Merge pull request #2075 from jianghongcheng/master

跟新python代码,已经检查
This commit is contained in:
程序员Carl
2023-05-05 08:56:35 +08:00
committed by GitHub
18 changed files with 973 additions and 582 deletions

View File

@ -127,21 +127,29 @@ Python:
# def __init__(self, val=0, next=None): # def __init__(self, val=0, next=None):
# self.val = val # self.val = val
# self.next = next # self.next = next
class Solution: class Solution:
def removeNthFromEnd(self, head: ListNode, n: int) -> ListNode: def removeNthFromEnd(self, head: ListNode, n: int) -> ListNode:
head_dummy = ListNode() # 创建一个虚拟节点,并将其下一个指针设置为链表的头部
head_dummy.next = head dummy_head = ListNode(0, head)
slow, fast = head_dummy, head_dummy # 创建两个指针,慢指针和快指针,并将它们初始化为虚拟节点
while(n>=0): #fast先往前走n+1步 slow = fast = dummy_head
# 快指针比慢指针快 n+1 步
for i in range(n+1):
fast = fast.next fast = fast.next
n -= 1
while(fast!=None): # 移动两个指针,直到快速指针到达链表的末尾
while fast:
slow = slow.next slow = slow.next
fast = fast.next fast = fast.next
#fast 走到结尾后slow的下一个节点为倒数第N个节点
slow.next = slow.next.next #删除 # 通过更新第 (n-1) 个节点的 next 指针删除第 n 个节点
return head_dummy.next slow.next = slow.next.next
return dummy_head.next
``` ```
Go: Go:
```Go ```Go

