Merge branch 'youngyangyang04:master' into master

This commit is contained in:
David
2024-04-09 17:03:39 +08:00
committed by GitHub
10 changed files with 215 additions and 16 deletions

1
.gitignore vendored
View File

@ -1 +0,0 @@
**/.DS_Store

View File

@ -247,6 +247,24 @@ class Solution:
### Go ### Go
```go
// 暴力法
// 时间复杂度 O(n^2)
// 空间复杂度 O(1)
func removeElement(nums []int, val int) int {
size := len(nums)
for i := 0; i < size; i ++ {
if nums[i] == val {
for j := i + 1; j < size; j ++ {
nums[j - 1] = nums[j]
}
i --
size --
}
}
return size
}
```
```go ```go
// 快慢指针法 // 快慢指针法
// 时间复杂度 O(n) // 时间复杂度 O(n)
@ -289,7 +307,6 @@ func removeElement(nums []int, val int) int {
right-- right--
} }
} }
fmt.Println(nums)
return left return left
} }
``` ```

View File

@ -440,6 +440,33 @@ class Solution {
} }
``` ```
双指针优化
```java
class Solution {
public int trap(int[] height) {
if (height.length <= 2) {
return 0;
}
// 从两边向中间寻找最值
int maxLeft = height[0], maxRight = height[height.length - 1];
int l = 1, r = height.length - 2;
int res = 0;
while (l <= r) {
// 不确定上一轮是左边移动还是右边移动,所以两边都需更新最值
maxLeft = Math.max(maxLeft, height[l]);
maxRight = Math.max(maxRight, height[r]);
// 最值较小的一边所能装的水量已定,所以移动较小的一边。
if (maxLeft < maxRight) {
res += maxLeft - height[l ++];
} else {
res += maxRight - height[r --];
}
}
return res;
}
}
```
单调栈法 单调栈法
```java ```java

View File

@ -285,6 +285,24 @@ public:
} }
``` ```
状态压缩
```java
class Solution {
public int uniquePaths(int m, int n) {
// 在二维dp数组中当前值的计算只依赖正上方和正左方因此可以压缩成一维数组。
int[] dp = new int[n];
// 初始化,第一行只能从正左方跳过来,所以只有一条路径。
Arrays.fill(dp, 1);
for (int i = 1; i < m; i ++) {
// 第一列也只有一条路,不用迭代,所以从第二列开始
for (int j = 1; j < n; j ++) {
dp[j] += dp[j - 1]; // dp[j] = dp[j] (正上方)+ dp[j - 1] (正左方)
}
}
return dp[n - 1];
}
}
```
### Python ### Python
递归 递归

View File

@ -287,9 +287,6 @@ class Solution {
return dp[1]; return dp[1];
} }
} }
```
```Java
``` ```
### Python: ### Python:

View File

@ -218,7 +218,7 @@ class Solution {
``` ```
### Python ### Python
解法一:
```python ```python
#时间复杂度O(nlogk) #时间复杂度O(nlogk)
#空间复杂度O(n) #空间复杂度O(n)
@ -246,6 +246,31 @@ class Solution:
result[i] = heapq.heappop(pri_que)[1] result[i] = heapq.heappop(pri_que)[1]
return result return result
``` ```
解法二:
```python
class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
# 使用字典统计数字出现次数
time_dict = defaultdict(int)
for num in nums:
time_dict[num] += 1
# 更改字典key为出现次数value为相应的数字的集合
index_dict = defaultdict(list)
for key in time_dict:
index_dict[time_dict[key]].append(key)
# 排序
key = list(index_dict.keys())
key.sort()
result = []
cnt = 0
# 获取前k项
while key and cnt != k:
result += index_dict[key[-1]]
cnt += len(index_dict[key[-1]])
key.pop()
return result[0: k]
```
### Go ### Go

View File

@ -173,6 +173,63 @@ class Solution {
} }
} }
``` ```
> 修改遍历顺序后可以利用滚动数组对dp数组进行压缩
```java
class Solution {
public boolean isSubsequence(String s, String t) {
// 修改遍历顺序外圈遍历t内圈遍历s。使得dp的推算只依赖正上方和左上方方便压缩。
int[][] dp = new int[t.length() + 1][s.length() + 1];
for (int i = 1; i < dp.length; i++) { // 遍历t字符串
for (int j = 1; j < dp[i].length; j++) { // 遍历s字符串
if (t.charAt(i - 1) == s.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = dp[i - 1][j];
}
}
System.out.println(Arrays.toString(dp[i]));
}
return dp[t.length()][s.length()] == s.length();
}
}
```
> 状态压缩
```java
class Solution {
public boolean isSubsequence(String s, String t) {
int[] dp = new int[s.length() + 1];
for (int i = 0; i < t.length(); i ++) {
// 需要使用上一轮的dp[j - 1],所以使用倒序遍历
for (int j = dp.length - 1; j > 0; j --) {
// i遍历的是t字符串j遍历的是dp数组dp数组的长度比s的大1因此需要减1。
if (t.charAt(i) == s.charAt(j - 1)) {
dp[j] = dp[j - 1] + 1;
}
}
}
return dp[s.length()] == s.length();
}
}
```
> 将dp定义为boolean类型dp[i]直接表示s.substring(0, i)是否为t的子序列
```java
class Solution {
public boolean isSubsequence(String s, String t) {
boolean[] dp = new boolean[s.length() + 1];
// 表示 “” 是t的子序列
dp[0] = true;
for (int i = 0; i < t.length(); i ++) {
for (int j = dp.length - 1; j > 0; j --) {
if (t.charAt(i) == s.charAt(j - 1)) {
dp[j] = dp[j - 1];
}
}
}
return dp[dp.length - 1];
}
}
```
### Python ### Python

