mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-07-11 13:00:22 +08:00
Merge branch 'youngyangyang04:master' into master
This commit is contained in:
@ -287,98 +287,153 @@ class Solution {
|
||||
```
|
||||
|
||||
## Python
|
||||
**回溯**
|
||||
回溯
|
||||
```python
|
||||
class Solution:
|
||||
def __init__(self):
|
||||
self.answers: List[str] = []
|
||||
self.answer: str = ''
|
||||
self.letter_map = {
|
||||
'2': 'abc',
|
||||
'3': 'def',
|
||||
'4': 'ghi',
|
||||
'5': 'jkl',
|
||||
'6': 'mno',
|
||||
'7': 'pqrs',
|
||||
'8': 'tuv',
|
||||
'9': 'wxyz'
|
||||
}
|
||||
|
||||
def letterCombinations(self, digits: str) -> List[str]:
|
||||
self.answers.clear()
|
||||
if not digits: return []
|
||||
self.letterMap = [
|
||||
"", # 0
|
||||
"", # 1
|
||||
"abc", # 2
|
||||
"def", # 3
|
||||
"ghi", # 4
|
||||
"jkl", # 5
|
||||
"mno", # 6
|
||||
"pqrs", # 7
|
||||
"tuv", # 8
|
||||
"wxyz" # 9
|
||||
]
|
||||
self.result = []
|
||||
self.s = ""
|
||||
|
||||
def backtracking(self, digits, index):
|
||||
if index == len(digits):
|
||||
self.result.append(self.s)
|
||||
return
|
||||
digit = int(digits[index]) # 将索引处的数字转换为整数
|
||||
letters = self.letterMap[digit] # 获取对应的字符集
|
||||
for i in range(len(letters)):
|
||||
self.s += letters[i] # 处理字符
|
||||
self.backtracking(digits, index + 1) # 递归调用,注意索引加1,处理下一个数字
|
||||
self.s = self.s[:-1] # 回溯,删除最后添加的字符
|
||||
|
||||
def letterCombinations(self, digits):
|
||||
if len(digits) == 0:
|
||||
return self.result
|
||||
self.backtracking(digits, 0)
|
||||
return self.answers
|
||||
|
||||
def backtracking(self, digits: str, index: int) -> None:
|
||||
# 回溯函数没有返回值
|
||||
# Base Case
|
||||
if index == len(digits): # 当遍历穷尽后的下一层时
|
||||
self.answers.append(self.answer)
|
||||
return
|
||||
# 单层递归逻辑
|
||||
letters: str = self.letter_map[digits[index]]
|
||||
for letter in letters:
|
||||
self.answer += letter # 处理
|
||||
self.backtracking(digits, index + 1) # 递归至下一层
|
||||
self.answer = self.answer[:-1] # 回溯
|
||||
return self.result
|
||||
|
||||
```
|
||||
**回溯简化**
|
||||
回溯精简(版本一)
|
||||
```python
|
||||
class Solution:
|
||||
def __init__(self):
|
||||
self.answers: List[str] = []
|
||||
self.letter_map = {
|
||||
'2': 'abc',
|
||||
'3': 'def',
|
||||
'4': 'ghi',
|
||||
'5': 'jkl',
|
||||
'6': 'mno',
|
||||
'7': 'pqrs',
|
||||
'8': 'tuv',
|
||||
'9': 'wxyz'
|
||||
}
|
||||
|
||||
def letterCombinations(self, digits: str) -> List[str]:
|
||||
self.answers.clear()
|
||||
if not digits: return []
|
||||
self.backtracking(digits, 0, '')
|
||||
return self.answers
|
||||
self.letterMap = [
|
||||
"", # 0
|
||||
"", # 1
|
||||
"abc", # 2
|
||||
"def", # 3
|
||||
"ghi", # 4
|
||||
"jkl", # 5
|
||||
"mno", # 6
|
||||
"pqrs", # 7
|
||||
"tuv", # 8
|
||||
"wxyz" # 9
|
||||
]
|
||||
self.result = []
|
||||
|
||||
def backtracking(self, digits: str, index: int, answer: str) -> None:
|
||||
# 回溯函数没有返回值
|
||||
# Base Case
|
||||
if index == len(digits): # 当遍历穷尽后的下一层时
|
||||
self.answers.append(answer)
|
||||
return
|
||||
# 单层递归逻辑
|
||||
letters: str = self.letter_map[digits[index]]
|
||||
def getCombinations(self, digits, index, s):
|
||||
if index == len(digits):
|
||||
self.result.append(s)
|
||||
return
|
||||
digit = int(digits[index])
|
||||
letters = self.letterMap[digit]
|
||||
for letter in letters:
|
||||
self.backtracking(digits, index + 1, answer + letter) # 递归至下一层 + 回溯
|
||||
self.getCombinations(digits, index + 1, s + letter)
|
||||
|
||||
def letterCombinations(self, digits):
|
||||
if len(digits) == 0:
|
||||
return self.result
|
||||
self.getCombinations(digits, 0, "")
|
||||
return self.result
|
||||
|
||||
```
|
||||
**使用itertools**
|
||||
回溯精简(版本二)
|
||||
```python
|
||||
class Solution:
|
||||
def letterCombinations(self, digits: str) -> List[str]:
|
||||
import itertools
|
||||
if not digits:
|
||||
return list()
|
||||
|
||||
phoneMap = {
|
||||
"2": "abc",
|
||||
"3": "def",
|
||||
"4": "ghi",
|
||||
"5": "jkl",
|
||||
"6": "mno",
|
||||
"7": "pqrs",
|
||||
"8": "tuv",
|
||||
"9": "wxyz",
|
||||
}
|
||||
def __init__(self):
|
||||
self.letterMap = [
|
||||
"", # 0
|
||||
"", # 1
|
||||
"abc", # 2
|
||||
"def", # 3
|
||||
"ghi", # 4
|
||||
"jkl", # 5
|
||||
"mno", # 6
|
||||
"pqrs", # 7
|
||||
"tuv", # 8
|
||||
"wxyz" # 9
|
||||
]
|
||||
|
||||
def getCombinations(self, digits, index, s, result):
|
||||
if index == len(digits):
|
||||
result.append(s)
|
||||
return
|
||||
digit = int(digits[index])
|
||||
letters = self.letterMap[digit]
|
||||
for letter in letters:
|
||||
self.getCombinations(digits, index + 1, s + letter, result)
|
||||
|
||||
def letterCombinations(self, digits):
|
||||
result = []
|
||||
if len(digits) == 0:
|
||||
return result
|
||||
self.getCombinations(digits, 0, "", result)
|
||||
return result
|
||||
|
||||
|
||||
groups = (phoneMap[digit] for digit in digits)
|
||||
return ["".join(combination) for combination in itertools.product(*groups)]
|
||||
```
|
||||
|
||||
回溯优化使用列表
|
||||
```python
|
||||
class Solution:
|
||||
def __init__(self):
|
||||
self.letterMap = [
|
||||
"", # 0
|
||||
"", # 1
|
||||
"abc", # 2
|
||||
"def", # 3
|
||||
"ghi", # 4
|
||||
"jkl", # 5
|
||||
"mno", # 6
|
||||
"pqrs", # 7
|
||||
"tuv", # 8
|
||||
"wxyz" # 9
|
||||
]
|
||||
|
||||
def getCombinations(self, digits, index, path, result):
|
||||
if index == len(digits):
|
||||
result.append(''.join(path))
|
||||
return
|
||||
digit = int(digits[index])
|
||||
letters = self.letterMap[digit]
|
||||
for letter in letters:
|
||||
path.append(letter)
|
||||
self.getCombinations(digits, index + 1, path, result)
|
||||
path.pop()
|
||||
|
||||
def letterCombinations(self, digits):
|
||||
result = []
|
||||
if len(digits) == 0:
|
||||
return result
|
||||
self.getCombinations(digits, 0, [], result)
|
||||
return result
|
||||
|
||||
|
||||
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Go
|
||||
|
||||
|
@ -412,6 +412,28 @@ struct ListNode* removeNthFromEnd(struct ListNode* head, int n) {
|
||||
|
||||
```
|
||||
|
||||
C#:
|
||||
```csharp
|
||||
public class Solution {
|
||||
public ListNode RemoveNthFromEnd(ListNode head, int n) {
|
||||
ListNode dummpHead = new ListNode(0);
|
||||
dummpHead.next = head;
|
||||
var fastNode = dummpHead;
|
||||
var slowNode = dummpHead;
|
||||
while(n-- != 0 && fastNode != null)
|
||||
{
|
||||
fastNode = fastNode.next;
|
||||
}
|
||||
while(fastNode.next != null)
|
||||
{
|
||||
fastNode = fastNode.next;
|
||||
slowNode = slowNode.next;
|
||||
}
|
||||
slowNode.next = slowNode.next.next;
|
||||
return dummpHead.next;
|
||||
}
|
||||
}
|
||||
```
|
||||
<p align="center">
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
<img src="../pics/网站星球宣传海报.jpg" width="1000"/>
|
||||
|
@ -240,7 +240,7 @@ class Solution {
|
||||
while (left - 1 >= 0 && nums[left - 1] == nums[index]) { // 防止数组越界。逻辑短路,两个条件顺序不能换
|
||||
left--;
|
||||
}
|
||||
// 向左滑动,找右边界
|
||||
// 向右滑动,找右边界
|
||||
while (right + 1 < nums.length && nums[right + 1] == nums[index]) { // 防止数组越界。
|
||||
right++;
|
||||
}
|
||||
|
@ -273,75 +273,101 @@ class Solution {
|
||||
|
||||
## Python
|
||||
|
||||
**回溯**
|
||||
回溯(版本一)
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def __init__(self):
|
||||
self.path = []
|
||||
self.paths = []
|
||||
|
||||
def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:
|
||||
'''
|
||||
因为本题没有组合数量限制,所以只要元素总和大于target就算结束
|
||||
'''
|
||||
self.path.clear()
|
||||
self.paths.clear()
|
||||
self.backtracking(candidates, target, 0, 0)
|
||||
return self.paths
|
||||
|
||||
def backtracking(self, candidates: List[int], target: int, sum_: int, start_index: int) -> None:
|
||||
# Base Case
|
||||
if sum_ == target:
|
||||
self.paths.append(self.path[:]) # 因为是shallow copy,所以不能直接传入self.path
|
||||
def backtracking(self, candidates, target, total, startIndex, path, result):
|
||||
if total > target:
|
||||
return
|
||||
if sum_ > target:
|
||||
if total == target:
|
||||
result.append(path[:])
|
||||
return
|
||||
|
||||
# 单层递归逻辑
|
||||
for i in range(start_index, len(candidates)):
|
||||
sum_ += candidates[i]
|
||||
self.path.append(candidates[i])
|
||||
self.backtracking(candidates, target, sum_, i) # 因为无限制重复选取,所以不是i+1
|
||||
sum_ -= candidates[i] # 回溯
|
||||
self.path.pop() # 回溯
|
||||
for i in range(startIndex, len(candidates)):
|
||||
total += candidates[i]
|
||||
path.append(candidates[i])
|
||||
self.backtracking(candidates, target, total, i, path, result) # 不用i+1了,表示可以重复读取当前的数
|
||||
total -= candidates[i]
|
||||
path.pop()
|
||||
|
||||
def combinationSum(self, candidates, target):
|
||||
result = []
|
||||
self.backtracking(candidates, target, 0, 0, [], result)
|
||||
return result
|
||||
|
||||
```
|
||||
|
||||
**剪枝回溯**
|
||||
回溯剪枝(版本一)
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def __init__(self):
|
||||
self.path = []
|
||||
self.paths = []
|
||||
|
||||
def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:
|
||||
'''
|
||||
因为本题没有组合数量限制,所以只要元素总和大于target就算结束
|
||||
'''
|
||||
self.path.clear()
|
||||
self.paths.clear()
|
||||
|
||||
# 为了剪枝需要提前进行排序
|
||||
candidates.sort()
|
||||
self.backtracking(candidates, target, 0, 0)
|
||||
return self.paths
|
||||
|
||||
def backtracking(self, candidates: List[int], target: int, sum_: int, start_index: int) -> None:
|
||||
# Base Case
|
||||
if sum_ == target:
|
||||
self.paths.append(self.path[:]) # 因为是shallow copy,所以不能直接传入self.path
|
||||
def backtracking(self, candidates, target, total, startIndex, path, result):
|
||||
if total == target:
|
||||
result.append(path[:])
|
||||
return
|
||||
# 单层递归逻辑
|
||||
# 如果本层 sum + condidates[i] > target,就提前结束遍历,剪枝
|
||||
for i in range(start_index, len(candidates)):
|
||||
if sum_ + candidates[i] > target:
|
||||
return
|
||||
sum_ += candidates[i]
|
||||
self.path.append(candidates[i])
|
||||
self.backtracking(candidates, target, sum_, i) # 因为无限制重复选取,所以不是i-1
|
||||
sum_ -= candidates[i] # 回溯
|
||||
self.path.pop() # 回溯
|
||||
|
||||
for i in range(startIndex, len(candidates)):
|
||||
if total + candidates[i] > target:
|
||||
break
|
||||
total += candidates[i]
|
||||
path.append(candidates[i])
|
||||
self.backtracking(candidates, target, total, i, path, result)
|
||||
total -= candidates[i]
|
||||
path.pop()
|
||||
|
||||
def combinationSum(self, candidates, target):
|
||||
result = []
|
||||
candidates.sort() # 需要排序
|
||||
self.backtracking(candidates, target, 0, 0, [], result)
|
||||
return result
|
||||
|
||||
```
|
||||
|
||||
回溯(版本二)
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:
|
||||
result =[]
|
||||
self.backtracking(candidates, target, 0, [], result)
|
||||
return result
|
||||
def backtracking(self, candidates, target, startIndex, path, result):
|
||||
if target == 0:
|
||||
result.append(path[:])
|
||||
return
|
||||
if target < 0:
|
||||
return
|
||||
for i in range(startIndex, len(candidates)):
|
||||
path.append(candidates[i])
|
||||
self.backtracking(candidates, target - candidates[i], i, path, result)
|
||||
path.pop()
|
||||
|
||||
```
|
||||
|
||||
回溯剪枝(版本二)
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:
|
||||
result =[]
|
||||
candidates.sort()
|
||||
self.backtracking(candidates, target, 0, [], result)
|
||||
return result
|
||||
def backtracking(self, candidates, target, startIndex, path, result):
|
||||
if target == 0:
|
||||
result.append(path[:])
|
||||
return
|
||||
|
||||
for i in range(startIndex, len(candidates)):
|
||||
if target - candidates[i] < 0:
|
||||
break
|
||||
path.append(candidates[i])
|
||||
self.backtracking(candidates, target - candidates[i], i, path, result)
|
||||
path.pop()
|
||||
|
||||
```
|
||||
|
||||
## Go
|
||||
|
@ -356,93 +356,92 @@ class Solution {
|
||||
```
|
||||
|
||||
## Python
|
||||
**回溯+巧妙去重(省去使用used**
|
||||
回溯
|
||||
```python
|
||||
class Solution:
|
||||
def __init__(self):
|
||||
self.paths = []
|
||||
self.path = []
|
||||
|
||||
def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
|
||||
'''
|
||||
类似于求三数之和,求四数之和,为了避免重复组合,需要提前进行数组排序
|
||||
'''
|
||||
self.paths.clear()
|
||||
self.path.clear()
|
||||
# 必须提前进行数组排序,避免重复
|
||||
candidates.sort()
|
||||
self.backtracking(candidates, target, 0, 0)
|
||||
return self.paths
|
||||
|
||||
def backtracking(self, candidates: List[int], target: int, sum_: int, start_index: int) -> None:
|
||||
# Base Case
|
||||
if sum_ == target:
|
||||
self.paths.append(self.path[:])
|
||||
def backtracking(self, candidates, target, total, startIndex, path, result):
|
||||
if total == target:
|
||||
result.append(path[:])
|
||||
return
|
||||
|
||||
# 单层递归逻辑
|
||||
for i in range(start_index, len(candidates)):
|
||||
# 剪枝,同39.组合总和
|
||||
if sum_ + candidates[i] > target:
|
||||
return
|
||||
|
||||
# 跳过同一树层使用过的元素
|
||||
if i > start_index and candidates[i] == candidates[i-1]:
|
||||
|
||||
for i in range(startIndex, len(candidates)):
|
||||
if i > startIndex and candidates[i] == candidates[i - 1]:
|
||||
continue
|
||||
|
||||
sum_ += candidates[i]
|
||||
self.path.append(candidates[i])
|
||||
self.backtracking(candidates, target, sum_, i+1)
|
||||
self.path.pop() # 回溯,为了下一轮for loop
|
||||
sum_ -= candidates[i] # 回溯,为了下一轮for loop
|
||||
|
||||
if total + candidates[i] > target:
|
||||
break
|
||||
|
||||
total += candidates[i]
|
||||
path.append(candidates[i])
|
||||
self.backtracking(candidates, target, total, i + 1, path, result)
|
||||
total -= candidates[i]
|
||||
path.pop()
|
||||
|
||||
def combinationSum2(self, candidates, target):
|
||||
result = []
|
||||