View File

@ -186,21 +186,20 @@ Python
class Solution: class Solution:
def swapPairs(self, head: ListNode) -> ListNode: def swapPairs(self, head: ListNode) -> ListNode:
res = ListNode(next=head) dummy_head = ListNode(next=head)
pre = res current = dummy_head
# 必须有pre的下一个和下下个才能交换,否则说明已经交换结束了 # 必须有cur的下一个和下下个才能交换,否则说明已经交换结束了
while pre.next and pre.next.next: while current.next and current.next.next:
cur = pre.next temp = current.next # 防止节点修改
post = pre.next.next temp1 = current.next.next.next
# precurpost对应最左中间的最右边的节点 current.next = current.next.next
cur.next = post.next current.next.next = temp
post.next = cur temp.next = temp1
pre.next = post current = current.next.next
return dummy_head.next
pre = pre.next.next
return res.next
``` ```
Go Go

View File

@ -198,6 +198,7 @@ Python
``` python 3 ``` python 3
(版本一)快慢指针法
class Solution: class Solution:
def removeElement(self, nums: List[int], val: int) -> int: def removeElement(self, nums: List[int], val: int) -> int:
# 快慢指针 # 快慢指针
@ -213,7 +214,21 @@ class Solution:
return slow return slow
``` ```
``` python 3
(版本二)暴力法
class Solution:
def removeElement(self, nums: List[int], val: int) -> int:
i, l = 0, len(nums)
while i < l:
if nums[i] == val: # 找到等于目标值的节点
for j in range(i+1, l): # 移除该元素,并将后面元素向前平移
nums[j - 1] = nums[j]
l -= 1
i -= 1
i += 1
return l
```
Go Go

View File

@ -442,25 +442,31 @@ class Solution:
层次遍历 层次遍历
```python ```python
class Solution: class Solution:
def isSymmetric(self, root: Optional[TreeNode]) -> bool: def isSymmetric(self, root: TreeNode) -> bool:
if not root: if not root:
return True return True
que = [root] queue = collections.deque([root.left, root.right])
while que:
this_level_length = len(que) while queue:
for i in range(this_level_length // 2): level_size = len(queue)
# 要么其中一个是None但另外一个不是
if (not que[i] and que[this_level_length - 1 - i]) or (que[i] and not que[this_level_length - 1 - i]): if level_size % 2 != 0:
return False return False
# 要么两个都不是None
if que[i] and que[i].val != que[this_level_length - 1 - i].val: level_vals = []
return False for i in range(level_size):
for i in range(this_level_length): node = queue.popleft()
if not que[i]: continue if node:
que.append(que[i].left) level_vals.append(node.val)
que.append(que[i].right) queue.append(node.left)
que = que[this_level_length:] queue.append(node.right)
else:
level_vals.append(None)
if level_vals != level_vals[::-1]:
return False
return True return True
``` ```

View File

@ -171,47 +171,59 @@ python3代码
```python ```python
# 利用长度法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution: class Solution:
"""二叉树层序遍历迭代解法""" def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
def levelOrder(self, root: TreeNode) -> List[List[int]]:
results = []
if not root: if not root:
return results return []
queue = collections.deque([root])
from collections import deque result = []
que = deque([root]) while queue:
level = []
while que: for _ in range(len(queue)):
size = len(que) cur = queue.popleft()
result = [] level.append(cur.val)
for _ in range(size):
cur = que.popleft()
result.append(cur.val)
if cur.left: if cur.left:
que.append(cur.left) queue.append(cur.left)
if cur.right: if cur.right:
que.append(cur.right) queue.append(cur.right)
results.append(result) result.append(level)
return result
return results
``` ```
```python ```python
# 递归法 # 递归法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution: class Solution:
def levelOrder(self, root: TreeNode) -> List[List[int]]: def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
res = [] levels = []
def helper(root, depth): self.helper(root, 0, levels)
if not root: return [] return levels
if len(res) == depth: res.append([]) # start the current depth
res[depth].append(root.val) # fulfil the current depth def helper(self, node, level, levels):
if root.left: helper(root.left, depth + 1) # process child nodes for the next depth if not node:
if root.right: helper(root.right, depth + 1) return
helper(root, 0) if len(levels) == level:
return res levels.append([])
levels[level].append(node.val)
self.helper(node.left, level + 1, levels)
self.helper(node.right, level + 1, levels)
``` ```
go: go:
```go ```go
@ -500,27 +512,29 @@ python代码
class Solution: class Solution:
"""二叉树层序遍历II迭代解法""" """二叉树层序遍历II迭代解法"""
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def levelOrderBottom(self, root: TreeNode) -> List[List[int]]: def levelOrderBottom(self, root: TreeNode) -> List[List[int]]:
results = []
if not root: if not root:
return results return []
queue = collections.deque([root])
from collections import deque result = []
que = deque([root]) while queue:
level = []
while que: for _ in range(len(queue)):
result = [] cur = queue.popleft()
for _ in range(len(que)): level.append(cur.val)
cur = que.popleft()
result.append(cur.val)
if cur.left: if cur.left:
que.append(cur.left) queue.append(cur.left)
if cur.right: if cur.right:
que.append(cur.right) queue.append(cur.right)
results.append(result) result.append(level)
return result[::-1]
results.reverse()
return results
``` ```
Java Java
@ -821,35 +835,35 @@ public:
python代码 python代码
```python ```python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution: class Solution:
def rightSideView(self, root: TreeNode) -> List[int]: def rightSideView(self, root: TreeNode) -> List[int]:
if not root: if not root:
return [] return []
# deque来自collections模块不在力扣平台时需要手动写入 queue = collections.deque([root])
# 'from collections import deque' 导入 right_view = []
# deque相比list的好处是list的pop(0)是O(n)复杂度deque的popleft()是O(1)复杂度
quene = deque([root]) while queue:
out_list = [] level_size = len(queue)
while quene: for i in range(level_size):
# 每次都取最后一个node就可以了 node = queue.popleft()
node = quene[-1]
out_list.append(node.val) if i == level_size - 1:
right_view.append(node.val)
# 执行这个遍历的目的是获取下一层所有的node
for _ in range(len(quene)):
node = quene.popleft()
if node.left: if node.left:
quene.append(node.left) queue.append(node.left)
if node.right: if node.right:
quene.append(node.right) queue.append(node.right)
return out_list return right_view
# 执行用时36 ms, 在所有 Python3 提交中击败了89.47%的用户
# 内存消耗14.6 MB, 在所有 Python3 提交中击败了96.65%的用户
``` ```
@ -1107,27 +1121,38 @@ python代码
class Solution: class Solution:
"""二叉树层平均值迭代解法""" """二叉树层平均值迭代解法"""
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def averageOfLevels(self, root: TreeNode) -> List[float]: def averageOfLevels(self, root: TreeNode) -> List[float]:
