#aaa.sort()
|
||||
bbb = list(s)
|
||||
ccc = []
|
||||
for i in reversed(bbb):
|
||||
ccc.append(i)
|
||||
intervals = []
|
||||
for i in range(len(aaa)):
|
||||
intervals.append([bbb.index(aaa[i]),len(bbb)-ccc.index(aaa[i])-1])
|
||||
# 先求出各个字母的存在区间,之后利用区间合并方法得出所有不相邻的最大区间。
|
||||
intervals.sort(key = lambda x:x[0])
|
||||
newinterval = []
|
||||
left, right = intervals[0][0], intervals[0][1]
|
||||
for i in range(1,len(intervals)):
|
||||
if intervals[i][0] in range(left, right+1):
|
||||
right = max(intervals[i][1],intervals[i-1][1],right)
|
||||
left = min(intervals[i-1][0],left)
|
||||
else:
|
||||
newinterval.append(right-left+1)
|
||||
left = intervals[i][0]
|
||||
right = intervals[i][1]
|
||||
newinterval.append(right-left+1)
|
||||
return newinterval
|
||||
```
|
||||
|
||||
### Go
|
||||
|
Reference in New Issue
Block a user