candidates.sort()
|
||||
self.backtracking(candidates, target, 0, 0, [], result)
|
||||
return result
|
||||
|
||||
```
|
||||
**回溯+去重(使用used)**
|
||||
回溯 使用used
|
||||
```python
|
||||
class Solution:
|
||||
def __init__(self):
|
||||
self.paths = []
|
||||
self.path = []
|
||||
self.used = []
|
||||
|
||||
def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
|
||||
'''
|
||||
类似于求三数之和,求四数之和,为了避免重复组合,需要提前进行数组排序
|
||||
本题需要使用used,用来标记区别同一树层的元素使用重复情况:注意区分递归纵向遍历遇到的重复元素,和for循环遇到的重复元素,这两者的区别
|
||||
'''
|
||||
self.paths.clear()
|
||||
self.path.clear()
|
||||
self.usage_list = [False] * len(candidates)
|
||||
# 必须提前进行数组排序,避免重复
|
||||
candidates.sort()
|
||||
self.backtracking(candidates, target, 0, 0)
|
||||
return self.paths
|
||||
|
||||
def backtracking(self, candidates: List[int], target: int, sum_: int, start_index: int) -> None:
|
||||
# Base Case
|
||||
if sum_ == target:
|
||||
self.paths.append(self.path[:])
|
||||
def backtracking(self, candidates, target, total, startIndex, used, path, result):
|
||||
if total == target:
|
||||
result.append(path[:])
|
||||
return
|
||||
|
||||
# 单层递归逻辑
|
||||
for i in range(start_index, len(candidates)):
|
||||
# 剪枝,同39.组合总和
|
||||
if sum_ + candidates[i] > target:
|
||||
return
|
||||
|
||||
# 检查同一树层是否出现曾经使用过的相同元素
|
||||
# 若数组中前后元素值相同,但前者却未被使用(used == False),说明是for loop中的同一树层的相同元素情况
|
||||
if i > 0 and candidates[i] == candidates[i-1] and self.usage_list[i-1] == False:
|
||||
|
||||
for i in range(startIndex, len(candidates)):
|
||||
# 对于相同的数字,只选择第一个未被使用的数字,跳过其他相同数字
|
||||
if i > startIndex and candidates[i] == candidates[i - 1] and not used[i - 1]:
|
||||
continue
|
||||
|
||||
sum_ += candidates[i]
|
||||
self.path.append(candidates[i])
|
||||
self.usage_list[i] = True
|
||||
self.backtracking(candidates, target, sum_, i+1)
|
||||
self.usage_list[i] = False # 回溯,为了下一轮for loop
|
||||
self.path.pop() # 回溯,为了下一轮for loop
|
||||
sum_ -= candidates[i] # 回溯,为了下一轮for loop
|
||||
```
|
||||
if total + candidates[i] > target:
|
||||
break
|
||||
|
||||
total += candidates[i]
|
||||
path.append(candidates[i])
|
||||
used[i] = True
|
||||
self.backtracking(candidates, target, total, i + 1, used, path, result)
|
||||
used[i] = False
|
||||
total -= candidates[i]
|
||||
path.pop()
|
||||
|
||||
def combinationSum2(self, candidates, target):
|
||||
used = [False] * len(candidates)
|
||||
result = []
|
||||
candidates.sort()
|
||||
self.backtracking(candidates, target, 0, 0, used, [], result)
|
||||
return result
|
||||
|
||||
```
|
||||
回溯优化
|
||||
```python
|
||||
class Solution:
|
||||
def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
|
||||
candidates.sort()
|
||||
results = []
|
||||
self.combinationSumHelper(candidates, target, 0, [], results)
|
||||
return results
|
||||
|
||||
def combinationSumHelper(self, candidates, target, index, path, results):
|
||||
if target == 0:
|
||||
results.append(path[:])
|
||||
return
|
||||
for i in range(index, len(candidates)):
|
||||
if i > index and candidates[i] == candidates[i - 1]:
|
||||
continue
|
||||
if candidates[i] > target:
|
||||
break
|
||||
path.append(candidates[i])
|
||||
self.combinationSumHelper(candidates, target - candidates[i], i + 1, path, results)
|
||||
path.pop()
|
||||
```
|
||||
## Go
|
||||
主要在于如何在回溯中去重
|
||||
|
||||
|
@ -205,66 +205,81 @@ class Solution {
|
||||
```
|
||||
|
||||
### Python
|
||||
|
||||
贪心(版本一)
|
||||
```python
|
||||
class Solution:
|
||||
def jump(self, nums: List[int]) -> int:
|
||||
if len(nums) == 1: return 0
|
||||
ans = 0
|
||||
curDistance = 0
|
||||
nextDistance = 0
|
||||
for i in range(len(nums)):
|
||||
nextDistance = max(i + nums[i], nextDistance)
|
||||
if i == curDistance:
|
||||
if curDistance != len(nums) - 1:
|
||||
ans += 1
|
||||
curDistance = nextDistance
|
||||
if nextDistance >= len(nums) - 1: break
|
||||
return ans
|
||||
```
|
||||
|
||||
```python
|
||||
# 贪心版本二
|
||||
class Solution:
|
||||
def jump(self, nums: List[int]) -> int:
|
||||
def jump(self, nums):
|
||||
if len(nums) == 1:
|
||||
return 0
|
||||
curDistance, nextDistance = 0, 0
|
||||
step = 0
|
||||
for i in range(len(nums)-1):
|
||||
nextDistance = max(nextDistance, nums[i]+i)
|
||||
if i == curDistance:
|
||||
curDistance = nextDistance
|
||||
step += 1
|
||||
return step
|
||||
```
|
||||
```python
|
||||
# 贪心版本三 - 类似‘55-跳跃游戏’写法
|
||||
class Solution:
|
||||
def jump(self, nums) -> int:
|
||||
if len(nums)==1: return 0
|
||||
i = 0
|
||||
count = 0
|
||||
cover = 0
|
||||
while i<=cover:
|
||||
for i in range(i,cover+1):
|
||||
cover = max(nums[i]+i,cover)
|
||||
if cover>=len(nums)-1: return count+1
|
||||
count+=1
|
||||
|
||||
cur_distance = 0 # 当前覆盖最远距离下标
|
||||
ans = 0 # 记录走的最大步数
|
||||
next_distance = 0 # 下一步覆盖最远距离下标
|
||||
|
||||
for i in range(len(nums)):
|
||||
next_distance = max(nums[i] + i, next_distance) # 更新下一步覆盖最远距离下标
|
||||
if i == cur_distance: # 遇到当前覆盖最远距离下标
|
||||
ans += 1 # 需要走下一步
|
||||
cur_distance = next_distance # 更新当前覆盖最远距离下标(相当于加油了)
|
||||
if next_distance >= len(nums) - 1: # 当前覆盖最远距离达到数组末尾,不用再做ans++操作,直接结束
|
||||
break
|
||||
|
||||
return ans
|
||||
|
||||
```
|
||||
贪心(版本二)
|
||||
|
||||
```python
|
||||
# 动态规划做法
|
||||
class Solution:
|
||||
def jump(self, nums):
|
||||
cur_distance = 0 # 当前覆盖的最远距离下标
|
||||
ans = 0 # 记录走的最大步数
|
||||
next_distance = 0 # 下一步覆盖的最远距离下标
|
||||
|
||||
for i in range(len(nums) - 1): # 注意这里是小于len(nums) - 1,这是关键所在
|
||||
next_distance = max(nums[i] + i, next_distance) # 更新下一步覆盖的最远距离下标
|
||||
if i == cur_distance: # 遇到当前覆盖的最远距离下标
|
||||
cur_distance = next_distance # 更新当前覆盖的最远距离下标
|
||||
ans += 1
|
||||
|
||||
return ans
|
||||
|
||||
```
|
||||
贪心(版本三) 类似‘55-跳跃游戏’写法
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def jump(self, nums) -> int:
|
||||
if len(nums)==1: # 如果数组只有一个元素,不需要跳跃,步数为0
|
||||
return 0
|
||||
|
||||
i = 0 # 当前位置
|
||||
count = 0 # 步数计数器
|
||||
cover = 0 # 当前能够覆盖的最远距离
|
||||
|
||||
while i <= cover: # 当前位置小于等于当前能够覆盖的最远距离时循环
|
||||
for i in range(i, cover+1): # 遍历从当前位置到当前能够覆盖的最远距离之间的所有位置
|
||||
cover = max(nums[i]+i, cover) # 更新当前能够覆盖的最远距离
|
||||
if cover >= len(nums)-1: # 如果当前能够覆盖的最远距离达到或超过数组的最后一个位置,直接返回步数+1
|
||||
return count+1
|
||||
count += 1 # 每一轮遍历结束后,步数+1
|
||||
|
||||
|
||||
```
|
||||
动态规划
|
||||
```python
|
||||
class Solution:
|
||||
def jump(self, nums: List[int]) -> int:
|
||||
result = [10**4+1]*len(nums)
|
||||
result[0]=0
|
||||
for i in range(len(nums)):
|
||||
for j in range(nums[i]+1):
|
||||
if i+j<len(nums): result[i+j]=min(result[i+j],result[i]+1)
|
||||
#print(result) #打印数组
|
||||
return result[-1]
|
||||
result = [10**4+1] * len(nums) # 初始化结果数组,初始值为一个较大的数
|
||||
result[0] = 0 # 起始位置的步数为0
|
||||
|
||||
for i in range(len(nums)): # 遍历数组
|
||||
for j in range(nums[i] + 1): # 在当前位置能够跳跃的范围内遍历
|
||||
if i + j < len(nums): # 确保下一跳的位置不超过数组范围
|
||||
result[i + j] = min(result[i + j], result[i] + 1) # 更新到达下一跳位置的最小步数
|
||||
|
||||
return result[-1] # 返回到达最后一个位置的最小步数
|
||||
|
||||
|
||||
```
|
||||
|
||||
|
@ -215,68 +215,27 @@ class Solution {
|
||||
```
|
||||
|
||||
### Python
|
||||
**回溯**
|
||||
回溯 使用used
|
||||
```python
|
||||
class Solution:
|
||||
def __init__(self):
|
||||
self.path = []
|
||||
self.paths = []
|
||||
def permute(self, nums):
|
||||
result = []
|
||||
self.backtracking(nums, [], [False] * len(nums), result)
|
||||
return result
|
||||
|
||||
def permute(self, nums: List[int]) -> List[List[int]]:
|
||||
'''
|
||||
因为本题排列是有序的,这意味着同一层的元素可以重复使用,但同一树枝上不能重复使用(usage_list)
|
||||
所以处理排列问题每层都需要从头搜索,故不再使用start_index
|
||||
'''
|
||||
usage_list = [False] * len(nums)
|
||||
self.backtracking(nums, usage_list)
|
||||
return self.paths
|
||||
|
||||
def backtracking(self, nums: List[int], usage_list: List[bool]) -> None:
|
||||
# Base Case本题求叶子节点
|
||||
if len(self.path) == len(nums):
|
||||
self.paths.append(self.path[:])
|
||||
def backtracking(self, nums, path, used, result):
|
||||
if len(path) == len(nums):
|
||||
result.append(path[:])
|
||||
return
|
||||
|
||||
# 单层递归逻辑
|
||||
for i in range(0, len(nums)): # 从头开始搜索
|
||||
# 若遇到self.path里已收录的元素,跳过
|
||||
if usage_list[i] == True:
|
||||
for i in range(len(nums)):
|
||||
if used[i]:
|
||||
continue
|
||||
usage_list[i] = True
|
||||
self.path.append(nums[i])
|
||||
self.backtracking(nums, usage_list) # 纵向传递使用信息,去重
|
||||
self.path.pop()
|
||||
usage_list[i] = False
|
||||
```
|
||||
**回溯+丢掉usage_list**
|
||||
```python
|
||||
class Solution:
|
||||
def __init__(self):
|
||||
self.path = []
|
||||
self.paths = []
|
||||
used[i] = True
|
||||
path.append(nums[i])
|
||||
self.backtracking(nums, path, used, result)
|
||||
path.pop()
|
||||
used[i] = False
|
||||
|
||||
def permute(self, nums: List[int]) -> List[List[int]]:
|
||||
'''
|
||||
因为本题排列是有序的,这意味着同一层的元素可以重复使用,但同一树枝上不能重复使用
|
||||
所以处理排列问题每层都需要从头搜索,故不再使用start_index
|
||||
'''
|
||||
self.backtracking(nums)
|
||||
return self.paths
|
||||
|
||||
def backtracking(self, nums: List[int]) -> None:
|
||||
# Base Case本题求叶子节点
|
||||
if len(self.path) == len(nums):
|
||||
self.paths.append(self.path[:])
|
||||
return
|
||||
|
||||
# 单层递归逻辑
|
||||
for i in range(0, len(nums)): # 从头开始搜索
|
||||
# 若遇到self.path里已收录的元素,跳过
|
||||
if nums[i] in self.path:
|
||||
continue
|
||||
self.path.append(nums[i])
|
||||
self.backtracking(nums)
|
||||
self.path.pop()
|
||||
```
|
||||
|
||||
### Go
|
||||
|
@ -98,6 +98,8 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
// 时间复杂度: 最差情况所有元素都是唯一的。复杂度和全排列1都是 O(n! * n) 对于 n 个元素一共有 n! 中排列方案。而对于每一个答案,我们需要 O(n) 去复制最终放到 result 数组
|
||||
// 空间复杂度: O(n) 回溯树的深度取决于我们有多少个元素
|
||||
```
|
||||
* 时间复杂度: O(n)
|
||||
* 空间复杂度: O(n)
|
||||
@ -223,28 +225,25 @@ class Solution {
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def permuteUnique(self, nums: List[int]) -> List[List[int]]:
|
||||
# res用来存放结果
|
||||
if not nums: return []
|
||||
res = []
|
||||
used = [0] * len(nums)
|
||||
def backtracking(nums, used, path):
|
||||
# 终止条件
|
||||
if len(path) == len(nums):
|
||||
res.append(path.copy())
|
||||
return
|
||||
for i in range(len(nums)):
|
||||
if not used[i]:
|
||||
if i>0 and nums[i] == nums[i-1] and not used[i-1]:
|
||||
continue
|
||||
used[i] = 1
|
||||
path.append(nums[i])
|
||||
backtracking(nums, used, path)
|
||||
path.pop()
|
||||
used[i] = 0
|
||||
# 记得给nums排序
|
||||
backtracking(sorted(nums),used,[])
|
||||
return res
|
||||
def permuteUnique(self, nums):
|
||||
nums.sort() # 排序
|
||||
result = []
|
||||
self.backtracking(nums, [], [False] * len(nums), result)
|
||||
return result
|
||||
|
||||
def backtracking(self, nums, path, used, result):
|
||||
if len(path) == len(nums):
|
||||
result.append(path[:])
|
||||
return
|
||||
for i in range(len(nums)):
|
||||
if (i > 0 and nums[i] == nums[i - 1] and not used[i - 1]) or used[i]:
|
||||
continue
|
||||
used[i] = True
|
||||
path.append(nums[i])
|
||||
self.backtracking(nums, path, used, result)
|
||||
path.pop()
|
||||
used[i] = False
|
||||
|
||||
```
|
||||
|
||||
### Go
|
||||
|
@ -351,48 +351,47 @@ class Solution {
|
||||
```python
|
||||
class Solution:
|
||||
def solveNQueens(self, n: int) -> List[List[str]]:
|
||||
if not n: return []
|
||||
board = [['.'] * n for _ in range(n)]
|
||||
res = []
|
||||
def isVaild(board,row, col):
|
||||
#判断同一列是否冲突
|
||||
for i in range(len(board)):
|
||||
if board[i][col] == 'Q':
|
||||
return False
|
||||
# 判断左上角是否冲突
|
||||
i = row -1
|
||||
j = col -1
|
||||
while i>=0 and j>=0:
|
||||
if board[i][j] == 'Q':
|
||||
return False
|
||||
i -= 1
|
||||
j -= 1
|
||||
# 判断右上角是否冲突
|
||||
i = row - 1
|
||||
j = col + 1
|
||||
while i>=0 and j < len(board):
|
||||
if board[i][j] == 'Q':
|
||||
return False
|
||||
i -= 1
|
||||
j += 1
|
||||
return True
|
||||
result = [] # 存储最终结果的二维字符串数组
|
||||
|
||||
chessboard = ['.' * n for _ in range(n)] # 初始化棋盘
|
||||
self.backtracking(n, 0, chessboard, result) # 回溯求解
|
||||
return [[''.join(row) for row in solution] for solution in result] # 返回结果集
|
||||
|
||||
def backtracking(self, n: int, row: int, chessboard: List[str], result: List[List[str]]) -> None:
|
||||
if row == n:
|
||||
result.append(chessboard[:]) # 棋盘填满,将当前解加入结果集
|
||||
return
|
||||
|
||||
for col in range(n):
|
||||
if self.isValid(row, col, chessboard):
|
||||
chessboard[row] = chessboard[row][:col] + 'Q' + chessboard[row][col+1:] # 放置皇后
|
||||
self.backtracking(n, row + 1, chessboard, result) # 递归到下一行
|
||||
chessboard[row] = chessboard[row][:col] + '.' + chessboard[row][col+1:] # 回溯,撤销当前位置的皇后
|
||||
|
||||
def isValid(self, row: int, col: int, chessboard: List[str]) -> bool:
|
||||
# 检查列
|
||||
for i in range(row):
|
||||
if chessboard[i][col] == 'Q':
|
||||
return False # 当前列已经存在皇后,不合法
|
||||
|
||||
# 检查 45 度角是否有皇后
|
||||
i, j = row - 1, col - 1
|
||||
while i >= 0 and j >= 0:
|
||||
if chessboard[i][j] == 'Q':
|
||||
return False # 左上方向已经存在皇后,不合法
|
||||
i -= 1
|
||||
j -= 1
|
||||
|
||||
# 检查 135 度角是否有皇后
|
||||
i, j = row - 1, col + 1
|
||||
while i >= 0 and j < len(chessboard):
|
||||
if chessboard[i][j] == 'Q':
|
||||
return False # 右上方向已经存在皇后,不合法
|
||||
i -= 1
|
||||
j += 1
|
||||
|
||||
return True # 当前位置合法
|
||||
|
||||
def backtracking(board, row, n):
|
||||
# 如果走到最后一行,说明已经找到一个解
|
||||
if row == n:
|
||||
temp_res = []
|
||||
for temp in board:
|
||||
temp_str = "".join(temp)
|
||||
temp_res.append(temp_str)
|
||||
res.append(temp_res)
|
||||
for col in range(n):
|
||||
if not isVaild(board, row, col):
|
||||
continue
|
||||
board[row][col] = 'Q'
|
||||
backtracking(board, row+1, n)
|
||||
board[row][col] = '.'