results = []
if not root: if not root:
return results return []
from collections import deque queue = collections.deque([root])
que = deque([root]) averages = []
while que: while queue:
size = len(que) size = len(queue)
sum_ = 0 level_sum = 0
for _ in range(size):
cur = que.popleft()
sum_ += cur.val
if cur.left:
que.append(cur.left)
if cur.right:
que.append(cur.right)
results.append(sum_ / size)
return results for i in range(size):
node = queue.popleft()
level_sum += node.val
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
averages.append(level_sum / size)
return averages
``` ```
java: java:
@ -1401,28 +1426,36 @@ public:
python代码 python代码
```python ```python
"""
# Definition for a Node.
class Node:
def __init__(self, val=None, children=None):
self.val = val
self.children = children
"""
class Solution: class Solution:
"""N叉树的层序遍历迭代法"""
def levelOrder(self, root: 'Node') -> List[List[int]]: def levelOrder(self, root: 'Node') -> List[List[int]]:
results = []
if not root: if not root:
return results return []
from collections import deque result = []
que = deque([root]) queue = collections.deque([root])
while que: while queue:
result = [] level_size = len(queue)
for _ in range(len(que)): level = []
cur = que.popleft()
result.append(cur.val)
# cur.children 是 Node 对象组成的列表,也可能为 None
if cur.children:
que.extend(cur.children)
results.append(result)
return results for _ in range(level_size):
node = queue.popleft()
level.append(node.val)
for child in node.children:
queue.append(child)
result.append(level)
return result
``` ```
```python ```python
@ -1728,22 +1761,37 @@ public:
python代码 python代码
```python ```python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution: class Solution:
def largestValues(self, root: TreeNode) -> List[int]: def largestValues(self, root: TreeNode) -> List[int]:
if root is None: if not root:
return [] return []
queue = [root]
out_list = [] result = []
queue = collections.deque([root])
while queue: while queue:
length = len(queue) level_size = len(queue)
in_list = [] max_val = float('-inf')
for _ in range(length):
curnode = queue.pop(0) for _ in range(level_size):
in_list.append(curnode.val) node = queue.popleft()
if curnode.left: queue.append(curnode.left) max_val = max(max_val, node.val)
if curnode.right: queue.append(curnode.right)
out_list.append(max(in_list)) if node.left:
return out_list queue.append(node.left)
if node.right:
queue.append(node.right)
result.append(max_val)
return result
``` ```
java代码 java代码
@ -2048,36 +2096,40 @@ class Solution {
python代码 python代码
```python ```python
# 层序遍历解法 """
# Definition for a Node.
class Node:
def __init__(self, val: int = 0, left: 'Node' = None, right: 'Node' = None, next: 'Node' = None):
self.val = val
self.left = left
self.right = right
self.next = next
"""
class Solution: class Solution:
def connect(self, root: 'Node') -> 'Node': def connect(self, root: 'Node') -> 'Node':
if not root: if not root:
return None return root
queue = [root]
queue = collections.deque([root])
while queue: while queue:
n = len(queue) level_size = len(queue)
for i in range(n): prev = None
node = queue.pop(0)
for i in range(level_size):
node = queue.popleft()
if prev:
prev.next = node
prev = node
if node.left: if node.left:
queue.append(node.left) queue.append(node.left)
if node.right: if node.right:
queue.append(node.right) queue.append(node.right)
if i == n - 1:
break
node.next = queue[0]
return root
# 链表解法
class Solution:
def connect(self, root: 'Node') -> 'Node':
first = root
while first:
cur = first
while cur: # 遍历每一层的节点
if cur.left: cur.left.next = cur.right # 找左节点的next
if cur.right and cur.next: cur.right.next = cur.next.left # 找右节点的next
cur = cur.next # cur同层移动到下一节点
first = first.left # 从本层扩展到下一层
return root return root
``` ```
@ -2329,21 +2381,41 @@ python代码
```python ```python
# 层序遍历解法 # 层序遍历解法
"""
# Definition for a Node.
class Node:
def __init__(self, val: int = 0, left: 'Node' = None, right: 'Node' = None, next: 'Node' = None):
self.val = val
self.left = left
self.right = right
self.next = next
"""
class Solution: class Solution:
def connect(self, root: 'Node') -> 'Node': def connect(self, root: 'Node') -> 'Node':
if not root: if not root:
return None return root
queue = [root]
while queue: # 遍历每一层 queue = collections.deque([root])
length = len(queue)
tail = None # 每一层维护一个尾节点 while queue:
for i in range(length): # 遍历当前层 level_size = len(queue)
curnode = queue.pop(0) prev = None
if tail:
tail.next = curnode # 让尾节点指向当前节点 for i in range(level_size):
tail = curnode # 让当前节点成为尾节点 node = queue.popleft()
if curnode.left : queue.append(curnode.left)
if curnode.right: queue.append(curnode.right) if prev:
prev.next = node
prev = node
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
return root return root
``` ```
@ -2592,24 +2664,31 @@ class Solution {
Python Python
```python 3 ```python 3
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution: class Solution:
def maxDepth(self, root: TreeNode) -> int: def maxDepth(self, root: TreeNode) -> int:
if root == None: if not root:
return 0 return 0
queue_ = [root]
depth = 0 depth = 0
while queue_: queue = collections.deque([root])
length = len(queue_)
for i in range(length): while queue:
cur = queue_.pop(0)
sub.append(cur.val)
#子节点入队列
if cur.left: queue_.append(cur.left)
if cur.right: queue_.append(cur.right)
depth += 1 depth += 1
for _ in range(len(queue)):
node = queue.popleft()
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
return depth return depth
``` ```
Go Go
@ -2859,23 +2938,26 @@ Python 3
# self.right = right # self.right = right
class Solution: class Solution:
def minDepth(self, root: TreeNode) -> int: def minDepth(self, root: TreeNode) -> int:
if root == None: if not root:
return 0 return 0
depth = 0
queue = collections.deque([root])
#根节点的深度为1 while queue:
queue_ = [(root,1)] depth += 1
while queue_: for _ in range(len(queue)):
cur, depth = queue_.pop(0) node = queue.popleft()
if cur.left == None and cur.right == None: if not node.left and not node.right:
return depth return depth
#先左子节点,由于左子节点没有孩子,则就是这一层了
if cur.left:
queue_.append((cur.left,depth + 1))
if cur.right:
queue_.append((cur.right,depth + 1))
return 0 if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
return depth
``` ```
Go Go

