mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-07-25 09:42:16 +08:00
Merge pull request #1873 from Logenleedev/my-contribution
添加 斐波那契数动态规划 python 版本 方便理解
This commit is contained in:
@ -291,18 +291,63 @@ false true false false false true true false false false true true
|
||||
|
||||
### Python:
|
||||
```python
|
||||
# 一维度数组解法
|
||||
class Solution:
|
||||
def canPartition(self, nums: List[int]) -> bool:
|
||||
target = sum(nums)
|
||||
if target % 2 == 1: return False
|
||||
target //= 2
|
||||
dp = [0] * 10001
|
||||
dp = [0] * (len(nums) + 1)
|
||||
for i in range(len(nums)):
|
||||
for j in range(target, nums[i] - 1, -1):
|
||||
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i])
|
||||
return target == dp[target]
|
||||
```
|
||||
|
||||
```python
|
||||
# 二维度数组解法
|
||||
class Solution:
|
||||
def canPartition(self, nums: List[int]) -> bool:
|
||||
target = sum(nums)
|
||||
nums = sorted(nums)
|
||||
|
||||
# 做最初的判断
|
||||
if target % 2 != 0:
|
||||
return False
|
||||
|
||||
# 找到 target value 可以认为这个是背包的体积
|
||||
target = target // 2
|
||||
|
||||
row = len(nums)
|
||||
col = target + 1
|
||||
|
||||
# 定义 dp table
|
||||
dp = [[0 for _ in range(col)] for _ in range(row)]
|
||||
|
||||
# 初始 dp value
|
||||
for i in range(row):
|
||||
dp[i][0] = 0
|
||||
|
||||
for j in range(1, target):
|
||||
if nums[0] <= j:
|
||||
dp[0][j] = nums[0]
|
||||
|
||||
# 遍历 先遍历物品再遍历背包
|
||||
for i in range(1, row):
|
||||
|
||||
cur_weight = nums[i]
|
||||
cur_value = nums[i]
|
||||
|
||||
for j in range(1, col):
|
||||
if cur_weight > j:
|
||||
dp[i][j] = dp[i - 1][j]
|
||||
else:
|
||||
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - cur_weight] + cur_value)
|
||||
|
||||
# 输出结果
|
||||
return dp[-1][col - 1] == target
|
||||
```
|
||||
|
||||
### Go:
|
||||
```go
|
||||
// 分割等和子集 动态规划
|
||||
|
@ -214,6 +214,33 @@ class Solution:
|
||||
a, b = b, c
|
||||
return c
|
||||
|
||||
# 动态规划 (注释版。无修饰)
|
||||
class Solution:
|
||||
def fib(self, n: int) -> int:
|
||||
|
||||
# 排除 Corner Case
|
||||
if n == 1:
|
||||
return 1
|
||||
|
||||
if n == 0:
|
||||
return 0
|
||||
|
||||
# 创建 dp table
|
||||
dp = [0] * (n + 1)
|
||||
|
||||
# 初始化 dp 数组
|
||||
dp[0] = 0
|
||||
dp[1] = 1
|
||||
|
||||
# 遍历顺序: 由前向后。因为后面要用到前面的状态
|
||||
for i in range(2, n + 1):
|
||||
|
||||
# 确定递归公式/状态转移公式
|
||||
dp[i] = dp[i - 1] + dp[i - 2]
|
||||
|
||||
# 返回答案
|
||||
return dp[n]
|
||||
|
||||
# 递归实现
|
||||
class Solution:
|
||||
def fib(self, n: int) -> int:
|
||||
|
@ -224,7 +224,7 @@ class Solution:
|
||||
def lastStoneWeightII(self, stones: List[int]) -> int:
|
||||
sumweight = sum(stones)
|
||||
target = sumweight // 2
|
||||
dp = [0] * 15001
|
||||
dp = [0] * (target + 1)
|
||||
for i in range(len(stones)):
|
||||
for j in range(target, stones[i] - 1, -1):
|
||||
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i])
|
||||
|
Reference in New Issue
Block a user