|
||||
backtracking(board, 0, n)
|
||||
return res
|
||||
```
|
||||
|
||||
|
||||
|
@ -198,21 +198,35 @@ class Solution {
|
||||
```
|
||||
|
||||
### Python
|
||||
|
||||
暴力法
|
||||
```python
|
||||
class Solution:
|
||||
def maxSubArray(self, nums: List[int]) -> int:
|
||||
result = -float('inf')
|
||||
def maxSubArray(self, nums):
|
||||
result = float('-inf') # 初始化结果为负无穷大
|
||||
count = 0
|
||||
for i in range(len(nums)): # 设置起始位置
|
||||
count = 0
|
||||
for j in range(i, len(nums)): # 从起始位置i开始遍历寻找最大值
|
||||
count += nums[j]
|
||||
result = max(count, result) # 更新最大值
|
||||
return result
|
||||
|
||||
```
|
||||
```python
|
||||
class Solution:
|
||||
def maxSubArray(self, nums):
|
||||
result = float('-inf') # 初始化结果为负无穷大
|
||||
count = 0
|
||||
for i in range(len(nums)):
|
||||
count += nums[i]
|
||||
if count > result:
|
||||
if count > result: # 取区间累计的最大值(相当于不断确定最大子序终止位置)
|
||||
result = count
|
||||
if count <= 0:
|
||||
if count <= 0: # 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
|
||||
count = 0
|
||||
return result
|
||||
```
|
||||
|
||||
|
||||
```
|
||||
### Go
|
||||
|
||||
```go
|
||||
|
@ -11,9 +11,14 @@
|
||||
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
|
||||
|
||||
示例:
|
||||
输入: [-2,1,-3,4,-1,2,1,-5,4]
|
||||
输出: 6
|
||||
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
|
||||
* 输入: [-2,1,-3,4,-1,2,1,-5,4]
|
||||
* 输出: 6
|
||||
* 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
|
||||
|
||||
## 算法公开课
|
||||
|
||||
**《代码随想录》算法视频公开课:[看起来复杂,其实是简单动态规划 | LeetCode:53.最大子序和](https://www.bilibili.com/video/BV19V4y1F7b5),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
|
||||
|
||||
|
||||
## 思路
|
||||
|
||||
@ -139,8 +144,6 @@ Python:
|
||||
```python
|
||||
class Solution:
|
||||
def maxSubArray(self, nums: List[int]) -> int:
|
||||
if len(nums) == 0:
|
||||
return 0
|
||||
dp = [0] * len(nums)
|
||||
dp[0] = nums[0]
|
||||
result = dp[0]
|
||||
|
@ -140,18 +140,24 @@ class Solution {
|
||||
### Python
|
||||
```python
|
||||
class Solution:
|
||||
def merge(self, intervals: List[List[int]]) -> List[List[int]]:
|
||||
if len(intervals) == 0: return intervals
|
||||
intervals.sort(key=lambda x: x[0])
|
||||
def merge(self, intervals):
|
||||
result = []
|
||||
result.append(intervals[0])
|
||||
if len(intervals) == 0:
|
||||
return result # 区间集合为空直接返回
|
||||
|
||||
intervals.sort(key=lambda x: x[0]) # 按照区间的左边界进行排序
|
||||
|
||||
result.append(intervals[0]) # 第一个区间可以直接放入结果集中
|
||||
|
||||
for i in range(1, len(intervals)):
|
||||
last = result[-1]
|
||||
if last[1] >= intervals[i][0]:
|
||||
result[-1] = [last[0], max(last[1], intervals[i][1])]
|
||||
if result[-1][1] >= intervals[i][0]: # 发现重叠区间
|
||||
# 合并区间,只需要更新结果集最后一个区间的右边界,因为根据排序,左边界已经是最小的
|
||||
result[-1][1] = max(result[-1][1], intervals[i][1])
|
||||
else:
|
||||
result.append(intervals[i])
|
||||
result.append(intervals[i]) # 区间不重叠
|
||||
|
||||
return result
|
||||
|
||||
```
|
||||
|
||||
### Go
|
||||
|
@ -287,17 +287,70 @@ public:
|
||||
```
|
||||
|
||||
### Python
|
||||
|
||||
递归
|
||||
```python
|
||||
class Solution: # 动态规划
|
||||
class Solution:
|
||||
def uniquePaths(self, m: int, n: int) -> int:
|
||||
dp = [[1 for i in range(n)] for j in range(m)]
|
||||
if m == 1 or n == 1:
|
||||
return 1
|
||||
return self.uniquePaths(m - 1, n) + self.uniquePaths(m, n - 1)
|
||||
|
||||
```
|
||||
动态规划(版本一)
|
||||
```python
|
||||
class Solution:
|
||||
def uniquePaths(self, m: int, n: int) -> int:
|
||||
# 创建一个二维列表用于存储唯一路径数
|
||||
dp = [[0] * n for _ in range(m)]
|
||||
|
||||
# 设置第一行和第一列的基本情况
|
||||
for i in range(m):
|
||||
dp[i][0] = 1
|
||||
for j in range(n):
|
||||
dp[0][j] = 1
|
||||
|
||||
# 计算每个单元格的唯一路径数
|
||||
for i in range(1, m):
|
||||
for j in range(1, n):
|
||||
dp[i][j] = dp[i][j - 1] + dp[i - 1][j]
|
||||
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
|
||||
|
||||
# 返回右下角单元格的唯一路径数
|
||||
return dp[m - 1][n - 1]
|
||||
```
|
||||
|
||||
```
|
||||
动态规划(版本二)
|
||||
```python
|
||||
class Solution:
|
||||
def uniquePaths(self, m: int, n: int) -> int:
|
||||
# 创建一个一维列表用于存储每列的唯一路径数
|
||||
dp = [1] * n
|
||||
|
||||
# 计算每个单元格的唯一路径数
|
||||
for j in range(1, m):
|
||||
for i in range(1, n):
|
||||
dp[i] += dp[i - 1]
|
||||
|
||||
# 返回右下角单元格的唯一路径数
|
||||
return dp[n - 1]
|
||||
```
|
||||
数论
|
||||
```python
|
||||
class Solution:
|
||||
def uniquePaths(self, m: int, n: int) -> int:
|
||||
numerator = 1 # 分子
|
||||
denominator = m - 1 # 分母
|
||||
count = m - 1 # 计数器,表示剩余需要计算的乘积项个数
|
||||
t = m + n - 2 # 初始乘积项
|
||||
while count > 0:
|
||||
numerator *= t # 计算乘积项的分子部分
|
||||
t -= 1 # 递减乘积项
|
||||
while denominator != 0 and numerator % denominator == 0:
|
||||
numerator //= denominator # 约简分子
|
||||
denominator -= 1 # 递减分母
|
||||
count -= 1 # 计数器减1,继续下一项的计算
|
||||
return numerator # 返回最终的唯一路径数
|
||||
|
||||
```
|
||||
### Go
|
||||
|
||||
```Go
|
||||
|
@ -271,69 +271,130 @@ class Solution {
|
||||
|
||||
|
||||
### Python
|
||||
|
||||
动态规划(版本一)
|
||||
```python
|
||||
class Solution:
|
||||
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
|
||||
# 构造一个DP table
|
||||
row = len(obstacleGrid)
|
||||
col = len(obstacleGrid[0])
|
||||
dp = [[0 for _ in range(col)] for _ in range(row)]
|
||||
dp[0][0] = 0 if obstacleGrid[0][0] == 1 else 1
|
||||
if dp[0][0] == 0:
|
||||
return 0 # 如果第一个格子就是障碍,return 0
|
||||
# 第一行
|
||||
for i in range(1, col):
|
||||
if obstacleGrid[0][i] == 1:
|
||||
# 遇到障碍物时,直接退出循环,后面默认都是0
|
||||
def uniquePathsWithObstacles(self, obstacleGrid):
|
||||
m = len(obstacleGrid)
|
||||
n = len(obstacleGrid[0])
|
||||
if obstacleGrid[m - 1][n - 1] == 1 or obstacleGrid[0][0] == 1:
|
||||
return 0
|
||||
dp = [[0] * n for _ in range(m)]
|
||||
for i in range(m):
|
||||
if obstacleGrid[i][0] == 0: # 遇到障碍物时,直接退出循环,后面默认都是0
|
||||
dp[i][0] = 1
|
||||
else:
|
||||
break
|
||||
dp[0][i] = 1
|
||||
|
||||
# 第一列
|
||||
for i in range(1, row):
|
||||
if obstacleGrid[i][0] == 1:
|
||||
# 遇到障碍物时,直接退出循环,后面默认都是0
|
||||
for j in range(n):
|
||||
if obstacleGrid[0][j] == 0:
|
||||
dp[0][j] = 1
|
||||
else:
|
||||
break
|
||||
dp[i][0] = 1
|
||||
# print(dp)
|
||||
for i in range(1, m):
|
||||
for j in range(1, n):
|
||||
if obstacleGrid[i][j] == 1:
|
||||
continue
|
||||
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
|
||||
return dp[m - 1][n - 1]
|
||||
|
||||
for i in range(1, row):
|
||||
for j in range(1, col):
|
||||
if obstacleGrid[i][j] == 0:
|
||||
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
|
||||
return dp[-1][-1]
|
||||
```
|
||||
动态规划(版本二)
|
||||
```python
|
||||
class Solution:
|
||||
def uniquePathsWithObstacles(self, obstacleGrid):
|
||||
m = len(obstacleGrid) # 网格的行数
|
||||
n = len(obstacleGrid[0]) # 网格的列数
|
||||
|
||||
if obstacleGrid[m - 1][n - 1] == 1 or obstacleGrid[0][0] == 1:
|
||||
# 如果起点或终点有障碍物,直接返回0
|
||||
return 0
|
||||
|
||||
dp = [[0] * n for _ in range(m)] # 创建一个二维列表用于存储路径数
|
||||
|
||||
# 设置起点的路径数为1
|
||||
dp[0][0] = 1 if obstacleGrid[0][0] == 0 else 0
|
||||
|
||||
# 计算第一列的路径数
|
||||
for i in range(1, m):
|
||||
if obstacleGrid[i][0] == 0:
|
||||
dp[i][0] = dp[i - 1][0]
|
||||
|
||||
# 计算第一行的路径数
|
||||
for j in range(1, n):
|
||||
if obstacleGrid[0][j] == 0:
|
||||
dp[0][j] = dp[0][j - 1]
|
||||
|
||||
# 计算其他位置的路径数
|
||||
for i in range(1, m):
|
||||
for j in range(1, n):
|
||||
if obstacleGrid[i][j] == 1:
|
||||
continue
|
||||
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
|
||||
|
||||
return dp[m - 1][n - 1] # 返回终点的路径数
|
||||
|
||||
|
||||
```
|
||||
动态规划(版本三)
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
"""
|
||||
使用一维dp数组
|
||||
"""
|
||||
def uniquePathsWithObstacles(self, obstacleGrid):
|
||||
if obstacleGrid[0][0] == 1:
|
||||
return 0
|
||||
|
||||
dp = [0] * len(obstacleGrid[0]) # 创建一个一维列表用于存储路径数
|
||||
|
||||
# 初始化第一行的路径数
|
||||
for j in range(len(dp)):
|
||||
if obstacleGrid[0][j] == 1:
|
||||
dp[j] = 0
|
||||
elif j == 0:
|
||||
dp[j] = 1
|
||||
else:
|
||||
dp[j] = dp[j - 1]
|
||||
|
||||
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
|
||||
# 计算其他行的路径数
|
||||
for i in range(1, len(obstacleGrid)):
|
||||
for j in range(len(dp)):
|
||||
if obstacleGrid[i][j] == 1:
|
||||
dp[j] = 0
|
||||
elif j != 0:
|
||||
dp[j] = dp[j] + dp[j - 1]
|
||||
|
||||
return dp[-1] # 返回最后一个元素,即终点的路径数
|
||||
|
||||
```
|
||||
动态规划(版本四)
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def uniquePathsWithObstacles(self, obstacleGrid):
|
||||
if obstacleGrid[0][0] == 1:
|
||||
return 0
|
||||
|
||||
m, n = len(obstacleGrid), len(obstacleGrid[0])
|
||||
|
||||
# 初始化dp数组
|
||||
# 该数组缓存当前行
|
||||
curr = [0] * n
|
||||
|
||||
dp = [0] * n # 创建一个一维列表用于存储路径数
|
||||
|
||||
# 初始化第一行的路径数
|
||||
for j in range(n):
|
||||
if obstacleGrid[0][j] == 1:
|
||||
break
|
||||
curr[j] = 1
|
||||
dp[j] = 1
|
||||
|
||||
for i in range(1, m): # 从第二行开始
|
||||
for j in range(n): # 从第一列开始,因为第一列可能有障碍物
|
||||
# 有障碍物处无法通行,状态就设成0
|
||||
# 计算其他行的路径数
|
||||
for i in range(1, m):
|
||||
if obstacleGrid[i][0] == 1:
|
||||
dp[0] = 0
|
||||
for j in range(1, n):
|
||||
if obstacleGrid[i][j] == 1:
|
||||
curr[j] = 0
|
||||
elif j > 0:
|
||||
# 等价于
|
||||
# dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
|
||||
curr[j] = curr[j] + curr[j - 1]
|
||||
# 隐含的状态更新
|
||||
# dp[i][0] = dp[i - 1][0]
|
||||
dp[j] = 0
|
||||
else:
|
||||
dp[j] += dp[j - 1]
|
||||
|
||||
return dp[-1] # 返回最后一个元素,即终点的路径数
|
||||
|
||||
return curr[n - 1]
|
||||
```
|
||||
|
||||
|
||||
|
@ -251,32 +251,66 @@ class Solution {
|
||||
```
|
||||
|
||||
### Python
|
||||
|
||||
动态规划(版本一)
|
||||
```python
|
||||
# 空间复杂度为O(n)版本
|
||||
class Solution:
|
||||
def climbStairs(self, n: int) -> int:
|
||||
# dp[i] 为第 i 阶楼梯有多少种方法爬到楼顶
|
||||
dp = [0]*(n+1)
|
||||
dp[0] = 1
|
||||
if n <= 1:
|
||||
return n
|
||||
|
||||
dp = [0] * (n + 1)
|
||||
dp[1] = 1
|
||||
for i in range(2, n+1):
|
||||
dp[i] = dp[i-1] + dp[i-2]
|
||||
dp[2] = 2
|
||||
|
||||
for i in range(3, n + 1):
|
||||
dp[i] = dp[i - 1] + dp[i - 2]
|
||||
|
||||
return dp[n]
|
||||
|
||||
```
|
||||
动态规划(版本二)
|
||||
```python
|
||||
|
||||
# 空间复杂度为O(3)版本
|
||||
class Solution:
|
||||
def climbStairs(self, n: int) -> int:
|
||||
if n <= 1:
|
||||
return n
|
||||
|
||||
dp = [0] * 3
|
||||
dp[1] = 1
|
||||
dp[2] = 2
|
||||
|
||||
for i in range(3, n + 1):
|
||||
total = dp[1] + dp[2]
|
||||
dp[1] = dp[2]
|
||||
dp[2] = total
|
||||
|
||||
return dp[2]
|
||||
|
||||
```
|
||||
动态规划(版本三)
|
||||
```python
|
||||
|
||||
# 空间复杂度为O(1)版本
|
||||
class Solution:
|
||||
def climbStairs(self, n: int) -> int:
|
||||
dp = [0]*(n+1)
|
||||
dp[0] = 1
|
||||
dp[1] = 1
|
||||
for i in range(2,n+1):
|
||||
tmp = dp[0] + dp[1]
|
||||
dp[0] = dp[1]
|
||||
dp[1] = tmp
|
||||
return dp[1]
|
||||
```
|
||||
if n <= 1:
|
||||
return n
|
||||
|
||||
prev1 = 1
|
||||
prev2 = 2
|
||||
|
||||
for i in range(3, n + 1):
|
||||
total = prev1 + prev2
|
||||
prev1 = prev2
|
||||
prev2 = total
|
||||
|
||||
return prev2
|
||||
|
||||
|
||||
```
|
||||
### Go
|
||||
```Go
|
||||
func climbStairs(n int) int {
|
||||
|
@ -225,8 +225,25 @@ function climbStairs(n: number): number {
|
||||
};
|
||||
```
|
||||
|
||||
Rust:
|
||||
|
||||
|
||||
```rust
|
||||
impl Solution {
|
||||