View File

@ -419,86 +419,107 @@ class solution:
return 1 + max(self.maxdepth(root.left), self.maxdepth(root.right)) return 1 + max(self.maxdepth(root.left), self.maxdepth(root.right))
``` ```
迭代法: 层序遍历迭代法:
```python ```python
import collections # Definition for a binary tree node.
class solution: # class TreeNode:
def maxdepth(self, root: treenode) -> int: # def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def maxDepth(self, root: TreeNode) -> int:
if not root: if not root:
return 0 return 0
depth = 0 #记录深度
queue = collections.deque() depth = 0
queue.append(root) queue = collections.deque([root])
while queue: while queue:
size = len(queue)
depth += 1 depth += 1
for i in range(size): for _ in range(len(queue)):
node = queue.popleft() node = queue.popleft()
if node.left: if node.left:
queue.append(node.left) queue.append(node.left)
if node.right: if node.right:
queue.append(node.right) queue.append(node.right)
return depth return depth
``` ```
### 559.n叉树的最大深度 ### 559.n叉树的最大深度
递归法: 递归法:
```python ```python
class solution: class Solution:
def maxdepth(self, root: 'node') -> int: def maxDepth(self, root: 'Node') -> int:
if not root: if not root:
return 0 return 0
depth = 0
for i in range(len(root.children)): max_depth = 1
depth = max(depth, self.maxdepth(root.children[i]))
return depth + 1 for child in root.children:
max_depth = max(max_depth, self.maxDepth(child) + 1)
return max_depth
``` ```
迭代法: 迭代法:
```python ```python
import collections """
class solution: # Definition for a Node.
def maxdepth(self, root: 'node') -> int: class Node:
queue = collections.deque() def __init__(self, val=None, children=None):
if root: self.val = val
queue.append(root) self.children = children
depth = 0 #记录深度 """
class Solution:
def maxDepth(self, root: TreeNode) -> int:
if not root:
return 0
depth = 0
queue = collections.deque([root])
while queue: while queue:
size = len(queue)
depth += 1 depth += 1
for i in range(size): for _ in range(len(queue)):
node = queue.popleft() node = queue.popleft()
for j in range(len(node.children)): for child in node.children:
if node.children[j]: queue.append(child)
queue.append(node.children[j])
return depth return depth
``` ```
使用栈来模拟后序遍历依然可以 使用栈
```python ```python
class solution: """
def maxdepth(self, root: 'node') -> int: # Definition for a Node.
st = [] class Node:
if root: def __init__(self, val=None, children=None):
st.append(root) self.val = val
depth = 0 self.children = children
result = 0 """
while st:
node = st.pop()
if node != none:
st.append(node) #中
st.append(none)
depth += 1
for i in range(len(node.children)): #处理孩子
if node.children[i]:
st.append(node.children[i])
else: class Solution:
node = st.pop() def maxDepth(self, root: 'Node') -> int:
depth -= 1 if not root:
result = max(result, depth) return 0
return result
max_depth = 0
stack = [(root, 1)]
while stack:
node, depth = stack.pop()
max_depth = max(max_depth, depth)
for child in node.children:
stack.append((child, depth + 1))
return max_depth
``` ```

View File

@ -305,46 +305,98 @@ class Solution {
递归法: 递归法:
```python ```python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution: class Solution:
def minDepth(self, root: TreeNode) -> int: def minDepth(self, root: TreeNode) -> int:
if not root: if not root:
return 0 return 0
if not root.left and not root.right: if not root.left and not root.right:
return 1 return 1
min_depth = 10**9 left_depth = float('inf')
right_depth = float('inf')
if root.left: if root.left:
min_depth = min(self.minDepth(root.left), min_depth) # 获得左子树的最小高度 left_depth = self.minDepth(root.left)
if root.right: if root.right:
min_depth = min(self.minDepth(root.right), min_depth) # 获得右子树的最小高度 right_depth = self.minDepth(root.right)
return min_depth + 1
return 1 + min(left_depth, right_depth)
``` ```
迭代法: 迭代法:
```python ```python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution: class Solution:
def minDepth(self, root: TreeNode) -> int: def minDepth(self, root: TreeNode) -> int:
if not root: if not root:
return 0 return 0
que = deque() depth = 0
que.append(root) queue = collections.deque([root])
res = 1
while queue:
depth += 1
for _ in range(len(queue)):
node = queue.popleft()
while que:
for _ in range(len(que)):
node = que.popleft()
# 当左右孩子都为空的时候,说明是最低点的一层了,退出
if not node.left and not node.right: if not node.left and not node.right:
return res return depth
if node.left is not None:
que.append(node.left) if node.left:
if node.right is not None: queue.append(node.left)
que.append(node.right)
res += 1 if node.right:
return res queue.append(node.right)
return depth
``` ```
迭代法:
```python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def minDepth(self, root: TreeNode) -> int:
if not root:
return 0
queue = collections.deque([(root, 1)])
while queue:
node, depth = queue.popleft()
# Check if the node is a leaf node
if not node.left and not node.right:
return depth
# Add left and right child to the queue
if node.left:
queue.append((node.left, depth+1))
if node.right:
queue.append((node.right, depth+1))
return 0
```
## Go ## Go

View File

@ -221,25 +221,55 @@ public class Solution {
Python Python
```python ```python
版本一快慢指针法
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution: class Solution:
def detectCycle(self, head: ListNode) -> ListNode: def detectCycle(self, head: ListNode) -> ListNode:
slow, fast = head, head slow = head
fast = head
while fast and fast.next: while fast and fast.next:
slow = slow.next slow = slow.next
fast = fast.next.next fast = fast.next.next
# 如果相遇
# If there is a cycle, the slow and fast pointers will eventually meet
if slow == fast: if slow == fast:
p = head # Move one of the pointers back to the start of the list
q = slow slow = head
while p!=q: while slow != fast:
p = p.next slow = slow.next
q = q.next fast = fast.next
#你也可以return q return slow
return p # If there is no cycle, return None
return None
```
```python
版本二集合法
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution:
def detectCycle(self, head: ListNode) -> ListNode:
visited = set()
while head:
if head in visited:
return head
visited.add(head)
head = head.next
return None return None
``` ```
Go Go
```go ```go

