mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-07-26 10:43:31 +08:00
Merge pull request #1873 from Logenleedev/my-contribution
添加 斐波那契数动态规划 python 版本 方便理解
This commit is contained in:
@ -291,18 +291,63 @@ false true false false false true true false false false true true
|
|||||||
|
|
||||||
### Python:
|
### Python:
|
||||||
```python
|
```python
|
||||||
|
# 一维度数组解法
|
||||||
class Solution:
|
class Solution:
|
||||||
def canPartition(self, nums: List[int]) -> bool:
|
def canPartition(self, nums: List[int]) -> bool:
|
||||||
target = sum(nums)
|
target = sum(nums)
|
||||||
if target % 2 == 1: return False
|
if target % 2 == 1: return False
|
||||||
target //= 2
|
target //= 2
|
||||||
dp = [0] * 10001
|
dp = [0] * (len(nums) + 1)
|
||||||
for i in range(len(nums)):
|
for i in range(len(nums)):
|
||||||
for j in range(target, nums[i] - 1, -1):
|
for j in range(target, nums[i] - 1, -1):
|
||||||
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i])
|
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i])
|
||||||
return target == dp[target]
|
return target == dp[target]
|
||||||
```
|
```
|
||||||
|
|
||||||
|
```python
|
||||||
|
# 二维度数组解法
|
||||||
|
class Solution:
|
||||||
|
def canPartition(self, nums: List[int]) -> bool:
|
||||||
|
target = sum(nums)
|
||||||
|
nums = sorted(nums)
|
||||||
|
|
||||||
|
# 做最初的判断
|
||||||
|
if target % 2 != 0:
|
||||||
|
return False
|
||||||
|
|
||||||
|
# 找到 target value 可以认为这个是背包的体积
|
||||||
|
target = target // 2
|
||||||
|
|
||||||
|
row = len(nums)
|
||||||
|
col = target + 1
|
||||||
|
|
||||||
|
# 定义 dp table
|
||||||
|
dp = [[0 for _ in range(col)] for _ in range(row)]
|
||||||
|
|
||||||
|
# 初始 dp value
|
||||||
|
for i in range(row):
|
||||||
|
dp[i][0] = 0
|
||||||
|
|
||||||
|
for j in range(1, target):
|
||||||
|
if nums[0] <= j:
|
||||||
|
dp[0][j] = nums[0]
|
||||||
|
|
||||||
|
# 遍历 先遍历物品再遍历背包
|
||||||
|
for i in range(1, row):
|
||||||
|
|
||||||
|
cur_weight = nums[i]
|
||||||
|
cur_value = nums[i]
|
||||||
|
|
||||||
|
for j in range(1, col):
|
||||||
|
if cur_weight > j:
|
||||||
|
dp[i][j] = dp[i - 1][j]
|
||||||
|
else:
|
||||||
|
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - cur_weight] + cur_value)
|
||||||
|
|
||||||
|
# 输出结果
|
||||||
|
return dp[-1][col - 1] == target
|
||||||
|
```
|
||||||
|
|
||||||
### Go:
|
### Go:
|
||||||
```go
|
```go
|
||||||
// 分割等和子集 动态规划
|
// 分割等和子集 动态规划
|
||||||
|
@ -214,6 +214,33 @@ class Solution:
|
|||||||
a, b = b, c
|
a, b = b, c
|
||||||
return c
|
return c
|
||||||
|
|
||||||
|
# 动态规划 (注释版。无修饰)
|
||||||
|
class Solution:
|
||||||
|
def fib(self, n: int) -> int:
|
||||||
|
|
||||||
|
# 排除 Corner Case
|
||||||
|
if n == 1:
|
||||||
|
return 1
|
||||||
|
|
||||||
|
if n == 0:
|
||||||
|
return 0
|
||||||
|
|
||||||
|
# 创建 dp table
|
||||||
|
dp = [0] * (n + 1)
|
||||||
|
|
||||||
|
# 初始化 dp 数组
|
||||||
|
dp[0] = 0
|
||||||
|
dp[1] = 1
|
||||||
|
|
||||||
|
# 遍历顺序: 由前向后。因为后面要用到前面的状态
|
||||||
|
for i in range(2, n + 1):
|
||||||
|
|
||||||
|
# 确定递归公式/状态转移公式
|
||||||
|
dp[i] = dp[i - 1] + dp[i - 2]
|
||||||
|
|
||||||
|
# 返回答案
|
||||||
|
return dp[n]
|
||||||
|
|
||||||
# 递归实现
|
# 递归实现
|
||||||
class Solution:
|
class Solution:
|
||||||
def fib(self, n: int) -> int:
|
def fib(self, n: int) -> int:
|
||||||
|
@ -224,7 +224,7 @@ class Solution:
|
|||||||
def lastStoneWeightII(self, stones: List[int]) -> int:
|
def lastStoneWeightII(self, stones: List[int]) -> int:
|
||||||
sumweight = sum(stones)
|
sumweight = sum(stones)
|
||||||
target = sumweight // 2
|
target = sumweight // 2
|
||||||
dp = [0] * 15001
|
dp = [0] * (target + 1)
|
||||||
for i in range(len(stones)):
|
for i in range(len(stones)):
|
||||||
for j in range(target, stones[i] - 1, -1):
|
for j in range(target, stones[i] - 1, -1):
|
||||||
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i])
|
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i])
|
||||||
|
Reference in New Issue
Block a user