pub fn climb_stairs(n: i32) -> i32 {
|
||||
let (n, m) = (n as usize, 2);
|
||||
let mut dp = vec![0; n + 1];
|
||||
dp[0] = 1;
|
||||
for i in 1..=n {
|
||||
for j in 1..=m {
|
||||
if i >= j {
|
||||
dp[i] += dp[i - j];
|
||||
}
|
||||
}
|
||||
}
|
||||
dp[n]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
|
@ -40,6 +40,8 @@ exection -> execution (插入 'u')
|
||||
* 0 <= word1.length, word2.length <= 500
|
||||
* word1 和 word2 由小写英文字母组成
|
||||
|
||||
# 算法公开课
|
||||
**《代码随想录》算法视频公开课:[动态规划终极绝杀! LeetCode:72.编辑距离](https://www.bilibili.com/video/BV1we4y157wB/),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
|
||||
|
||||
## 思路
|
||||
|
||||
|
@ -381,68 +381,42 @@ class Solution {
|
||||
```
|
||||
|
||||
### Python
|
||||
|
||||
未剪枝优化
|
||||
```python
|
||||
class Solution(object):
|
||||
def combine(self, n, k):
|
||||
"""
|
||||
:type n: int
|
||||
:type k: int
|
||||
:rtype: List[List[int]]
|
||||
"""
|
||||
result = []
|
||||
path = []
|
||||
def backtracking(n, k, startidx):
|
||||
if len(path) == k:
|
||||
result.append(path[:])
|
||||
return
|
||||
|
||||
# 剪枝, 最后k - len(path)个节点直接构造结果,无需递归
|
||||
last_startidx = n - (k - len(path)) + 1
|
||||
|
||||
for x in range(startidx, last_startidx + 1):
|
||||
path.append(x)
|
||||
backtracking(n, k, x + 1) # 递归
|
||||
path.pop() # 回溯
|
||||
|
||||
backtracking(n, k, 1)
|
||||
class Solution:
|
||||
def combine(self, n: int, k: int) -> List[List[int]]:
|
||||
result = [] # 存放结果集
|
||||
self.backtracking(n, k, 1, [], result)
|
||||
return result
|
||||
def backtracking(self, n, k, startIndex, path, result):
|
||||
if len(path) == k:
|
||||
result.append(path[:])
|
||||
return
|
||||
for i in range(startIndex, n + 1): # 需要优化的地方
|
||||
path.append(i) # 处理节点
|
||||
self.backtracking(n, k, i + 1, path, result)
|
||||
path.pop() # 回溯,撤销处理的节点
|
||||
|
||||
```
|
||||
|
||||
|
||||
剪枝优化:
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def combine(self, n: int, k: int) -> List[List[int]]:
|
||||
res = []
|
||||
path = []
|
||||
def backtrack(n, k, StartIndex):
|
||||
if len(path) == k:
|
||||
res.append(path[:])
|
||||
return
|
||||
for i in range(StartIndex, n + 1):
|
||||
path.append(i)
|
||||
backtrack(n, k, i+1)
|
||||
path.pop()
|
||||
backtrack(n, k, 1)
|
||||
return res
|
||||
```
|
||||
result = [] # 存放结果集
|
||||
self.backtracking(n, k, 1, [], result)
|
||||
return result
|
||||
def backtracking(self, n, k, startIndex, path, result):
|
||||
if len(path) == k:
|
||||
result.append(path[:])
|
||||
return
|
||||
for i in range(startIndex, n - (k - len(path)) + 2): # 优化的地方
|
||||
path.append(i) # 处理节点
|
||||
self.backtracking(n, k, i + 1, path, result)
|
||||
path.pop() # 回溯,撤销处理的节点
|
||||
|
||||
剪枝:
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def combine(self, n: int, k: int) -> List[List[int]]:
|
||||
res=[] #存放符合条件结果的集合
|
||||
path=[] #用来存放符合条件结果
|
||||
def backtrack(n,k,startIndex):
|
||||
if len(path) == k:
|
||||
res.append(path[:])
|
||||
return
|
||||
for i in range(startIndex,n-(k-len(path))+2): #优化的地方
|
||||
path.append(i) #处理节点
|
||||
backtrack(n,k,i+1) #递归
|
||||
path.pop() #回溯,撤销处理的节点
|
||||
backtrack(n,k,1)
|
||||
return res
|
||||
```
|
||||
|
||||
### Go
|
||||
|
@ -183,18 +183,21 @@ Python:
|
||||
```python
|
||||
class Solution:
|
||||
def combine(self, n: int, k: int) -> List[List[int]]:
|
||||
res=[] #存放符合条件结果的集合
|
||||
path=[] #用来存放符合条件结果
|
||||
def backtrack(n,k,startIndex):
|
||||
if len(path) == k:
|
||||
res.append(path[:])
|
||||
return
|
||||
for i in range(startIndex,n-(k-len(path))+2): #优化的地方
|
||||
path.append(i) #处理节点
|
||||
backtrack(n,k,i+1) #递归
|
||||
path.pop() #回溯,撤销处理的节点
|
||||
backtrack(n,k,1)
|
||||
return res
|
||||
result = [] # 存放结果集
|
||||
self.backtracking(n, k, 1, [], result)
|
||||
return result
|
||||
def backtracking(self, n, k, startIndex, path, result):
|
||||
if len(path) == k:
|
||||
result.append(path[:])
|
||||
return
|
||||
for i in range(startIndex, n - (k - len(path)) + 2): # 优化的地方
|
||||
path.append(i) # 处理节点
|
||||
self.backtracking(n, k, i + 1, path, result)
|
||||
path.pop() # 回溯,撤销处理的节点
|
||||
|
||||
|
||||
|
||||
|
||||
```
|
||||
Go:
|
||||
```Go
|
||||
|
@ -208,28 +208,20 @@ class Solution {
|
||||
## Python
|
||||
```python
|
||||
class Solution:
|
||||
def __init__(self):
|
||||
self.path: List[int] = []
|
||||
self.paths: List[List[int]] = []
|
||||
def subsets(self, nums):
|
||||
result = []
|
||||
path = []
|
||||
self.backtracking(nums, 0, path, result)
|
||||
return result
|
||||
|
||||
def subsets(self, nums: List[int]) -> List[List[int]]:
|
||||
self.paths.clear()
|
||||
self.path.clear()
|
||||
self.backtracking(nums, 0)
|
||||
return self.paths
|
||||
|
||||
def backtracking(self, nums: List[int], start_index: int) -> None:
|
||||
# 收集子集,要先于终止判断
|
||||
self.paths.append(self.path[:])
|
||||
# Base Case
|
||||
if start_index == len(nums):
|
||||
return
|
||||
|
||||
# 单层递归逻辑
|
||||
for i in range(start_index, len(nums)):
|
||||
self.path.append(nums[i])
|
||||
self.backtracking(nums, i+1)
|
||||
self.path.pop() # 回溯
|
||||
def backtracking(self, nums, startIndex, path, result):
|
||||
result.append(path[:]) # 收集子集,要放在终止添加的上面,否则会漏掉自己
|
||||
# if startIndex >= len(nums): # 终止条件可以不加
|
||||
# return
|
||||
for i in range(startIndex, len(nums)):
|
||||
path.append(nums[i])
|
||||
self.backtracking(nums, i + 1, path, result)
|
||||
path.pop()
|
||||
```
|
||||
|
||||
## Go
|
||||
|
@ -238,86 +238,84 @@ class Solution {
|
||||
}
|
||||
```
|
||||
|
||||
### Python
|
||||
```python
|
||||
class Solution:
|
||||
def __init__(self):
|
||||
self.paths = []
|
||||
self.path = []
|
||||
|
||||
def subsetsWithDup(self, nums: List[int]) -> List[List[int]]:
|
||||
nums.sort()
|
||||
self.backtracking(nums, 0)
|
||||
return self.paths
|
||||
|
||||
def backtracking(self, nums: List[int], start_index: int) -> None:
|
||||
# ps.空集合仍符合要求
|
||||
self.paths.append(self.path[:])
|
||||
# Base Case
|
||||
if start_index == len(nums):
|
||||
return
|
||||
|
||||
# 单层递归逻辑
|
||||
for i in range(start_index, len(nums)):
|
||||
if i > start_index and nums[i] == nums[i-1]:
|
||||
# 当前后元素值相同时,跳入下一个循环,去重
|
||||
continue
|
||||
self.path.append(nums[i])
|
||||
self.backtracking(nums, i+1)
|
||||
self.path.pop()
|
||||
```
|
||||
|
||||
#### Python3
|
||||
|
||||
不使用used数组
|
||||
回溯 利用used数组去重
|
||||
```python
|
||||
class Solution:
|
||||
def subsetsWithDup(self, nums: List[int]) -> List[List[int]]:
|
||||
res = []
|
||||
path = []
|
||||
nums.sort() # 去重需要先对数组进行排序
|
||||
|
||||
def backtracking(nums, startIndex):
|
||||
# 终止条件
|
||||
res.append(path[:])
|
||||
if startIndex == len(nums):
|
||||
return
|
||||
|
||||
# for循环
|
||||
for i in range(startIndex, len(nums)):
|
||||
# 数层去重
|
||||
if i > startIndex and nums[i] == nums[i-1]: # 去重
|
||||
continue
|
||||
path.append(nums[i])
|
||||
backtracking(nums, i+1)
|
||||
path.pop()
|
||||
|
||||
backtracking(nums, 0)
|
||||
return res
|
||||
```
|
||||
|
||||
使用used数组
|
||||
```python
|
||||
class Solution:
|
||||
def subsetsWithDup(self, nums: List[int]) -> List[List[int]]:
|
||||
def subsetsWithDup(self, nums):
|
||||
result = []
|
||||
path = []
|
||||
nums.sort()
|
||||
used = [0] * len(nums)
|
||||
def backtrack(nums, startIdx):
|
||||
result.append(path[:])
|
||||
for i in range(startIdx, len(nums)):
|
||||
if i > startIdx and nums[i] == nums[i-1] and used[i-1] == 0:
|
||||
continue
|
||||
used[i] = 1
|
||||
path.append(nums[i])
|
||||
backtrack(nums, i+1)
|
||||
path.pop()
|
||||
used[i] = 0
|
||||
backtrack(nums, 0)
|
||||
used = [False] * len(nums)
|
||||
nums.sort() # 去重需要排序
|
||||
self.backtracking(nums, 0, used, path, result)
|
||||
return result
|
||||
|
||||
def backtracking(self, nums, startIndex, used, path, result):
|
||||
result.append(path[:]) # 收集子集
|
||||
for i in range(startIndex, len(nums)):
|
||||
# used[i - 1] == True,说明同一树枝 nums[i - 1] 使用过
|
||||
# used[i - 1] == False,说明同一树层 nums[i - 1] 使用过
|
||||
# 而我们要对同一树层使用过的元素进行跳过
|
||||
if i > 0 and nums[i] == nums[i - 1] and not used[i - 1]:
|
||||
continue
|
||||
path.append(nums[i])
|
||||
used[i] = True
|
||||
self.backtracking(nums, i + 1, used, path, result)
|
||||
used[i] = False
|
||||
path.pop()
|
||||
|
||||
```
|
||||
|
||||
回溯 利用集合去重
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def subsetsWithDup(self, nums):
|
||||
result = []
|
||||
path = []
|
||||
nums.sort() # 去重需要排序
|
||||
self.backtracking(nums, 0, path, result)
|
||||
return result
|
||||
|
||||
def backtracking(self, nums, startIndex, path, result):
|
||||
result.append(path[:]) # 收集子集
|
||||
uset = set()
|
||||
for i in range(startIndex, len(nums)):
|
||||
if nums[i] in uset:
|
||||
continue
|
||||
uset.add(nums[i])
|
||||
path.append(nums[i])
|
||||
self.backtracking(nums, i + 1, path, result)
|
||||
path.pop()
|
||||
|
||||
```
|
||||
|
||||
回溯 利用递归的时候下一个startIndex是i+1而不是0去重
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def subsetsWithDup(self, nums):
|
||||
result = []
|
||||
path = []
|
||||
nums.sort() # 去重需要排序
|
||||
self.backtracking(nums, 0, path, result)
|
||||
return result
|
||||
|
||||
def backtracking(self, nums, startIndex, path, result):
|
||||
result.append(path[:]) # 收集子集
|
||||
for i in range(startIndex, len(nums)):
|
||||
# 而我们要对同一树层使用过的元素进行跳过
|
||||
if i > startIndex and nums[i] == nums[i - 1]:
|
||||
continue
|
||||
path.append(nums[i])
|
||||
self.backtracking(nums, i + 1, path, result)
|
||||
path.pop()
|
||||
|
||||
|
||||
```
|
||||
### Go
|
||||
|
||||
```Go
|
||||
|
@ -316,6 +316,47 @@ class Solution {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
//方法一:但使用stringBuilder,故优化时间、空间复杂度,因为向字符串插入字符时无需复制整个字符串,从而减少了操作的时间复杂度,也不用开新空间存subString,从而减少了空间复杂度。
|
||||
class Solution {
|
||||
List<String> result = new ArrayList<>();
|
||||
public List<String> restoreIpAddresses(String s) {
|
||||
StringBuilder sb = new StringBuilder(s);
|
||||
backTracking(sb, 0, 0);
|
||||
return result;
|
||||
}
|
||||
private void backTracking(StringBuilder s, int startIndex, int dotCount){
|
||||
if(dotCount == 3){
|
||||
if(isValid(s, startIndex, s.length() - 1)){
|
||||
result.add(s.toString());
|
||||
}
|
||||
return;
|
||||
}
|
||||
for(int i = startIndex; i < s.length(); i++){
|
||||
if(isValid(s, startIndex, i)){
|
||||
s.insert(i + 1, '.');
|
||||
backTracking(s, i + 2, dotCount + 1);
|
||||
s.deleteCharAt(i + 1);
|
||||
}else{
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
//[start, end]
|
||||
private boolean isValid(StringBuilder s, int start, int end){
|
||||
if(start > end)
|
||||
return false;
|
||||
if(s.charAt(start) == '0' && start != end)
|
||||
return false;
|
||||
int num = 0;
|
||||
for(int i = start; i <= end; i++){
|
||||
int digit = s.charAt(i) - '0';
|
||||
num = num * 10 + digit;
|
||||
if(num > 255)
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
//方法二:比上面的方法时间复杂度低,更好地剪枝,优化时间复杂度
|
||||
class Solution {
|
||||
@ -360,106 +401,85 @@ class Solution {
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
## python
|
||||
|
||||
python2:
|
||||
```python
|
||||
class Solution(object):
|
||||
def restoreIpAddresses(self, s):
|
||||
"""
|
||||
:type s: str
|
||||
:rtype: List[str]
|
||||
"""
|
||||
ans = []
|
