From 2137778d44d256795bd0ca6c9b880b2c3be180d1 Mon Sep 17 00:00:00 2001 From: damon <245211612@qq.com> Date: Thu, 26 May 2022 00:29:02 +0800 Subject: [PATCH] =?UTF-8?q?=E6=B7=BB=E5=8A=A0=EF=BC=880015.=E4=B8=89?= =?UTF-8?q?=E6=95=B0=E4=B9=8B=E5=92=8C.md=EF=BC=89=EF=BC=9A=E5=A2=9E?= =?UTF-8?q?=E5=8A=A0javascript=E7=89=88=E6=9C=ACnsum=E7=9A=84=E9=80=9A?= =?UTF-8?q?=E7=94=A8=E8=A7=A3=E6=B3=95?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- problems/0015.三数之和.md | 70 +++++++++++++++++++++++++++++++++++ 1 file changed, 70 insertions(+) diff --git a/problems/0015.三数之和.md b/problems/0015.三数之和.md index cc184c87..12d83d8f 100644 --- a/problems/0015.三数之和.md +++ b/problems/0015.三数之和.md @@ -345,6 +345,76 @@ var threeSum = function(nums) { return res }; ``` + +解法二:nSum通用解法。递归 + +```js +/** + * nsum通用解法,支持2sum,3sum,4sum...等等 + * 时间复杂度分析: + * 1. n = 2时,时间复杂度O(NlogN),排序所消耗的时间。、 + * 2. n > 2时,时间复杂度为O(N^n-1),即N的n-1次方,至少是2次方,此时可省略排序所消耗的时间。举例:3sum为O(n^2),4sum为O(n^3) + * @param {number[]} nums + * @return {number[][]} + */ +var threeSum = function (nums) { + // nsum通用解法核心方法 + function nSumTarget(nums, n, start, target) { + // 前提:nums要先排序好 + let res = []; + if (n === 2) { + res = towSumTarget(nums, start, target); + } else { + for (let i = start; i < nums.length; i++) { + // 递归求(n - 1)sum + let subRes = nSumTarget( + nums, + n - 1, + i + 1, + target - nums[i] + ); + for (let j = 0; j < subRes.length; j++) { + res.push([nums[i], ...subRes[j]]); + } + // 跳过相同元素 + while (nums[i] === nums[i + 1]) i++; + } + } + return res; + } + + function towSumTarget(nums, start, target) { + // 前提:nums要先排序好 + let res = []; + let len = nums.length; + let left = start; + let right = len - 1; + while (left < right) { + let sum = nums[left] + nums[right]; + if (sum < target) { + while (nums[left] === nums[left + 1]) left++; + left++; + } else if (sum > target) { + while (nums[right] === nums[right - 1]) right--; + right--; + } else { + // 相等 + res.push([nums[left], nums[right]]); + // 跳过相同元素 + while (nums[left] === nums[left + 1]) left++; + while (nums[right] === nums[right - 1]) right--; + left++; + right--; + } + } + return res; + } + nums.sort((a, b) => a - b); + // n = 3,此时求3sum之和 + return nSumTarget(nums, 3, 0, 0); +}; +``` + TypeScript: ```typescript