Merge pull request #1873 from Logenleedev/my-contribution

添加 斐波那契数动态规划 python 版本 方便理解
This commit is contained in:
程序员Carl
2023-01-28 10:18:43 +08:00
committed by GitHub
3 changed files with 74 additions and 2 deletions

View File

@ -291,18 +291,63 @@ false true false false false true true false false false true true
### Python
```python
# 一维度数组解法
class Solution:
def canPartition(self, nums: List[int]) -> bool:
target = sum(nums)
if target % 2 == 1: return False
target //= 2
dp = [0] * 10001
dp = [0] * (len(nums) + 1)
for i in range(len(nums)):
for j in range(target, nums[i] - 1, -1):
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i])
return target == dp[target]
```
```python
# 二维度数组解法
class Solution:
def canPartition(self, nums: List[int]) -> bool:
target = sum(nums)
nums = sorted(nums)
# 做最初的判断
if target % 2 != 0:
return False
# 找到 target value 可以认为这个是背包的体积
target = target // 2
row = len(nums)
col = target + 1
# 定义 dp table
dp = [[0 for _ in range(col)] for _ in range(row)]
# 初始 dp value
for i in range(row):
dp[i][0] = 0
for j in range(1, target):
if nums[0] <= j:
dp[0][j] = nums[0]
# 遍历 先遍历物品再遍历背包
for i in range(1, row):
cur_weight = nums[i]
cur_value = nums[i]
for j in range(1, col):
if cur_weight > j:
dp[i][j] = dp[i - 1][j]
else:
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - cur_weight] + cur_value)
# 输出结果
return dp[-1][col - 1] == target
```
### Go
```go
// 分割等和子集 动态规划

View File

@ -214,6 +214,33 @@ class Solution:
a, b = b, c
return c
# 动态规划 (注释版。无修饰)
class Solution:
def fib(self, n: int) -> int:
# 排除 Corner Case
if n == 1:
return 1
if n == 0:
return 0
# 创建 dp table
dp = [0] * (n + 1)
# 初始化 dp 数组
dp[0] = 0
dp[1] = 1
# 遍历顺序: 由前向后。因为后面要用到前面的状态
for i in range(2, n + 1):
# 确定递归公式/状态转移公式
dp[i] = dp[i - 1] + dp[i - 2]
# 返回答案
return dp[n]
# 递归实现
class Solution:
def fib(self, n: int) -> int:

View File

@ -224,7 +224,7 @@ class Solution:
def lastStoneWeightII(self, stones: List[int]) -> int:
sumweight = sum(stones)
target = sumweight // 2
dp = [0] * 15001
dp = [0] * (target + 1)
for i in range(len(stones)):
for j in range(target, stones[i] - 1, -1):
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i])