||||
path = []
|
||||
def backtrack(path, startIndex):
|
||||
if len(s) > 12: return []
|
||||
if len(path) == 4:
|
||||
if startIndex == len(s):
|
||||
ans.append(".".join(path[:]))
|
||||
return
|
||||
for i in range(startIndex+1, min(startIndex+4, len(s)+1)): # 剪枝
|
||||
string = s[startIndex:i]
|
||||
if not 0 <= int(string) <= 255:
|
||||
continue
|
||||
if not string == "0" and not string.lstrip('0') == string:
|
||||
continue
|
||||
path.append(string)
|
||||
backtrack(path, i)
|
||||
path.pop()
|
||||
|
||||
backtrack([], 0)
|
||||
return ans
|
||||
```
|
||||
|
||||
python3:
|
||||
回溯(版本一)
|
||||
```python
|
||||
class Solution:
|
||||
def __init__(self):
|
||||
self.result = []
|
||||
|
||||
def restoreIpAddresses(self, s: str) -> List[str]:
|
||||
'''
|
||||
本质切割问题使用回溯搜索法,本题只能切割三次,所以纵向递归总共四层
|
||||
因为不能重复分割,所以需要start_index来记录下一层递归分割的起始位置
|
||||
添加变量point_num来记录逗号的数量[0,3]
|
||||
'''
|
||||
self.result.clear()
|
||||
if len(s) > 12: return []
|
||||
self.backtracking(s, 0, 0)
|
||||
return self.result
|
||||
result = []
|
||||
self.backtracking(s, 0, 0, "", result)
|
||||
return result
|
||||
|
||||
def backtracking(self, s: str, start_index: int, point_num: int) -> None:
|
||||
# Base Case
|
||||
if point_num == 3:
|
||||
if self.is_valid(s, start_index, len(s)-1):
|
||||
self.result.append(s[:])
|
||||
def backtracking(self, s, start_index, point_num, current, result):
|
||||
if point_num == 3: # 逗点数量为3时,分隔结束
|
||||
if self.is_valid(s, start_index, len(s) - 1): # 判断第四段子字符串是否合法
|
||||
current += s[start_index:] # 添加最后一段子字符串
|
||||
result.append(current)
|
||||
return
|
||||
# 单层递归逻辑
|
||||
for i in range(start_index, len(s)):
|
||||
# [start_index, i]就是被截取的子串
|
||||
if self.is_valid(s, start_index, i):
|
||||
s = s[:i+1] + '.' + s[i+1:]
|
||||
self.backtracking(s, i+2, point_num+1) # 在填入.后,下一子串起始后移2位
|
||||
s = s[:i+1] + s[i+2:] # 回溯
|
||||
else:
|
||||
# 若当前被截取的子串大于255或者大于三位数,直接结束本层循环
|
||||
break
|
||||
|
||||
def is_valid(self, s: str, start: int, end: int) -> bool:
|
||||
if start > end: return False
|
||||
# 若数字是0开头,不合法
|
||||
if s[start] == '0' and start != end:
|
||||
return False
|
||||
if not 0 <= int(s[start:end+1]) <= 255:
|
||||
return False
|
||||
return True
|
||||
```
|
||||
|
||||
python3; 简单拼接版本(类似Leetcode131写法):
|
||||
for i in range(start_index, len(s)):
|
||||
if self.is_valid(s, start_index, i): # 判断 [start_index, i] 这个区间的子串是否合法
|
||||
sub = s[start_index:i + 1]
|
||||
self.backtracking(s, i + 1, point_num + 1, current + sub + '.', result)
|
||||
else:
|
||||
break
|
||||
|
||||
def is_valid(self, s, start, end):
|
||||
if start > end:
|
||||
return False
|
||||
if s[start] == '0' and start != end: # 0开头的数字不合法
|
||||
return False
|
||||
num = 0
|
||||
for i in range(start, end + 1):
|
||||
if not s[i].isdigit(): # 遇到非数字字符不合法
|
||||
return False
|
||||
num = num * 10 + int(s[i])
|
||||
if num > 255: # 如果大于255了不合法
|
||||
return False
|
||||
return True
|
||||
|
||||
```
|
||||
回溯(版本二)
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
class Solution:
|
||||
def restoreIpAddresses(self, s: str) -> List[str]:
|
||||
global results, path
|
||||
results = []
|
||||
path = []
|
||||
self.backtracking(s,0)
|
||||
self.backtracking(s, 0, [], results)
|
||||
return results
|
||||
|
||||
def backtracking(self,s,index):
|
||||
global results,path
|
||||
if index == len(s) and len(path)==4:
|
||||
results.append('.'.join(path)) # 在连接时需要中间间隔符号的话就在''中间写上对应的间隔符
|
||||
def backtracking(self, s, index, path, results):
|
||||
if index == len(s) and len(path) == 4:
|
||||
results.append('.'.join(path))
|
||||
return
|
||||
for i in range(index,len(s)):
|
||||
if len(path)>3: break # 剪枝
|
||||
temp = s[index:i+1]
|
||||
if (int(temp)<256 and int(temp)>0 and temp[0]!='0') or (temp=='0'):
|
||||
path.append(temp)
|
||||
self.backtracking(s,i+1)
|
||||
path.pop()
|
||||
|
||||
if len(path) > 4: # 剪枝
|
||||
return
|
||||
|
||||
for i in range(index, min(index + 3, len(s))):
|
||||
if self.is_valid(s, index, i):
|
||||
sub = s[index:i+1]
|
||||
path.append(sub)
|
||||
self.backtracking(s, i+1, path, results)
|
||||
path.pop()
|
||||
|
||||
def is_valid(self, s, start, end):
|
||||
if start > end:
|
||||
return False
|
||||
if s[start] == '0' and start != end: # 0开头的数字不合法
|
||||
return False
|
||||
num = int(s[start:end+1])
|
||||
return 0 <= num <= 255
|
||||
|
||||
|
||||
|
||||
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Go
|
||||
|
||||
```go
|
||||
|
@ -197,12 +197,13 @@ class Solution {
|
||||
```python
|
||||
class Solution:
|
||||
def numTrees(self, n: int) -> int:
|
||||
dp = [0] * (n + 1)
|
||||
dp[0], dp[1] = 1, 1
|
||||
for i in range(2, n + 1):
|
||||
for j in range(1, i + 1):
|
||||
dp[i] += dp[j - 1] * dp[i - j]
|
||||
return dp[-1]
|
||||
dp = [0] * (n + 1) # 创建一个长度为n+1的数组,初始化为0
|
||||
dp[0] = 1 # 当n为0时,只有一种情况,即空树,所以dp[0] = 1
|
||||
for i in range(1, n + 1): # 遍历从1到n的每个数字
|
||||
for j in range(1, i + 1): # 对于每个数字i,计算以i为根节点的二叉搜索树的数量
|
||||
dp[i] += dp[j - 1] * dp[i - j] # 利用动态规划的思想,累加左子树和右子树的组合数量
|
||||
return dp[n] # 返回以1到n为节点的二叉搜索树的总数量
|
||||
|
||||
```
|
||||
|
||||
### Go
|
||||
|
@ -18,8 +18,9 @@
|
||||
|
||||
提示:
|
||||
|
||||
0 <= s.length, t.length <= 1000
|
||||
s 和 t 由英文字母组成
|
||||
* 0 <= s.length, t.length <= 1000
|
||||
* s 和 t 由英文字母组成
|
||||
|
||||
|
||||
## 思路
|
||||
|
||||
|
@ -243,8 +243,27 @@ class Solution {
|
||||
}
|
||||
}
|
||||
```
|
||||
> 动态规划:版本二(使用二維數組(和卡哥思路一致),下面還有使用一維滾動數組的更優化版本)
|
||||
|
||||
> 动态规划:版本二
|
||||
```Java
|
||||
class Solution {
|
||||
public int maxProfit(int[] prices) {
|
||||
int len = prices.length;
|
||||
int dp[][] = new int[2][2];
|
||||
|
||||
dp[0][0] = - prices[0];
|
||||
dp[0][1] = 0;
|
||||
|
||||
for (int i = 1; i < len; i++){
|
||||
dp[i % 2][0] = Math.max(dp[(i - 1) % 2][0], - prices[i]);
|
||||
dp[i % 2][1] = Math.max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);
|
||||
}
|
||||
return dp[(len - 1) % 2][1];
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
> 动态规划:版本二(使用一維數組)
|
||||
|
||||
``` java
|
||||
class Solution {
|
||||
@ -271,6 +290,10 @@ class Solution {
|
||||
}
|
||||
}
|
||||
```
|
||||
```Java
|
||||
|
||||
```
|
||||
|
||||
|
||||
Python:
|
||||
|
||||
@ -510,7 +533,37 @@ public class Solution
|
||||
}
|
||||
```
|
||||
|
||||
Rust:
|
||||
|
||||
> 贪心
|
||||
|
||||
```rust
|
||||
impl Solution {
|
||||
pub fn max_profit(prices: Vec<i32>) -> i32 {
|
||||
let (mut low, mut res) = (i32::MAX, 0);
|
||||
for p in prices {
|
||||
low = p.min(low);
|
||||
res = res.max(p - low);
|
||||
}
|
||||
res
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
> 动态规划
|
||||
|
||||
```rust
|
||||
impl Solution {
|
||||
pub fn max_profit(prices: Vec<i32>) -> i32 {
|
||||
let mut dp = vec![-prices[0], 0];
|
||||
for p in prices {
|
||||
dp[0] = dp[0].max(-p);
|
||||
dp[1] = dp[1].max(dp[0] + p);
|
||||
}
|
||||
dp[1]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
<p align="center">
|
||||
|
@ -322,13 +322,10 @@ function maxProfit(prices: number[]): number {
|
||||
|
||||
```Rust
|
||||
impl Solution {
|
||||
fn max(a: i32, b: i32) -> i32 {
|
||||
if a > b { a } else { b }
|
||||
}
|
||||
pub fn max_profit(prices: Vec<i32>) -> i32 {
|
||||
let mut result = 0;
|
||||
for i in 1..prices.len() {
|
||||
result += Self::max(prices[i] - prices[i - 1], 0);
|
||||
result += (prices[i] - prices[i - 1]).max(0);
|
||||
}
|
||||
result
|
||||
}
|
||||
@ -339,18 +336,14 @@ impl Solution {
|
||||
|
||||
```Rust
|
||||
impl Solution {
|
||||
fn max(a: i32, b: i32) -> i32 {
|
||||
if a > b { a } else { b }
|
||||
}
|
||||
pub fn max_profit(prices: Vec<i32>) -> i32 {
|
||||
let n = prices.len();
|
||||
let mut dp = vec![vec![0; 2]; n];
|
||||
dp[0][0] -= prices[0];
|
||||
for i in 1..n {
|
||||
dp[i][0] = Self::max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
|
||||
dp[i][1] = Self::max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
|
||||
let mut dp = vec![vec![0; 2]; prices.len()];
|
||||
dp[0][0] = -prices[0];
|
||||
for i in 1..prices.len() {
|
||||
dp[i][0] = dp[i - 1][0].max(dp[i - 1][1] - prices[i]);
|
||||
dp[i][1] = dp[i - 1][1].max(dp[i - 1][0] + prices[i]);
|
||||
}
|
||||
Self::max(dp[n - 1][0], dp[n - 1][1])
|
||||
dp[prices.len() - 1][1]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
@ -154,7 +154,24 @@ class Solution
|
||||
}
|
||||
}
|
||||
```
|
||||
```java
|
||||
//DP using 2*2 Array (下方還有使用一維滾動數組的更優化版本)
|
||||
class Solution {
|
||||
public int maxProfit(int[] prices) {
|
||||
int dp[][] = new int [2][2];
|
||||
//dp[i][0]: holding the stock
|
||||
//dp[i][1]: not holding the stock
|
||||
dp[0][0] = - prices[0];
|
||||
dp[0][1] = 0;
|
||||
|
||||
for(int i = 1; i < prices.length; i++){
|
||||
dp[i % 2][0] = Math.max(dp[(i - 1) % 2][0], dp[(i - 1) % 2][1] - prices[i]);
|
||||
dp[i % 2][1] = Math.max(dp[(i - 1) % 2][1], dp[(i - 1) % 2][0] + prices[i]);
|
||||
}
|
||||
return dp[(prices.length - 1) % 2][1];
|
||||
}
|
||||
}
|
||||
```
|
||||
```java
|
||||
// 优化空间
|
||||
class Solution {
|
||||
@ -346,7 +363,52 @@ public class Solution
|
||||
}
|
||||
```
|
||||
|
||||
Rust:
|
||||
|
||||
> 贪心
|
||||
|
||||
```rust
|
||||
impl Solution {
|
||||
pub fn max_profit(prices: Vec<i32>) -> i32 {
|
||||
let mut result = 0;
|
||||
for i in 1..prices.len() {
|
||||
result += (prices[i] - prices[i - 1]).max(0);
|
||||
}
|
||||
result
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
>动态规划
|
||||
|
||||
```rust
|
||||
impl Solution {
|
||||
pub fn max_profit(prices: Vec<i32>) -> i32 {
|
||||
let mut dp = vec![vec![0; 2]; prices.len()];
|
||||
dp[0][0] = -prices[0];
|
||||
for i in 1..prices.len() {
|
||||
dp[i][0] = dp[i - 1][0].max(dp[i - 1][1] - prices[i]);
|
||||
dp[i][1] = dp[i - 1][1].max(dp[i - 1][0] + prices[i]);
|
||||
}
|
||||
dp[prices.len() - 1][1]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
> 优化
|
||||
|
||||
```rust
|
||||
impl Solution {
|
||||
pub fn max_profit(prices: Vec<i32>) -> i32 {
|
||||
let mut dp = vec![-prices[0], 0];
|
||||
for p in prices {
|
||||
dp[0] = dp[0].max(dp[1] - p);
|
||||
dp[1] = dp[1].max(dp[0] + p);
|
||||
}
|
||||
dp[1]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
|
@ -242,9 +242,9 @@ class Solution {
|
||||
|
||||
for (int i = 1; i < len; i++) {
|
||||
dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);
|
||||
dp[i][2] = Math.max(dp[i - 1][2], dp[i][1] + prices[i]);
|
||||
dp[i][3] = Math.max(dp[i - 1][3], dp[i][2] - prices[i]);
|
||||
dp[i][4] = Math.max(dp[i - 1][4], dp[i][3] + prices[i]);
|
||||
dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
|
||||
dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
|
||||
dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
|
||||
}
|
||||
|
||||
return dp[len - 1][4];
|
||||
|
@ -18,7 +18,7 @@
|
||||
|
||||
## 思路
|
||||
|
||||
这道题目和1020. 飞地的数量正好反过来了,[1020. 飞地的数量](https://leetcode.cn/problems/number-of-enclaves/solution/by-carlsun-2-7lt9/)是求 地图中间的空格数,而本题是要把地图中间的'O'都改成'X'。
|
||||
这道题目和1020. 飞地的数量正好反过来了,[1020. 飞地的数量](https://programmercarl.com/1020.%E9%A3%9E%E5%9C%B0%E7%9A%84%E6%95%B0%E9%87%8F.html)是求 地图中间的空格数,而本题是要把地图中间的'O'都改成'X'。
|
||||
|
||||
那么两题在思路上也是差不多的。
|
||||
|
||||
|
@ -352,12 +352,9 @@ class Solution {