View File

@ -307,21 +307,27 @@ public ListNode removeElements(ListNode head, int val) {
Python Python
```python ```python
版本一虚拟头节点法
# Definition for singly-linked list. # Definition for singly-linked list.
# class ListNode: # class ListNode:
# def __init__(self, val=0, next=None): # def __init__(self, val=0, next=None):
# self.val = val # self.val = val
# self.next = next # self.next = next
class Solution: class Solution:
def removeElements(self, head: ListNode, val: int) -> ListNode: def removeElements(self, head: Optional[ListNode], val: int) -> Optional[ListNode]:
dummy_head = ListNode(next=head) #添加一个虚拟节点 # 创建虚拟头部节点以简化删除过程
cur = dummy_head dummy_head = ListNode(next = head)
while cur.next:
if cur.next.val == val: # 遍历列表并删除值为val的节点
cur.next = cur.next.next #删除cur.next节点 current = dummy_head
while current.next:
if current.next.val == val:
current.next = current.next.next
else: else:
cur = cur.next current = current.next
return dummy_head.next return dummy_head.next
``` ```
Go Go

View File

@ -193,9 +193,9 @@ class Solution {
} }
``` ```
Python迭代法: Python
```python ```python
#双指针 版本一双指针
# Definition for singly-linked list. # Definition for singly-linked list.
# class ListNode: # class ListNode:
# def __init__(self, val=0, next=None): # def __init__(self, val=0, next=None):
@ -205,7 +205,7 @@ class Solution:
def reverseList(self, head: ListNode) -> ListNode: def reverseList(self, head: ListNode) -> ListNode:
cur = head cur = head
pre = None pre = None
while(cur!=None): while cur:
temp = cur.next # 保存一下 cur的下一个节点因为接下来要改变cur->next temp = cur.next # 保存一下 cur的下一个节点因为接下来要改变cur->next
cur.next = pre #反转 cur.next = pre #反转
#更新pre、cur指针 #更新pre、cur指针
@ -217,6 +217,7 @@ class Solution:
Python递归法 Python递归法
```python ```python
版本二递归法
# Definition for singly-linked list. # Definition for singly-linked list.
# class ListNode: # class ListNode:
# def __init__(self, val=0, next=None): # def __init__(self, val=0, next=None):
@ -224,36 +225,17 @@ Python递归法
# self.next = next # self.next = next
class Solution: class Solution:
def reverseList(self, head: ListNode) -> ListNode: def reverseList(self, head: ListNode) -> ListNode:
return self.reverse(head, None)
def reverse(pre,cur): def reverse(self, cur: ListNode, pre: ListNode) -> ListNode:
if not cur: if cur == None:
return pre return pre
temp = cur.next
tmp = cur.next cur.next = pre
cur.next = pre return self.reverse(temp, cur)
return reverse(cur,tmp)
return reverse(None,head)
``` ```
Python递归法从后向前
```python
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def reverseList(self, head: Optional[ListNode]) -> Optional[ListNode]:
if not head or not head.next: return head
p = self.reverseList(head.next)
head.next.next = head
head.next = None
return p
```
Go Go

View File

@ -173,18 +173,44 @@ class Solution {
Python Python
```python ```python
版本一滑动窗口法
class Solution: class Solution:
def minSubArrayLen(self, s: int, nums: List[int]) -> int: def minSubArrayLen(self, s: int, nums: List[int]) -> int:
res = float("inf") # 定义一个无限大的数 l = len(nums)
Sum = 0 # 滑动窗口数值之和 left = 0
i = 0 # 滑动窗口起始位置 right = 0
for j in range(len(nums)): min_len = float('inf')
Sum += nums[j] cur_sum = 0 #当前的累加值
while Sum >= s:
res = min(res, j-i+1) while right < l:
Sum -= nums[i] cur_sum += nums[right]
i += 1
return 0 if res == float("inf") else res while cur_sum >= s: # 当前累加值大于目标值
min_len = min(min_len, right - left + 1)
cur_sum -= nums[left]
left += 1
right += 1
return min_len if min_len != float('inf') else 0
```
```python
版本二暴力法
class Solution:
def minSubArrayLen(self, s: int, nums: List[int]) -> int:
l = len(nums)
min_len = float('inf')
for i in range(l):
cur_sum = 0
for j in range(i, l):
cur_sum += nums[j]
if cur_sum >= s:
min_len = min(min_len, j - i + 1)
break
return min_len if min_len != float('inf') else 0
``` ```
Go Go

