Update 0131.分割回文串.md

补充python注释和规范代码
This commit is contained in:
Asterisk
2021-10-10 19:01:54 +08:00
committed by GitHub
parent b5dcc5583d
commit 01af589543

View File

@ -290,100 +290,88 @@ class Solution {
``` ```
## Python ## Python
```python **回溯+正反序判断回文串**
# 版本一 ```python3
class Solution: class Solution:
def __init__(self):
self.paths = []
self.path = []
def partition(self, s: str) -> List[List[str]]: def partition(self, s: str) -> List[List[str]]:
res = [] '''
path = [] #放已经回文的子串 递归用于纵向遍历
def backtrack(s,startIndex): for循环用于横向遍历
if startIndex >= len(s): #如果起始位置已经大于s的大小说明已经找到了一组分割方案了 当切割线迭代至字符串末尾,说明找到一种方法
return res.append(path[:]) 类似组合问题为了不重复切割同一位置需要start_index来做标记下一轮递归的起始位置(切割线)
for i in range(startIndex,len(s)): '''
p = s[startIndex:i+1] #获取[startIndex,i+1]在s中的子串 self.path.clear()
if p == p[::-1]: path.append(p) #是回文子串 self.paths.clear()
else: continue #不是回文,跳过 self.backtracking(s, 0)
backtrack(s,i+1) #寻找i+1为起始位置的子串 return self.paths
path.pop() #回溯过程弹出本次已经填在path的子串
backtrack(s,0) def backtracking(self, s: str, start_index: int) -> None:
return res # Base Case
if start_index >= len(s):
self.paths.append(self.path[:])
return
# 单层递归逻辑
for i in range(start_index, len(s)):
# 此次比其他组合题目多了一步判断:
# 判断被截取的这一段子串([start_index, i])是否为回文串
temp = s[start_index:i+1]
if temp == temp[::-1]: # 若反序和正序相同,意味着这是回文串
self.path.append(temp)
self.backtracking(s, i+1) # 递归纵向遍历:从下一处进行切割,判断其余是否仍为回文串
self.path.pop()
else:
continue
``` ```
```python **回溯+函数判断回文串**
# 版本二 ```python3
class Solution: class Solution:
def __init__(self):
self.paths = []
self.path = []
def partition(self, s: str) -> List[List[str]]: def partition(self, s: str) -> List[List[str]]:
res = [] '''
path = [] #放已经回文的子串 递归用于纵向遍历
# 双指针法判断是否是回文串 for循环用于横向遍历
def isPalindrome(s): 当切割线迭代至字符串末尾,说明找到一种方法
n = len(s) 类似组合问题为了不重复切割同一位置需要start_index来做标记下一轮递归的起始位置(切割线)
i, j = 0, n - 1 '''
while i < j: self.path.clear()
if s[i] != s[j]:return False self.paths.clear()
i += 1 self.backtracking(s, 0)
j -= 1 return self.paths
return True
def backtrack(s, startIndex):
if startIndex >= len(s): # 如果起始位置已经大于s的大小说明已经找到了一组分割方案了
res.append(path[:])
return
for i in range(startIndex, len(s)):
p = s[startIndex:i+1] # 获取[startIndex,i+1]在s中的子串
if isPalindrome(p): # 是回文子串
path.append(p)
else: continue #不是回文,跳过
backtrack(s, i + 1)
path.pop() #回溯过程弹出本次已经填在path的子串
backtrack(s, 0)
return res
```
## Go
注意切片go切片是披着值类型外衣的引用类型 def backtracking(self, s: str, start_index: int) -> None:
# Base Case
if start_index >= len(s):
self.paths.append(self.path[:])
return
# 单层递归逻辑
for i in range(start_index, len(s)):
# 此次比其他组合题目多了一步判断:
# 判断被截取的这一段子串([start_index, i])是否为回文串
if self.is_palindrome(s, start_index, i):
self.path.append(s[start_index:i+1])
self.backtracking(s, i+1) # 递归纵向遍历:从下一处进行切割,判断其余是否仍为回文串
self.path.pop() # 回溯
else:
continue
```go def is_palindrome(self, s: str, start: int, end: int) -> bool:
func partition(s string) [][]string { i: int = start
var tmpString []string//切割字符串集合 j: int = end
var res [][]string//结果集合 while i < j:
backTracking(s,tmpString,0,&res) if s[i] != s[j]:
return res return False
} i += 1
func backTracking(s string,tmpString []string,startIndex int,res *[][]string){ j -= 1
if startIndex==len(s){//到达字符串末尾了 return True
//进行一次切片拷贝怕之后的操作影响tmpString切片内的值
t := make([]string, len(tmpString))
copy(t, tmpString)
*res=append(*res,t)
}
for i:=startIndex;i<len(s);i++{
//处理首先通过startIndex和i判断切割的区间进而判断该区间的字符串是否为回文若为回文则加入到tmpString否则继续后移找到回文区间这里为一层处理
if isPartition(s,startIndex,i){
tmpString=append(tmpString,s[startIndex:i+1])
}else{
continue
}
//递归
backTracking(s,tmpString,i+1,res)
//回溯
tmpString=tmpString[:len(tmpString)-1]
}
}
//判断是否为回文
func isPartition(s string,startIndex,end int)bool{
left:=startIndex
right:=end
for ;left<right;{
if s[left]!=s[right]{
return false
}
//移动左右指针
left++
right--
}
return true
}
``` ```
## javaScript ## javaScript