|
||||
```
|
||||
|
||||
## Python
|
||||
**回溯+正反序判断回文串**
|
||||
回溯 基本版
|
||||
```python
|
||||
class Solution:
|
||||
def __init__(self):
|
||||
self.paths = []
|
||||
self.path = []
|
||||
|
||||
def partition(self, s: str) -> List[List[str]]:
|
||||
'''
|
||||
@ -366,52 +363,14 @@ class Solution:
|
||||
当切割线迭代至字符串末尾,说明找到一种方法
|
||||
类似组合问题,为了不重复切割同一位置,需要start_index来做标记下一轮递归的起始位置(切割线)
|
||||
'''
|
||||
self.path.clear()
|
||||
self.paths.clear()
|
||||
self.backtracking(s, 0)
|
||||
return self.paths
|
||||
result = []
|
||||
self.backtracking(s, 0, [], result)
|
||||
return result
|
||||
|
||||
def backtracking(self, s: str, start_index: int) -> None:
|
||||
def backtracking(self, s, start_index, path, result ):
|
||||
# Base Case
|
||||
if start_index >= len(s):
|
||||
self.paths.append(self.path[:])
|
||||
return
|
||||
|
||||
# 单层递归逻辑
|
||||
for i in range(start_index, len(s)):
|
||||
# 此次比其他组合题目多了一步判断:
|
||||
# 判断被截取的这一段子串([start_index, i])是否为回文串
|
||||
temp = s[start_index:i+1]
|
||||
if temp == temp[::-1]: # 若反序和正序相同,意味着这是回文串
|
||||
self.path.append(temp)
|
||||
self.backtracking(s, i+1) # 递归纵向遍历:从下一处进行切割,判断其余是否仍为回文串
|
||||
self.path.pop()
|
||||
else:
|
||||
continue
|
||||
```
|
||||
**回溯+函数判断回文串**
|
||||
```python
|
||||
class Solution:
|
||||
def __init__(self):
|
||||
self.paths = []
|
||||
self.path = []
|
||||
|
||||
def partition(self, s: str) -> List[List[str]]:
|
||||
'''
|
||||
递归用于纵向遍历
|
||||
for循环用于横向遍历
|
||||
当切割线迭代至字符串末尾,说明找到一种方法
|
||||
类似组合问题,为了不重复切割同一位置,需要start_index来做标记下一轮递归的起始位置(切割线)
|
||||
'''
|
||||
self.path.clear()
|
||||
self.paths.clear()
|
||||
self.backtracking(s, 0)
|
||||
return self.paths
|
||||
|
||||
def backtracking(self, s: str, start_index: int) -> None:
|
||||
# Base Case
|
||||
if start_index >= len(s):
|
||||
self.paths.append(self.path[:])
|
||||
if start_index == len(s):
|
||||
result.append(path[:])
|
||||
return
|
||||
|
||||
# 单层递归逻辑
|
||||
@ -419,11 +378,10 @@ class Solution:
|
||||
# 此次比其他组合题目多了一步判断:
|
||||
# 判断被截取的这一段子串([start_index, i])是否为回文串
|
||||
if self.is_palindrome(s, start_index, i):
|
||||
self.path.append(s[start_index:i+1])
|
||||
self.backtracking(s, i+1) # 递归纵向遍历:从下一处进行切割,判断其余是否仍为回文串
|
||||
self.path.pop() # 回溯
|
||||
else:
|
||||
continue
|
||||
path.append(s[start_index:i+1])
|
||||
self.backtracking(s, i+1, path, result) # 递归纵向遍历:从下一处进行切割,判断其余是否仍为回文串
|
||||
path.pop() # 回溯
|
||||
|
||||
|
||||
def is_palindrome(self, s: str, start: int, end: int) -> bool:
|
||||
i: int = start
|
||||
@ -433,9 +391,88 @@ class Solution:
|
||||
return False
|
||||
i += 1
|
||||
j -= 1
|
||||
return True
|
||||
return True
|
||||
```
|
||||
回溯+优化判定回文函数
|
||||
```python
|
||||
class Solution:
|
||||
|
||||
def partition(self, s: str) -> List[List[str]]:
|
||||
result = []
|
||||
self.backtracking(s, 0, [], result)
|
||||
return result
|
||||
|
||||
def backtracking(self, s, start_index, path, result ):
|
||||
# Base Case
|
||||
if start_index == len(s):
|
||||
result.append(path[:])
|
||||
return
|
||||
|
||||
# 单层递归逻辑
|
||||
for i in range(start_index, len(s)):
|
||||
# 若反序和正序相同,意味着这是回文串
|
||||
if s[start_index: i + 1] == s[start_index: i + 1][::-1]:
|
||||
path.append(s[start_index:i+1])
|
||||
self.backtracking(s, i+1, path, result) # 递归纵向遍历:从下一处进行切割,判断其余是否仍为回文串
|
||||
path.pop() # 回溯
|
||||
|
||||
```
|
||||
回溯+高效判断回文子串
|
||||
```python
|
||||
class Solution:
|
||||
def partition(self, s: str) -> List[List[str]]:
|
||||
result = []
|
||||
isPalindrome = [[False] * len(s) for _ in range(len(s))] # 初始化isPalindrome矩阵
|
||||
self.computePalindrome(s, isPalindrome)
|
||||
self.backtracking(s, 0, [], result, isPalindrome)
|
||||
return result
|
||||
|
||||
def backtracking(self, s, startIndex, path, result, isPalindrome):
|
||||
if startIndex >= len(s):
|
||||
result.append(path[:])
|
||||
return
|
||||
|
||||
for i in range(startIndex, len(s)):
|
||||
if isPalindrome[startIndex][i]: # 是回文子串
|
||||
substring = s[startIndex:i + 1]
|
||||
path.append(substring)
|
||||
self.backtracking(s, i + 1, path, result, isPalindrome) # 寻找i+1为起始位置的子串
|
||||
path.pop() # 回溯过程,弹出本次已经填在的子串
|
||||
|
||||
def computePalindrome(self, s, isPalindrome):
|
||||
for i in range(len(s) - 1, -1, -1): # 需要倒序计算,保证在i行时,i+1行已经计算好了
|
||||
for j in range(i, len(s)):
|
||||
if j == i:
|
||||
isPalindrome[i][j] = True
|
||||
elif j - i == 1:
|
||||
isPalindrome[i][j] = (s[i] == s[j])
|
||||
else:
|
||||
isPalindrome[i][j] = (s[i] == s[j] and isPalindrome[i+1][j-1])
|
||||
```
|
||||
回溯+使用all函数判断回文子串
|
||||
```python
|
||||
class Solution:
|
||||
def partition(self, s: str) -> List[List[str]]:
|
||||
result = []
|
||||
self.partition_helper(s, 0, [], result)
|
||||
return result
|
||||
|
||||
def partition_helper(self, s, start_index, path, result):
|
||||
if start_index == len(s):
|
||||
result.append(path[:])
|
||||
return
|
||||
|
||||
for i in range(start_index + 1, len(s) + 1):
|
||||
sub = s[start_index:i]
|
||||
if self.isPalindrome(sub):
|
||||
path.append(sub)
|
||||
self.partition_helper(s, i, path, result)
|
||||
path.pop()
|
||||
|
||||
def isPalindrome(self, s):
|
||||
return all(s[i] == s[len(s) - 1 - i] for i in range(len(s) // 2))
|
||||
|
||||
```
|
||||
## Go
|
||||
```go
|
||||
var (
|
||||
|
@ -249,44 +249,74 @@ class Solution {
|
||||
```
|
||||
|
||||
### Python
|
||||
暴力法
|
||||
```python
|
||||
# 解法1
|
||||
class Solution:
|
||||
def canCompleteCircuit(self, gas: List[int], cost: List[int]) -> int:
|
||||
n = len(gas)
|
||||
cur_sum = 0
|
||||
min_sum = float('inf')
|
||||
|
||||
for i in range(n):
|
||||
cur_sum += gas[i] - cost[i]
|
||||
min_sum = min(min_sum, cur_sum)
|
||||
|
||||
if cur_sum < 0: return -1
|
||||
if min_sum >= 0: return 0
|
||||
|
||||
for j in range(n - 1, 0, -1):
|
||||
min_sum += gas[j] - cost[j]
|
||||
if min_sum >= 0:
|
||||
return j
|
||||
|
||||
return -1
|
||||
```
|
||||
|
||||
```python
|
||||
# 解法2
|
||||
class Solution:
|
||||
def canCompleteCircuit(self, gas: List[int], cost: List[int]) -> int:
|
||||
start = 0
|
||||
curSum = 0
|
||||
totalSum = 0
|
||||
for i in range(len(cost)):
|
||||
rest = gas[i] - cost[i] # 记录剩余油量
|
||||
index = (i + 1) % len(cost) # 下一个加油站的索引
|
||||
|
||||
while rest > 0 and index != i: # 模拟以i为起点行驶一圈(如果有rest==0,那么答案就不唯一了)
|
||||
rest += gas[index] - cost[index] # 更新剩余油量
|
||||
index = (index + 1) % len(cost) # 更新下一个加油站的索引
|
||||
|
||||
if rest >= 0 and index == i: # 如果以i为起点跑一圈,剩余油量>=0,并且回到起始位置
|
||||
return i # 返回起始位置i
|
||||
|
||||
return -1 # 所有起始位置都无法环绕一圈,返回-1
|
||||
|
||||
```
|
||||
贪心(版本一)
|
||||
```python
|
||||
class Solution:
|
||||
def canCompleteCircuit(self, gas: List[int], cost: List[int]) -> int:
|
||||
curSum = 0 # 当前累计的剩余油量
|
||||
minFuel = float('inf') # 从起点出发,油箱里的油量最小值
|
||||
|
||||
for i in range(len(gas)):
|
||||
rest = gas[i] - cost[i]
|
||||
curSum += rest
|
||||
if curSum < minFuel:
|
||||
minFuel = curSum
|
||||
|
||||
if curSum < 0:
|
||||
return -1 # 情况1:整个行程的总消耗大于总供给,无法完成一圈
|
||||
|
||||
if minFuel >= 0:
|
||||
return 0 # 情况2:从起点出发到任何一个加油站时油箱的剩余油量都不会小于0,可以从起点出发完成一圈
|
||||
|
||||
for i in range(len(gas) - 1, -1, -1):
|
||||
rest = gas[i] - cost[i]
|
||||
minFuel += rest
|
||||
if minFuel >= 0:
|
||||
return i # 情况3:找到一个位置使得从该位置出发油箱的剩余油量不会小于0,返回该位置的索引
|
||||
|
||||
return -1 # 无法完成一圈
|
||||
|
||||
```
|
||||
贪心(版本二)
|
||||
```python
|
||||
class Solution:
|
||||
def canCompleteCircuit(self, gas: List[int], cost: List[int]) -> int:
|
||||
curSum = 0 # 当前累计的剩余油量
|
||||
totalSum = 0 # 总剩余油量
|
||||
start = 0 # 起始位置
|
||||
|
||||
for i in range(len(gas)):
|
||||
curSum += gas[i] - cost[i]
|
||||
totalSum += gas[i] - cost[i]
|
||||
if curSum < 0:
|
||||
curSum = 0
|
||||
start = i + 1
|
||||
if totalSum < 0: return -1
|
||||
|
||||
if curSum < 0: # 当前累计剩余油量curSum小于0
|
||||
start = i + 1 # 起始位置更新为i+1
|
||||
curSum = 0 # curSum重新从0开始累计
|
||||
|
||||
if totalSum < 0:
|
||||
return -1 # 总剩余油量totalSum小于0,说明无法环绕一圈
|
||||
return start
|
||||
|
||||
|
||||
```
|
||||
|
||||
### Go
|
||||
|
@ -178,13 +178,21 @@ class Solution {
|
||||
class Solution:
|
||||
def candy(self, ratings: List[int]) -> int:
|
||||
candyVec = [1] * len(ratings)
|
||||
|
||||
# 从前向后遍历,处理右侧比左侧评分高的情况
|
||||
for i in range(1, len(ratings)):
|
||||
if ratings[i] > ratings[i - 1]:
|
||||
candyVec[i] = candyVec[i - 1] + 1
|
||||
for j in range(len(ratings) - 2, -1, -1):
|
||||
if ratings[j] > ratings[j + 1]:
|
||||
candyVec[j] = max(candyVec[j], candyVec[j + 1] + 1)
|
||||
return sum(candyVec)
|
||||
|
||||
# 从后向前遍历,处理左侧比右侧评分高的情况
|
||||
for i in range(len(ratings) - 2, -1, -1):
|
||||
if ratings[i] > ratings[i + 1]:
|
||||
candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1)
|
||||
|
||||
# 统计结果
|
||||
result = sum(candyVec)
|
||||
return result
|
||||
|
||||
```
|
||||
|
||||
### Go
|
||||
|
@ -337,10 +337,53 @@ class Solution {
|
||||
|
||||
Python:
|
||||
|
||||
回溯
|
||||
```python
|
||||
class Solution:
|
||||
def backtracking(self, s: str, wordSet: set[str], startIndex: int) -> bool:
|
||||
# 边界情况:已经遍历到字符串末尾,返回True
|
||||
if startIndex >= len(s):
|
||||
return True
|
||||
|
||||
# 遍历所有可能的拆分位置
|
||||
for i in range(startIndex, len(s)):
|
||||
word = s[startIndex:i + 1] # 截取子串
|
||||
if word in wordSet and self.backtracking(s, wordSet, i + 1):
|
||||
# 如果截取的子串在字典中,并且后续部分也可以被拆分成单词,返回True
|
||||
return True
|
||||
|
||||
# 无法进行有效拆分,返回False
|
||||
return False
|
||||
|
||||
def wordBreak(self, s: str, wordDict: List[str]) -> bool:
|
||||
wordSet = set(wordDict) # 转换为哈希集合,提高查找效率
|
||||
return self.backtracking(s, wordSet, 0)
|
||||
|
||||
```
|
||||
DP(版本一)
|
||||
```python
|
||||
class Solution:
|
||||
def wordBreak(self, s: str, wordDict: List[str]) -> bool:
|
||||
wordSet = set(wordDict)
|
||||
n = len(s)
|
||||
dp = [False] * (n + 1) # dp[i] 表示字符串的前 i 个字符是否可以被拆分成单词
|
||||
dp[0] = True # 初始状态,空字符串可以被拆分成单词
|
||||
|
||||
for i in range(1, n + 1): # 遍历背包
|
||||
for j in range(i): # 遍历单词
|
||||
if dp[j] and s[j:i] in wordSet:
|
||||
dp[i] = True # 如果 s[0:j] 可以被拆分成单词,并且 s[j:i] 在单词集合中存在,则 s[0:i] 可以被拆分成单词
|
||||
break
|
||||
|
||||
return dp[n]
|
||||
|
||||
|
||||
```
|
||||
DP(版本二)
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def wordBreak(self, s: str, wordDict: List[str]) -> bool:
|
||||
'''排列'''
|
||||
dp = [False]*(len(s) + 1)
|
||||
dp[0] = True
|
||||
# 遍历背包
|
||||
@ -351,17 +394,6 @@ class Solution:
|
||||
dp[j] = dp[j] or (dp[j - len(word)] and word == s[j - len(word):j])
|
||||
return dp[len(s)]
|
||||
```
|
||||
```python
|
||||
class Solution: # 和视频中写法一致(和最上面C++写法一致)
|
||||
def wordBreak(self, s: str, wordDict: List[str]) -> bool:
|
||||
dp = [False]*(len(s)+1)
|
||||
dp[0]=True
|
||||
for j in range(1,len(s)+1):
|
||||
for i in range(j):
|
||||
word = s[i:j]
|
||||
if word in wordDict and dp[i]: dp[j]=True
|
||||
return dp[-1]
|
||||
```
|
||||
|
||||
|
||||
|
||||
@ -464,7 +496,24 @@ function wordBreak(s: string, wordDict: string[]): boolean {
|
||||
};
|
||||
```
|
||||
|
||||
Rust:
|
||||
|
||||
```rust
|
||||
impl Solution {
|
||||
pub fn word_break(s: String, word_dict: Vec<String>) -> bool {
|
||||
let mut dp = vec![false; s.len() + 1];
|
||||
dp[0] = true;
|
||||
for i in 1..=s.len() {
|
||||
for j in 0..i {
|
||||