View File

@ -393,6 +393,20 @@ class Solution: # 利用完全二叉树特性
return 2**count-1 return 2**count-1
return 1+self.countNodes(root.left)+self.countNodes(root.right) return 1+self.countNodes(root.left)+self.countNodes(root.right)
``` ```
完全二叉树写法3
```python
class Solution: # 利用完全二叉树特性
def countNodes(self, root: TreeNode) -> int:
if not root: return 0
count = 0
left = root.left; right = root.right
while left and right:
count+=1
left = left.left; right = right.right
if not left and not right: # 如果同时到底说明是满二叉树,反之则不是
return (2<<count)-1
return 1+self.countNodes(root.left)+self.countNodes(root.right)
```
## Go ## Go

View File

@ -314,21 +314,99 @@ class Solution {
递归法:前序遍历: 递归法:前序遍历:
```python ```python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution: class Solution:
def invertTree(self, root: TreeNode) -> TreeNode: def invertTree(self, root: TreeNode) -> TreeNode:
if not root: if not root:
return None return None
root.left, root.right = root.right, root.left #中 root.left, root.right = root.right, root.left
self.invertTree(root.left) #左 self.invertTree(root.left)
self.invertTree(root.right) #右 self.invertTree(root.right)
return root return root
``` ```
递归法:序遍历: 迭代法:序遍历:
```python ```python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution: class Solution:
def invertTree(self, root: TreeNode) -> TreeNode: def invertTree(self, root: TreeNode) -> TreeNode:
if root is None: if not root:
return None
stack = [root]
while stack:
node = stack.pop()
node.left, node.right = node.right, node.left
if node.left:
stack.append(node.left)
if node.right:
stack.append(node.right)
return root
```
递归法:中序遍历:
```python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def invertTree(self, root: TreeNode) -> TreeNode:
if not root:
return None
self.invertTree(root.left)
root.left, root.right = root.right, root.left
self.invertTree(root.left)
return root
```
迭代法:中序遍历:
```python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def invertTree(self, root: TreeNode) -> TreeNode:
if not root:
return None
stack = [root]
while stack:
node = stack.pop()
if node.left:
stack.append(node.left)
node.left, node.right = node.right, node.left
if node.left:
stack.append(node.left)
return root
```
递归法:后序遍历:
```python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def invertTree(self, root: TreeNode) -> TreeNode:
if not root:
return None return None
self.invertTree(root.left) self.invertTree(root.left)
self.invertTree(root.right) self.invertTree(root.right)
@ -336,59 +414,58 @@ class Solution:
return root return root
``` ```
迭代法:深度优先遍历(前序遍历 迭代法:序遍历:
```python ```python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution: class Solution:
def invertTree(self, root: TreeNode) -> TreeNode: def invertTree(self, root: TreeNode) -> TreeNode:
if not root: if not root:
return root return None
st = [] stack = [root]
st.append(root) while stack:
while st: node = stack.pop()
node = st.pop()
node.left, node.right = node.right, node.left #中
if node.right:
st.append(node.right) #右
if node.left: if node.left:
st.append(node.left) #左 stack.append(node.left)
if node.right:
stack.append(node.right)
node.left, node.right = node.right, node.left
return root return root
``` ```
迭代法:广度优先遍历(层序遍历): 迭代法:广度优先遍历(层序遍历):
```python ```python
import collections # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution: class Solution:
def invertTree(self, root: TreeNode) -> TreeNode: def invertTree(self, root: TreeNode) -> TreeNode:
queue = collections.deque() #使用deque() if not root:
if root: return None
queue.append(root)
queue = collections.deque([root])
while queue: while queue:
size = len(queue) for i in range(len(queue)):
for i in range(size):
node = queue.popleft() node = queue.popleft()
node.left, node.right = node.right, node.left #节点处理 node.left, node.right = node.right, node.left
if node.left: if node.left: queue.append(node.left)
queue.append(node.left) if node.right: queue.append(node.right)
if node.right:
queue.append(node.right)
return root
```
迭代法:广度优先遍历(层序遍历),和之前的层序遍历写法一致:
```python
class Solution:
def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
if not root: return root
from collections import deque
que=deque([root])
while que:
size=len(que)
for i in range(size):
cur=que.popleft()
cur.left, cur.right = cur.right, cur.left
if cur.left: que.append(cur.left)
if cur.right: que.append(cur.right)
return root return root
``` ```
### Go ### Go
递归版本的前序遍历 递归版本的前序遍历

View File

@ -485,172 +485,166 @@ class MyLinkedList {
Python Python
```python ```python
# 单链表 版本一单链表
class MyLinkedList1: class ListNode:
def __init__(self, val=0, next=None):
def __init__(self):
self.dummy_head = Node()# 添加虚拟头指针,便于操作
self.size = 0 # 设置一个链表长度的属性,便于后续操作,注意每次增和删的时候都要更新
def get(self, index):
"""
:type index: int
:rtype: int
"""
if index < 0 or index >= self.size:
return -1
cur = self.dummy_head.next
while(index):
cur = cur.next
index -= 1
return cur.val
def addAtHead(self, val):
"""
:type val: int
:rtype: None
"""
new_node = Node(val)
new_node.next = self.dummy_head.next
self.dummy_head.next = new_node
self.size += 1
def addAtTail(self, val):
"""
:type val: int
:rtype: None
"""
new_node = Node(val)
cur = self.dummy_head
while(cur.next):
cur = cur.next
cur.next = new_node
self.size += 1
def addAtIndex(self, index, val):
"""
:type index: int
:type val: int
:rtype: None
"""
if index < 0:
self.addAtHead(val)
return
elif index == self.size:
self.addAtTail(val)
return
elif index > self.size:
return
node = Node(val)
cur = self.dummy_head
while(index):
cur = cur.next
index -= 1
node.next = cur.next