View File

@ -186,7 +186,23 @@ public:
return res; return res;
} }
``` ```
> 动态规划状态压缩
```java
class Solution {
public int findLengthOfLCIS(int[] nums) {
// 记录以 前一个元素结尾的最长连续递增序列的长度 和 以当前 结尾的......
int beforeOneMaxLen = 1, currentMaxLen = 0;
// res 赋最小值返回的最小值1
int res = 1;
for (int i = 1; i < nums.length; i ++) {
currentMaxLen = nums[i] > nums[i - 1] ? beforeOneMaxLen + 1 : 1;
beforeOneMaxLen = currentMaxLen;
res = Math.max(res, currentMaxLen);
}
return res;
}
}
```
> 贪心法: > 贪心法:
```Java ```Java

View File

@ -244,6 +244,24 @@ class Solution {
} }
``` ```
```Java
// 状态压缩,使用三个变量来代替数组
class Solution {
public int minCostClimbingStairs(int[] cost) {
// 以下三个变量分别表示前两个台阶的最少费用、前一个的、当前的。
int beforeTwoCost = 0, beforeOneCost = 0, currentCost = 0;
// 前两个台阶不需要费用就能上到因此从下标2开始因为最后一个台阶需要跨越所以需要遍历到cost.length
for (int i = 2; i <= cost.length; i ++) {
// 此处遍历的是cost[i - 1],不会越界
currentCost = Math.min(beforeOneCost + cost[i - 1], beforeTwoCost + cost[i - 2]);
beforeTwoCost = beforeOneCost;
beforeOneCost = currentCost;
}
return currentCost;
}
}
```
### Python ### Python
动态规划(版本一) 动态规划(版本一)

View File

@ -146,17 +146,42 @@ for (int i = 0; i < a.size(); i++) {
```java ```java
import java.util.Scanner; import java.util.Scanner;
class Main { public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in); public static String replaceNumber(String s) {
String s = in.nextLine(); int count = 0; // 统计数字的个数
StringBuilder sb = new StringBuilder(); int sOldSize = s.length();
for (int i = 0; i < s.length(); i++) { for (int i = 0; i < s.length(); i++) {
if (Character.isDigit(s.charAt(i))) { if(Character.isDigit(s.charAt(i))){
sb.append("number"); count++;
}else sb.append(s.charAt(i)); }
} }
System.out.println(sb); // 扩充字符串s的大小也就是每个空格替换成"number"之后的大小
char[] newS = new char[s.length() + count * 5];
int sNewSize = newS.length;
// 将旧字符串的内容填入新数组
System.arraycopy(s.toCharArray(), 0, newS, 0, sOldSize);
// 从后先前将空格替换为"number"
for (int i = sNewSize - 1, j = sOldSize - 1; j < i; j--, i--) {
if (!Character.isDigit(newS[j])) {
newS[i] = newS[j];
} else {
newS[i] = 'r';
newS[i - 1] = 'e';
newS[i - 2] = 'b';
newS[i - 3] = 'm';
newS[i - 4] = 'u';
newS[i - 5] = 'n';
i -= 5;
}
}
return new String(newS);
};
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
String s = scanner.next();
System.out.println(replaceNumber(s));
scanner.close();
} }
} }
``` ```