if word_dict.iter().any(|word| *word == s[j..i]) && dp[j] {
|
||||
dp[i] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
dp[s.len()]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
|
@ -437,6 +437,34 @@ object Solution {
|
||||
}
|
||||
```
|
||||
|
||||
C#:
|
||||
```CSharp
|
||||
public class Solution
|
||||
{
|
||||
public ListNode DetectCycle(ListNode head)
|
||||
{
|
||||
ListNode fast = head;
|
||||
ListNode slow = head;
|
||||
while (fast != null && fast.next != null)
|
||||
{
|
||||
slow = slow.next;
|
||||
fast = fast.next.next;
|
||||
if (fast == slow)
|
||||
{
|
||||
fast = head;
|
||||
while (fast != slow)
|
||||
{
|
||||
fast = fast.next;
|
||||
slow = slow.next;
|
||||
}
|
||||
return fast;
|
||||
}
|
||||
}
|
||||
return null;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
<img src="../pics/网站星球宣传海报.jpg" width="1000"/>
|
||||
|
@ -467,9 +467,57 @@ class Solution:
|
||||
return " ".join(words)
|
||||
```
|
||||
|
||||
|
||||
Go:
|
||||
|
||||
版本一:
|
||||
|
||||
```go
|
||||
func reverseWords(s string) string {
|
||||
b := []byte(s)
|
||||
|
||||
// 移除前面、中间、后面存在的多余空格
|
||||
slow := 0
|
||||
for i := 0; i < len(b); i++ {
|
||||
if b[i] != ' ' {
|
||||
if slow != 0 {
|
||||
b[slow] = ' '
|
||||
slow++
|
||||
}
|
||||
for i < len(b) && b[i] != ' ' { // 复制逻辑
|
||||
b[slow] = b[i]
|
||||
slow++
|
||||
i++
|
||||
}
|
||||
}
|
||||
}
|
||||
b = b[0:slow]
|
||||
|
||||
// 翻转整个字符串
|
||||
reverse(b)
|
||||
// 翻转每个单词
|
||||
last := 0
|
||||
for i := 0; i <= len(b); i++ {
|
||||
if i == len(b) || b[i] == ' ' {
|
||||
reverse(b[last:i])
|
||||
last = i + 1
|
||||
}
|
||||
}
|
||||
return string(b)
|
||||
}
|
||||
|
||||
func reverse(b []byte) {
|
||||
left := 0
|
||||
right := len(b) - 1
|
||||
for left < right {
|
||||
b[left], b[right] = b[right], b[left]
|
||||
left++
|
||||
right--
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
版本二:
|
||||
|
||||
```go
|
||||
import (
|
||||
"fmt"
|
||||
|
@ -141,7 +141,36 @@ class Solution {
|
||||
}
|
||||
}
|
||||
|
||||
// 空间优化 dp数组只存与计算相关的两次数据
|
||||
// 使用滚动数组思想,优化空间
|
||||
// 分析本题可以发现,所求结果仅依赖于前两种状态,此时可以使用滚动数组思想将空间复杂度降低为3个空间
|
||||
class Solution {
|
||||
public int rob(int[] nums) {
|
||||
|
||||
int len = nums.length;
|
||||
|
||||
if (len == 0) return 0;
|
||||
else if (len == 1) return nums[0];
|
||||
else if (len == 2) return Math.max(nums[0],nums[1]);
|
||||
|
||||
|
||||
int[] result = new int[3]; //存放选择的结果
|
||||
result[0] = nums[0];
|
||||
result[1] = Math.max(nums[0],nums[1]);
|
||||
|
||||
|
||||
for(int i=2;i<len;i++){
|
||||
|
||||
result[2] = Math.max(result[0]+nums[i],result[1]);
|
||||
|
||||
result[0] = result[1];
|
||||
result[1] = result[2];
|
||||
}
|
||||
|
||||
return result[2];
|
||||
}
|
||||
}
|
||||
|
||||
// 进一步对滚动数组的空间优化 dp数组只存与计算相关的两次数据
|
||||
class Solution {
|
||||
public int rob(int[] nums) {
|
||||
if (nums.length == 1) {
|
||||
@ -151,11 +180,11 @@ class Solution {
|
||||
// 优化空间 dp数组只用2格空间 只记录与当前计算相关的前两个结果
|
||||
int[] dp = new int[2];
|
||||
dp[0] = nums[0];
|
||||
dp[1] = nums[0] > nums[1] ? nums[0] : nums[1];
|
||||
dp[1] = Math.max(nums[0],nums[1]);
|
||||
int res = 0;
|
||||
// 遍历
|
||||
for (int i = 2; i < nums.length; i++) {
|
||||
res = (dp[0] + nums[i]) > dp[1] ? (dp[0] + nums[i]) : dp[1];
|
||||
res = Math.max((dp[0] + nums[i]) , dp[1] );
|
||||
dp[0] = dp[1];
|
||||
dp[1] = res;
|
||||
}
|
||||
@ -166,30 +195,65 @@ class Solution {
|
||||
```
|
||||
|
||||
Python:
|
||||
|
||||
1维DP
|
||||
```python
|
||||
class Solution:
|
||||
def rob(self, nums: List[int]) -> int:
|
||||
if len(nums) == 0:
|
||||
if len(nums) == 0: # 如果没有房屋,返回0
|
||||
return 0
|
||||
if len(nums) == 1:
|
||||
if len(nums) == 1: # 如果只有一个房屋,返回其金额
|
||||
return nums[0]
|
||||
|
||||
# 创建一个动态规划数组,用于存储最大金额
|
||||
dp = [0] * len(nums)
|
||||
dp[0] = nums[0]
|
||||
dp[1] = max(nums[0], nums[1])
|
||||
dp[0] = nums[0] # 将dp的第一个元素设置为第一个房屋的金额
|
||||
dp[1] = max(nums[0], nums[1]) # 将dp的第二个元素设置为第一二个房屋中的金额较大者
|
||||
|
||||
# 遍历剩余的房屋
|
||||
for i in range(2, len(nums)):
|
||||
dp[i] = max(dp[i-2]+nums[i], dp[i-1])
|
||||
return dp[-1]
|
||||
# 对于每个房屋,选择抢劫当前房屋和抢劫前一个房屋的最大金额
|
||||
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1])
|
||||
|
||||
return dp[-1] # 返回最后一个房屋中可抢劫的最大金额
|
||||
```
|
||||
2维DP
|
||||
```python
|
||||
class Solution: # 二维dp数组写法
|
||||
class Solution:
|
||||
def rob(self, nums: List[int]) -> int:
|
||||
dp = [[0,0] for _ in range(len(nums))]
|
||||
dp[0][1] = nums[0]
|
||||
for i in range(1,len(nums)):
|
||||
dp[i][0] = max(dp[i-1][1],dp[i-1][0])
|
||||
dp[i][1] = dp[i-1][0]+nums[i]
|
||||
print(dp)
|
||||
return max(dp[-1])
|
||||
if not nums: # 如果没有房屋,返回0
|
||||
return 0
|
||||
|
||||
n = len(nums)
|
||||
dp = [[0, 0] for _ in range(n)] # 创建二维动态规划数组,dp[i][0]表示不抢劫第i个房屋的最大金额,dp[i][1]表示抢劫第i个房屋的最大金额
|
||||
|
||||
dp[0][1] = nums[0] # 抢劫第一个房屋的最大金额为第一个房屋的金额
|
||||
|
||||
for i in range(1, n):
|
||||
dp[i][0] = max(dp[i-1][0], dp[i-1][1]) # 不抢劫第i个房屋,最大金额为前一个房屋抢劫和不抢劫的最大值
|
||||
dp[i][1] = dp[i-1][0] + nums[i] # 抢劫第i个房屋,最大金额为前一个房屋不抢劫的最大金额加上当前房屋的金额
|
||||
|
||||
return max(dp[n-1][0], dp[n-1][1]) # 返回最后一个房屋中可抢劫的最大金额
|
||||
|
||||
```
|
||||
优化版
|
||||
```python
|
||||
class Solution:
|
||||
def rob(self, nums: List[int]) -> int:
|
||||
if not nums: # 如果没有房屋,返回0
|
||||
return 0
|
||||
|
||||
prev_max = 0 # 上一个房屋的最大金额
|
||||
curr_max = 0 # 当前房屋的最大金额
|
||||
|
||||
for num in nums:
|
||||
temp = curr_max # 临时变量保存当前房屋的最大金额
|
||||
curr_max = max(prev_max + num, curr_max) # 更新当前房屋的最大金额
|
||||
prev_max = temp # 更新上一个房屋的最大金额
|
||||
|
||||
return curr_max # 返回最后一个房屋中可抢劫的最大金额
|
||||
|
||||
|
||||
```
|
||||
Go:
|
||||
```Go
|
||||
@ -250,7 +314,24 @@ function rob(nums: number[]): number {
|
||||
};
|
||||
```
|
||||
|
||||
Rust:
|
||||
|
||||
```rust
|
||||
impl Solution {
|
||||
pub fn rob(nums: Vec<i32>) -> i32 {
|
||||
if nums.len() == 1 {
|
||||
return nums[0];
|
||||
}
|
||||
let mut dp = vec![0; nums.len()];
|
||||
dp[0] = nums[0];
|
||||
dp[1] = nums[0].max(nums[1]);
|
||||
for i in 2..nums.len() {
|
||||
dp[i] = (dp[i - 2] + nums[i]).max(dp[i - 1]);
|
||||
}
|
||||
dp[nums.len() - 1]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
<p align="center">
|
||||
|
@ -41,7 +41,7 @@
|
||||
|
||||
### 深度优先搜索
|
||||
|
||||
以下代码使用dfs实现,如果对dfs不太了解的话,建议先看这篇题解:[797.所有可能的路径](https://leetcode.cn/problems/all-paths-from-source-to-target/solution/by-carlsun-2-66pf/),
|
||||
以下代码使用dfs实现,如果对dfs不太了解的话,建议先看这篇题解:[797.所有可能的路径](https://programmercarl.com/0797.%E6%89%80%E6%9C%89%E5%8F%AF%E8%83%BD%E7%9A%84%E8%B7%AF%E5%BE%84.html),
|
||||
|
||||
C++代码如下:
|
||||
|
||||
|
@ -596,6 +596,41 @@ class Solution {
|
||||
}
|
||||
```
|
||||
|
||||
C#
|
||||
```CSharp
|
||||
/**
|
||||
* Definition for singly-linked list.
|
||||
* public class ListNode {
|
||||
* public int val;
|
||||
* public ListNode next;
|
||||
* public ListNode(int val=0, ListNode next=null) {
|
||||
* this.val = val;
|
||||
* this.next = next;
|
||||
* }
|
||||
* }
|
||||
*/
|
||||
public class Solution
|
||||
{
|
||||
public ListNode RemoveElements(ListNode head, int val)
|
||||
{
|
||||
ListNode dummyHead = new ListNode(0,head);
|
||||
ListNode temp = dummyHead;
|
||||
while(temp.next != null)
|
||||
{
|
||||
if(temp.next.val == val)
|
||||
{
|
||||
temp.next = temp.next.next;
|
||||
}
|
||||
else
|
||||
{
|
||||
temp = temp.next;
|
||||
}
|
||||
}
|
||||
return dummyHead.next;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
<img src="../pics/网站星球宣传海报.jpg" width="1000"/>
|
||||
|
@ -130,40 +130,93 @@ class Solution {
|
||||
```
|
||||
|
||||
Python:
|
||||
|
||||
```Python
|
||||
class Solution:
|
||||
def rob(self, nums: List[int]) -> int:
|
||||
#在198入门级的打家劫舍问题上分两种情况考虑
|
||||
#一是不偷第一间房,二是不偷最后一间房
|
||||
if len(nums)==1:#题目中提示nums.length>=1,所以不需要考虑len(nums)==0的情况
|
||||
if len(nums) == 0:
|
||||
return 0
|
||||
if len(nums) == 1:
|
||||
return nums[0]
|
||||
val1=self.roblist(nums[1:])#不偷第一间房
|
||||
val2=self.roblist(nums[:-1])#不偷最后一间房
|
||||
return max(val1,val2)
|
||||
|
||||
result1 = self.robRange(nums, 0, len(nums) - 2) # 情况二
|
||||
result2 = self.robRange(nums, 1, len(nums) - 1) # 情况三
|
||||
return max(result1, result2)
|
||||
# 198.打家劫舍的逻辑
|
||||
def robRange(self, nums: List[int], start: int, end: int) -> int:
|
||||
if end == start:
|
||||
return nums[start]
|
||||
|
||||
prev_max = nums[start]
|
||||
curr_max = max(nums[start], nums[start + 1])
|
||||
|
||||
for i in range(start + 2, end + 1):
|
||||
temp = curr_max
|
||||
curr_max = max(prev_max + nums[i], curr_max)
|
||||
prev_max = temp
|
||||
|
||||
return curr_max
|
||||
|
||||
def roblist(self,nums):
|
||||
l=len(nums)
|
||||
dp=[0]*l
|
||||
dp[0]=nums[0]
|
||||
for i in range(1,l):
|
||||
if i==1:
|
||||
dp[i]=max(dp[i-1],nums[i])
|
||||
else:
|
||||
dp[i]=max(dp[i-1],dp[i-2]+nums[i])
|
||||
return dp[-1]
|
||||
```
|
||||
2维DP
|
||||
```python
|
||||
class Solution: # 二维dp数组写法
|
||||
class Solution:
|
||||
def rob(self, nums: List[int]) -> int:
|
||||
if len(nums)<3: return max(nums)
|
||||
return max(self.default(nums[:-1]),self.default(nums[1:]))
|
||||
def default(self,nums):
|
||||
dp = [[0,0] for _ in range(len(nums))]
|
||||
if len(nums) < 3:
|
||||
return max(nums)
|
||||
|
||||
# 情况二:不抢劫第一个房屋
|
||||
result1 = self.robRange(nums[:-1])
|
||||
|
||||
# 情况三:不抢劫最后一个房屋
|
||||
result2 = self.robRange(nums[1:])
|
||||
|
||||
return max(result1, result2)
|
||||
|
||||
def robRange(self, nums):
|
||||
dp = [[0, 0] for _ in range(len(nums))]
|
||||
dp[0][1] = nums[0]
|
||||
for i in range(1,len(nums)):
|
||||
dp[i][0] = max(dp[i-1])
|
||||
dp[i][1] = dp[i-1][0] + nums[i]
|
||||
|
||||
for i in range(1, len(nums)):
|
||||
dp[i][0] = max(dp[i - 1])
|
||||
dp[i][1] = dp[i - 1][0] + nums[i]
|
||||
|
||||
return max(dp[-1])
|
||||
|
||||
|
||||
|
||||
```
|
||||
|
||||
优化版
|
||||
```python
|
||||
class Solution:
|
||||
def rob(self, nums: List[int]) -> int:
|
||||
if not nums: # 如果没有房屋,返回0
|
||||
return 0
|
||||
|
||||
if len(nums) == 1: # 如果只有一个房屋,返回该房屋的金额
|
||||
return nums[0]
|
||||
|
||||
# 情况二:不抢劫第一个房屋
|
||||
prev_max = 0 # 上一个房屋的最大金额
|
||||
curr_max = 0 # 当前房屋的最大金额
|
||||
for num in nums[1:]:
|
||||
temp = curr_max # 临时变量保存当前房屋的最大金额
|
||||
curr_max = max(prev_max + num, curr_max) # 更新当前房屋的最大金额
|
||||
prev_max = temp # 更新上一个房屋的最大金额
|
||||
result1 = curr_max
|
||||
|
||||
# 情况三:不抢劫最后一个房屋
|
||||
prev_max = 0 # 上一个房屋的最大金额
|
||||
curr_max = 0 # 当前房屋的最大金额
|
||||
for num in nums[:-1]:
|
||||
temp = curr_max # 临时变量保存当前房屋的最大金额
|
||||
curr_max = max(prev_max + num, curr_max) # 更新当前房屋的最大金额
|
||||
prev_max = temp # 更新上一个房屋的最大金额
|
||||
result2 = curr_max
|
||||
|
||||
return max(result1, result2)
|
||||
|
||||
|
||||
```
|
||||
Go:
|
||||
@ -248,6 +301,35 @@ function robRange(nums: number[], start: number, end: number): number {
|
||||
}
|
||||
```
|
||||
|
||||
Rust:
|
||||
|
||||
```rust
|
||||
impl Solution {
|
||||
pub fn rob(nums: Vec<i32>) -> i32 {
|
||||
match nums.len() {
|
||||
1 => nums[0],
|
||||
_ => Self::rob_range(&nums, 0, nums.len() - 2).max(Self::rob_range(
|
||||
&nums,
|
||||
1,
|
||||
nums.len() - 1,
|
||||
)),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn rob_range(nums: &Vec<i32>, start: usize, end: usize) -> i32 {
|
||||