cur.next = node
self.size += 1
def deleteAtIndex(self, index):
"""
:type index: int
:rtype: None
"""
if index < 0 or index >= self.size:
return
pre = self.dummy_head
while(index):
pre = pre.next
index -= 1
pre.next = pre.next.next
self.size -= 1
# 双链表
# 相对于单链表, Node新增了prev属性
class Node:
def __init__(self, val=0, next = None, prev = None):
self.val = val self.val = val
self.next = next self.next = next
self.prev = prev
class MyLinkedList: class MyLinkedList:
def __init__(self): def __init__(self):
self._head, self._tail = Node(0), Node(0) # 虚拟节点 self.dummy_head = ListNode()
self._head.next, self._tail.prev = self._tail, self._head self.size = 0
self._count = 0 # 添加的节点数
def _get_node(self, index: int) -> Node:
# 当index小于_count//2时, 使用_head查找更快, 反之_tail更快
if index >= self._count // 2:
# 使用prev往前找
node = self._tail
for _ in range(self._count - index):
node = node.prev
else:
# 使用next往后找
node = self._head
for _ in range(index + 1):
node = node.next
return node
def _update(self, prev: Node, next: Node, val: int) -> None:
"""
更新节点
:param prev: 相对于更新的前一个节点
:param next: 相对于更新的后一个节点
:param val: 要添加的节点值
"""
# 计数累加
self._count += 1
node = Node(val)
prev.next, next.prev = node, node
node.prev, node.next = prev, next
def get(self, index: int) -> int: def get(self, index: int) -> int:
""" if index < 0 or index >= self.size:
Get the value of the index-th node in the linked list. If the index is invalid, return -1.
"""
if 0 <= index < self._count:
node = self._get_node(index)
return node.val
else:
return -1 return -1
current = self.dummy_head.next
for i in range(index):
current = current.next
return current.val
def addAtHead(self, val: int) -> None: def addAtHead(self, val: int) -> None:
""" self.dummy_head.next = ListNode(val, self.dummy_head.next)
Add a node of value val before the first element of the linked list. After the insertion, the new node will be the first node of the linked list. self.size += 1
"""
self._update(self._head, self._head.next, val)
def addAtTail(self, val: int) -> None: def addAtTail(self, val: int) -> None:
""" current = self.dummy_head
Append a node of value val to the last element of the linked list. while current.next:
""" current = current.next
self._update(self._tail.prev, self._tail, val) current.next = ListNode(val)
self.size += 1
def addAtIndex(self, index: int, val: int) -> None: def addAtIndex(self, index: int, val: int) -> None:
""" if index < 0 or index > self.size:
Add a node of value val before the index-th node in the linked list. If index equals to the length of linked list, the node will be appended to the end of linked list. If index is greater than the length, the node will not be inserted.
"""
if index < 0:
index = 0
elif index > self._count:
return return
node = self._get_node(index)
self._update(node.prev, node, val) current = self.dummy_head
for i in range(index):
current = current.next
current.next = ListNode(val, current.next)
self.size += 1
def deleteAtIndex(self, index: int) -> None: def deleteAtIndex(self, index: int) -> None:
""" if index < 0 or index >= self.size:
Delete the index-th node in the linked list, if the index is valid. return
"""
if 0 <= index < self._count: current = self.dummy_head
node = self._get_node(index) for i in range(index):
# 计数-1 current = current.next
self._count -= 1 current.next = current.next.next
node.prev.next, node.next.prev = node.next, node.prev self.size -= 1
# Your MyLinkedList object will be instantiated and called as such:
# obj = MyLinkedList()
# param_1 = obj.get(index)
# obj.addAtHead(val)
# obj.addAtTail(val)
# obj.addAtIndex(index,val)
# obj.deleteAtIndex(index)
```
```python
版本二双链表法
class ListNode:
def __init__(self, val=0, prev=None, next=None):
self.val = val
self.prev = prev
self.next = next
class MyLinkedList:
def __init__(self):
self.head = None
self.tail = None
self.size = 0
def get(self, index: int) -> int:
if index < 0 or index >= self.size:
return -1
if index < self.size // 2:
current = self.head
for i in range(index):
current = current.next
else:
current = self.tail
for i in range(self.size - index - 1):
current = current.prev
return current.val
def addAtHead(self, val: int) -> None:
new_node = ListNode(val, None, self.head)
if self.head:
self.head.prev = new_node
else:
self.tail = new_node
self.head = new_node
self.size += 1
def addAtTail(self, val: int) -> None:
new_node = ListNode(val, self.tail, None)
if self.tail:
self.tail.next = new_node
else:
self.head = new_node
self.tail = new_node
self.size += 1
def addAtIndex(self, index: int, val: int) -> None:
if index < 0 or index > self.size:
return
if index == 0:
self.addAtHead(val)
elif index == self.size:
self.addAtTail(val)
else:
if index < self.size // 2:
current = self.head
for i in range(index - 1):
current = current.next
else:
current = self.tail
for i in range(self.size - index):
current = current.prev
new_node = ListNode(val, current, current.next)
current.next.prev = new_node
current.next = new_node
self.size += 1
def deleteAtIndex(self, index: int) -> None:
if index < 0 or index >= self.size:
return
if index == 0:
self.head = self.head.next
if self.head:
self.head.prev = None
else:
self.tail = None
elif index == self.size - 1:
self.tail = self.tail.prev
if self.tail:
self.tail.next = None
else:
self.head = None
else:
if index < self.size // 2:
current = self.head
for i in range(index):
current = current.next
else:
current = self.tail
for i in range(self.size - index - 1):
current = current.prev
current.prev.next = current.next
current.next.prev = current.prev
self.size -= 1

View File

@ -140,22 +140,37 @@ class Solution {
Python Python
```Python ```Python
版本一双指针法
class Solution: class Solution:
def sortedSquares(self, nums: List[int]) -> List[int]: def sortedSquares(self, nums: List[int]) -> List[int]:
n = len(nums) l, r, i = 0, len(nums)-1, len(nums)-1
i,j,k = 0,n - 1,n - 1 res = [float('inf')] * len(nums) # 需要提前定义列表,存放结果
ans = [-1] * n while l <= r:
while i <= j: if nums[l] ** 2 < nums[r] ** 2: # 左右边界进行对比,找出最大值
lm = nums[i] ** 2 res[i] = nums[r] ** 2
rm = nums[j] ** 2 r -= 1 # 右指针往左移动
if lm > rm:
ans[k] = lm
i += 1
else: else:
ans[k] = rm res[i] = nums[l] ** 2
j -= 1 l += 1 # 左指针往右移动
k -= 1 i -= 1 # 存放结果的指针需要往前平移一位
return ans return res
```
```Python
版本二暴力排序法
class Solution:
def sortedSquares(self, nums: List[int]) -> List[int]:
for i in range(len(nums)):
nums[i] *= nums[i]
nums.sort()
return nums
```
```Python
版本三暴力排序法+列表推导法
class Solution:
def sortedSquares(self, nums: List[int]) -> List[int]:
return sorted(x*x for x in nums)
``` ```
Go Go

View File

@ -258,6 +258,8 @@ class Solution:
if node.left: if node.left:
stack.append(node.left) stack.append(node.left)
return result return result
```
```python
# 中序遍历-迭代-LC94_二叉树的中序遍历 # 中序遍历-迭代-LC94_二叉树的中序遍历
class Solution: class Solution:
@ -279,6 +281,8 @@ class Solution:
# 取栈顶元素右结点 # 取栈顶元素右结点
cur = cur.right cur = cur.right
return result return result
```
```python
# 后序遍历-迭代-LC145_二叉树的后序遍历 # 后序遍历-迭代-LC145_二叉树的后序遍历
class Solution: class Solution:

View File

@ -174,50 +174,49 @@ class Solution {
Python Python
```python ```python
# 前序遍历-递归-LC144_二叉树的前序遍历 # 前序遍历-递归-LC144_二叉树的前序遍历
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution: class Solution:
def preorderTraversal(self, root: TreeNode) -> List[int]: def preorderTraversal(self, root: TreeNode) -> List[int]:
# 保存结果 if not root:
result = [] return []
def traversal(root: TreeNode): left = self.preorderTraversal(root.left)
if root == None: right = self.preorderTraversal(root.right)
return
result.append(root.val) # 前序
traversal(root.left) # 左
traversal(root.right) # 右
traversal(root) return [root.val] + left + right
return result
```
```python
# 中序遍历-递归-LC94_二叉树的中序遍历 # 中序遍历-递归-LC94_二叉树的中序遍历
class Solution: class Solution:
def inorderTraversal(self, root: TreeNode) -> List[int]: def inorderTraversal(self, root: TreeNode) -> List[int]:
result = [] if root is None:
return []
def traversal(root: TreeNode): left = self.inorderTraversal(root.left)
if root == None: right = self.inorderTraversal(root.right)
return
traversal(root.left) # 左 return left + [root.val] + right
result.append(root.val) # 中序 ```
traversal(root.right) # 右 ```python
traversal(root)
return result
# 后序遍历-递归-LC145_二叉树的后序遍历 # 后序遍历-递归-LC145_二叉树的后序遍历
class Solution: class Solution:
def postorderTraversal(self, root: TreeNode) -> List[int]: def postorderTraversal(self, root: TreeNode) -> List[int]:
result = [] if not root:
return []
def traversal(root: TreeNode): left = self.postorderTraversal(root.left)
if root == None: right = self.postorderTraversal(root.right)
return
traversal(root.left) # 左
traversal(root.right) # 右
result.append(root.val) # 后序
traversal(root) return left + right + [root.val]
return result
``` ```
Go Go

View File

@ -152,7 +152,7 @@ public class Solution {
### Python ### Python
```python ```python
版本一求长度同时出发
class Solution: class Solution:
def getIntersectionNode(self, headA: ListNode, headB: ListNode) -> ListNode: def getIntersectionNode(self, headA: ListNode, headB: ListNode) -> ListNode:
lenA, lenB = 0, 0 lenA, lenB = 0, 0
@ -178,7 +178,68 @@ class Solution:
curB = curB.next curB = curB.next
return None return None
``` ```
```python
版本二求长度同时出发 代码复用
class Solution:
def getIntersectionNode(self, headA: ListNode, headB: ListNode) -> ListNode:
lenA = self.getLength(headA)
lenB = self.getLength(headB)
# 通过移动较长的链表,使两链表长度相等
if lenA > lenB:
headA = self.moveForward(headA, lenA - lenB)
else:
headB = self.moveForward(headB, lenB - lenA)
# 将两个头向前移动,直到它们相交
while headA and headB:
if headA == headB:
return headA
headA = headA.next
headB = headB.next
return None
def getLength(self, head: ListNode) -> int:
length = 0
while head:
length += 1
head = head.next
return length
def moveForward(self, head: ListNode, steps: int) -> ListNode:
while steps > 0:
head = head.next
steps -= 1
return head
```
```python
版本三等比例法
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution:
def getIntersectionNode(self, headA: ListNode, headB: ListNode) -> ListNode:
# 处理边缘情况
if not headA or not headB:
return None
# 在每个链表的头部初始化两个指针
pointerA = headA
pointerB = headB
# 遍历两个链表直到指针相交
while pointerA != pointerB:
# 将指针向前移动一个节点
pointerA = pointerA.next if pointerA else headB
pointerB = pointerB.next if pointerB else headA
# 如果相交指针将位于交点节点如果没有交点值为None
return pointerA
```
### Go ### Go
```go ```go