if start == end {
|
||||
return nums[start];
|
||||
}
|
||||
let mut dp = vec![0; nums.len()];
|
||||
dp[start] = nums[start];
|
||||
dp[start + 1] = nums[start].max(nums[start + 1]);
|
||||
for i in start + 2..=end {
|
||||
dp[i] = dp[i - 1].max(dp[i - 2] + nums[i]);
|
||||
}
|
||||
dp[end]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
<p align="center">
|
||||
|
@ -362,28 +362,25 @@ class Solution {
|
||||
|
||||
```py
|
||||
class Solution:
|
||||
def __init__(self):
|
||||
self.res = []
|
||||
self.sum_now = 0
|
||||
self.path = []
|
||||
def combinationSum3(self, k: int, n: int) -> List[List[int]]:
|
||||
result = [] # 存放结果集
|
||||
self.backtracking(n, k, 0, 1, [], result)
|
||||
return result
|
||||
|
||||
def combinationSum3(self, k: int, n: int) -> [[int]]:
|
||||
self.backtracking(k, n, 1)
|
||||
return self.res
|
||||
def backtracking(self, targetSum, k, currentSum, startIndex, path, result):
|
||||
if currentSum > targetSum: # 剪枝操作
|
||||
return # 如果path的长度等于k但currentSum不等于targetSum,则直接返回
|
||||
if len(path) == k:
|
||||
if currentSum == targetSum:
|
||||
result.append(path[:])
|
||||
return
|
||||
for i in range(startIndex, 9 - (k - len(path)) + 2): # 剪枝
|
||||
currentSum += i # 处理
|
||||
path.append(i) # 处理
|
||||
self.backtracking(targetSum, k, currentSum, i + 1, path, result) # 注意i+1调整startIndex
|
||||
currentSum -= i # 回溯
|
||||
path.pop() # 回溯
|
||||
|
||||
def backtracking(self, k: int, n: int, start_num: int):
|
||||
if self.sum_now > n: # 剪枝
|
||||
return
|
||||
if len(self.path) == k: # len(path)==k时不管sum是否等于n都会返回
|
||||
if self.sum_now == n:
|
||||
self.res.append(self.path[:])
|
||||
return
|
||||
for i in range(start_num, 10 - (k - len(self.path)) + 1):
|
||||
self.path.append(i)
|
||||
self.sum_now += i
|
||||
self.backtracking(k, n, i + 1)
|
||||
self.path.pop()
|
||||
self.sum_now -= i
|
||||
```
|
||||
|
||||
## Go
|
||||
|
@ -367,7 +367,7 @@ class MyStack {
|
||||
|
||||
```
|
||||
优化,使用一个 Queue 实现,但用卡哥的逻辑实现
|
||||
```
|
||||
```Java
|
||||
class MyStack {
|
||||
Queue<Integer> queue;
|
||||
|
||||
|
@ -390,6 +390,8 @@ public:
|
||||
|
||||
```Java
|
||||
//解法一
|
||||
|
||||
//方式一
|
||||
class Solution {
|
||||
/**
|
||||
* 递归法
|
||||
@ -428,9 +430,32 @@ class Solution {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//方式二
|
||||
class Solution {
|
||||
|
||||
List<String> result = new ArrayList<>();
|
||||
|
||||
public List<String> binaryTreePaths(TreeNode root) {
|
||||
deal(root, "");
|
||||
return result;
|
||||
}
|
||||
|
||||
public void deal(TreeNode node, String s) {
|
||||
if (node == null)
|
||||
return;
|
||||
if (node.left == null && node.right == null) {
|
||||
result.add(new StringBuilder(s).append(node.val).toString());
|
||||
return;
|
||||
}
|
||||
String tmp = new StringBuilder(s).append(node.val).append("->").toString();
|
||||
deal(node.left, tmp);
|
||||
deal(node.right, tmp);
|
||||
}
|
||||
}
|
||||
```
|
||||
```java
|
||||
// 解法2
|
||||
// 解法二
|
||||
class Solution {
|
||||
/**
|
||||
* 迭代法
|
||||
|
@ -177,15 +177,19 @@ class Solution {
|
||||
for (int j = 0; j <= n; j++) {
|
||||
dp[j] = max;
|
||||
}
|
||||
//如果不想要寫for-loop填充數組的話,也可以用JAVA內建的Arrays.fill()函數。
|
||||
//Arrays.fill(dp, Integer.MAX_VALUE);
|
||||
|
||||
//当和为0时,组合的个数为0
|
||||
dp[0] = 0;
|
||||
// 遍历物品
|
||||
for (int i = 1; i * i <= n; i++) {
|
||||
// 遍历背包
|
||||
for (int j = i * i; j <= n; j++) {
|
||||
if (dp[j - i * i] != max) {
|
||||
//if (dp[j - i * i] != max) {
|
||||
dp[j] = Math.min(dp[j], dp[j - i * i] + 1);
|
||||
}
|
||||
//}
|
||||
//不需要這個if statement,因爲在完全平方數這一題不會有"湊不成"的狀況發生( 一定可以用"1"來組成任何一個n),故comment掉這個if statement。
|
||||
}
|
||||
}
|
||||
return dp[n];
|
||||
@ -217,36 +221,61 @@ class Solution {
|
||||
|
||||
Python:
|
||||
|
||||
先遍历物品, 再遍历背包
|
||||
```python
|
||||
class Solution:
|
||||
def numSquares(self, n: int) -> int:
|
||||
'''版本一,先遍历背包, 再遍历物品'''
|
||||
# 初始化
|
||||
nums = [i**2 for i in range(1, n + 1) if i**2 <= n]
|
||||
dp = [10**4]*(n + 1)
|
||||
dp = [float('inf')] * (n + 1)
|
||||
dp[0] = 0
|
||||
# 遍历背包
|
||||
for j in range(1, n + 1):
|
||||
# 遍历物品
|
||||
for num in nums:
|
||||
if j >= num:
|
||||
dp[j] = min(dp[j], dp[j - num] + 1)
|
||||
return dp[n]
|
||||
|
||||
def numSquares1(self, n: int) -> int:
|
||||
'''版本二, 先遍历物品, 再遍历背包'''
|
||||
# 初始化
|
||||
nums = [i**2 for i in range(1, n + 1) if i**2 <= n]
|
||||
dp = [10**4]*(n + 1)
|
||||
dp[0] = 0
|
||||
# 遍历物品
|
||||
for num in nums:
|
||||
# 遍历背包
|
||||
for j in range(num, n + 1):
|
||||
dp[j] = min(dp[j], dp[j - num] + 1)
|
||||
return dp[n]
|
||||
```
|
||||
|
||||
for i in range(1, n + 1): # 遍历背包
|
||||
for j in range(1, int(i ** 0.5) + 1): # 遍历物品
|
||||
# 更新凑成数字 i 所需的最少完全平方数数量
|
||||
dp[i] = min(dp[i], dp[i - j * j] + 1)
|
||||
|
||||
return dp[n]
|
||||
|
||||
```
|
||||
先遍历背包, 再遍历物品
|
||||
```python
|
||||
class Solution:
|
||||
def numSquares(self, n: int) -> int:
|
||||
dp = [float('inf')] * (n + 1)
|
||||
dp[0] = 0
|
||||
|
||||
for i in range(1, int(n ** 0.5) + 1): # 遍历物品
|
||||
for j in range(i * i, n + 1): # 遍历背包
|
||||
# 更新凑成数字 j 所需的最少完全平方数数量
|
||||
dp[j] = min(dp[j - i * i] + 1, dp[j])
|
||||
|
||||
return dp[n]
|
||||
|
||||
|
||||
```
|
||||
其他版本
|
||||
```python
|
||||
class Solution:
|
||||
def numSquares(self, n: int) -> int:
|
||||
# 创建动态规划数组,初始值为最大值
|
||||
dp = [float('inf')] * (n + 1)
|
||||
# 初始化已知情况
|
||||
dp[0] = 0
|
||||
|
||||
# 遍历背包容量
|
||||
for i in range(1, n + 1):
|
||||
# 遍历完全平方数作为物品
|
||||
j = 1
|
||||
while j * j <= i:
|
||||
# 更新最少完全平方数的数量
|
||||
dp[i] = min(dp[i], dp[i - j * j] + 1)
|
||||
j += 1
|
||||
|
||||
# 返回结果
|
||||
return dp[n]
|
||||
|
||||
|
||||
|
||||
```
|
||||
Go:
|
||||
```go
|
||||
// 版本一,先遍历物品, 再遍历背包
|
||||
@ -331,6 +360,7 @@ var numSquares2 = function(n) {
|
||||
TypeScript:
|
||||
|
||||
```typescript
|
||||
// 先遍历物品
|
||||
function numSquares(n: number): number {
|
||||
const goodsNum: number = Math.floor(Math.sqrt(n));
|
||||
const dp: number[] = new Array(n + 1).fill(Infinity);
|
||||
@ -345,6 +375,64 @@ function numSquares(n: number): number {
|
||||
};
|
||||
```
|
||||
|
||||
```rust
|
||||
// 先遍历背包
|
||||
function numSquares(n: number): number {
|
||||
const dp = Array(n + 1).fill(Infinity)
|
||||
dp[0] = 0;
|
||||
for(let i = 1; i <= n; i++){
|
||||
for(let j = 1; j * j <= i; j++){
|
||||
dp[i] = Math.min(dp[i], dp[i -j * j] + 1)
|
||||
}
|
||||
}
|
||||
return dp[n]
|
||||
};
|
||||
```
|
||||
|
||||
Rust:
|
||||
|
||||
```rust
|
||||
// 先遍历背包
|
||||
impl Solution {
|
||||
pub fn num_squares(n: i32) -> i32 {
|
||||
let n = n as usize;
|
||||
let mut dp = vec![i32::MAX; n + 1];
|
||||
dp[0] = 0;
|
||||
for i in 0..=n {
|
||||
let mut j = 1;
|
||||
loop {
|
||||
match j * j > i {
|
||||
true => break,
|
||||
false => dp[i] = dp[i].min(dp[i - j * j] + 1),
|
||||
}
|
||||
j += 1;
|
||||
}
|
||||
}
|
||||
dp[n]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
```rust
|
||||
// 先遍历物品
|
||||
impl Solution {
|
||||
pub fn num_squares(n: i32) -> i32 {
|
||||
let (n, mut goods) = (n as usize, 1);
|
||||
let mut dp = vec![i32::MAX; n + 1];
|
||||
dp[0] = 0;
|
||||
loop {
|
||||
if goods * goods > n {
|
||||
break;
|
||||
}
|
||||
for j in goods * goods..=n {
|
||||
dp[j] = dp[j].min(dp[j - goods * goods] + 1);
|
||||
}
|
||||
goods += 1;
|
||||
}
|
||||
dp[n]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
<p align="center">
|
||||
|
@ -31,6 +31,11 @@
|
||||
* 1 <= nums.length <= 2500
|
||||
* -10^4 <= nums[i] <= 104
|
||||
|
||||
## 算法公开课
|
||||
|
||||
**《代码随想录》算法视频公开课:[动态规划之子序列问题,元素不连续!| LeetCode:300.最长递增子序列](https://www.bilibili.com/video/BV1ng411J7xP),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
|
||||
|
||||
|
||||
## 思路
|
||||
|
||||
首先通过本题大家要明确什么是子序列,“子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序”。
|
||||
@ -143,6 +148,8 @@ class Solution {
|
||||
```
|
||||
|
||||
Python:
|
||||
|
||||
DP
|
||||
```python
|
||||
class Solution:
|
||||
def lengthOfLIS(self, nums: List[int]) -> int:
|
||||
@ -157,7 +164,31 @@ class Solution:
|
||||
result = max(result, dp[i]) #取长的子序列
|
||||
return result
|
||||
```
|
||||
贪心
|
||||
```python
|
||||
class Solution:
|
||||
def lengthOfLIS(self, nums: List[int]) -> int:
|
||||
if len(nums) <= 1:
|
||||
return len(nums)
|
||||
|
||||
tails = [nums[0]] # 存储递增子序列的尾部元素
|
||||
for num in nums[1:]:
|
||||
if num > tails[-1]:
|
||||
tails.append(num) # 如果当前元素大于递增子序列的最后一个元素,直接加入到子序列末尾
|
||||
else:
|
||||
# 使用二分查找找到当前元素在递增子序列中的位置,并替换对应位置的元素
|
||||
left, right = 0, len(tails) - 1
|
||||
while left < right:
|
||||
mid = (left + right) // 2
|
||||
if tails[mid] < num:
|
||||
left = mid + 1
|
||||
else:
|
||||
right = mid
|
||||
tails[left] = num
|
||||
|
||||
return len(tails) # 返回递增子序列的长度
|
||||
|
||||
```
|
||||
Go:
|
||||
```go
|
||||
// 动态规划求解
|
||||
|
@ -248,23 +248,51 @@ class Solution {
|
||||
```
|
||||
|
||||
Python:
|
||||
|
||||
版本一
|
||||
```python
|
||||
from typing import List
|
||||
|
||||
class Solution:
|
||||
def maxProfit(self, prices: List[int]) -> int:
|
||||
n = len(prices)
|
||||
if n == 0:
|
||||
return 0
|
||||
dp = [[0] * 4 for _ in range(n)]
|
||||
dp[0][0] = -prices[0] #持股票
|
||||
dp = [[0] * 4 for _ in range(n)] # 创建动态规划数组,4个状态分别表示持有股票、不持有股票且处于冷冻期、不持有股票且不处于冷冻期、不持有股票且当天卖出后处于冷冻期
|
||||
dp[0][0] = -prices[0] # 初始状态:第一天持有股票的最大利润为买入股票的价格
|
||||
for i in range(1, n):
|
||||
dp[i][0] = max(dp[i-1][0], max(dp[i-1][3], dp[i-1][1]) - prices[i])
|
||||
dp[i][1] = max(dp[i-1][1], dp[i-1][3])
|
||||
dp[i][2] = dp[i-1][0] + prices[i]
|
||||
dp[i][3] = dp[i-1][2]
|
||||
return max(dp[n-1][3], dp[n-1][1], dp[n-1][2])
|
||||
```
|
||||
dp[i][0] = max(dp[i-1][0], max(dp[i-1][3], dp[i-1][1]) - prices[i]) # 当前持有股票的最大利润等于前一天持有股票的最大利润或者前一天不持有股票且不处于冷冻期的最大利润减去当前股票的价格
|
||||
dp[i][1] = max(dp[i-1][1], dp[i-1][3]) # 当前不持有股票且处于冷冻期的最大利润等于前一天持有股票的最大利润加上当前股票的价格
|
||||
dp[i][2] = dp[i-1][0] + prices[i] # 当前不持有股票且不处于冷冻期的最大利润等于前一天不持有股票的最大利润或者前一天处于冷冻期的最大利润
|
||||
dp[i][3] = dp[i-1][2] # 当前不持有股票且当天卖出后处于冷冻期的最大利润等于前一天不持有股票且不处于冷冻期的最大利润
|
||||
return max(dp[n-1][3], dp[n-1][1], dp[n-1][2]) # 返回最后一天不持有股票的最大利润
|
||||
|
||||
```
|
||||
版本二
|
||||
```python
|
||||
class Solution:
|
||||
def maxProfit(self, prices: List[int]) -> int:
|
||||
n = len(prices)
|
||||
if n < 2:
|
||||
return 0
|
||||
|
||||
# 定义三种状态的动态规划数组
|
||||
dp = [[0] * 3 for _ in range(n)]
|
||||
dp[0][0] = -prices[0] # 持有股票的最大利润
|
||||
dp[0][1] = 0 # 不持有股票,且处于冷冻期的最大利润
|
||||
dp[0][2] = 0 # 不持有股票,不处于冷冻期的最大利润
|
||||
|
||||
for i in range(1, n):
|
||||
# 当前持有股票的最大利润等于前一天持有股票的最大利润或者前一天不持有股票且不处于冷冻期的最大利润减去当前股票的价格
|
||||
dp[i][0] = max(dp[i-1][0], dp[i-1][2] - prices[i])
|
||||
# 当前不持有股票且处于冷冻期的最大利润等于前一天持有股票的最大利润加上当前股票的价格
|
||||
dp[i][1] = dp[i-1][0] + prices[i]
|
||||
# 当前不持有股票且不处于冷冻期的最大利润等于前一天不持有股票的最大利润或者前一天处于冷冻期的最大利润
|
||||
dp[i][2] = max(dp[i-1][2], dp[i-1][1])
|
||||
|
||||
# 返回最后一天不持有股票的最大利润
|
||||
return max(dp[-1][1], dp[-1][2])
|
||||
|
||||
```
|
||||
Go:
|
||||
```go
|
||||
// 最佳买卖股票时机含冷冻期 动态规划
|
||||
|
@ -217,36 +217,76 @@ class Solution {
|
||||
|
||||
Python:
|
||||
|
||||
|
||||
先遍历物品 后遍历背包
|
||||
```python
|
||||
class Solution:
|
||||
def coinChange(self, coins: List[int], amount: int) -> int:
|
||||
'''版本一'''
|
||||
# 初始化
|
||||
dp = [float("inf")]*(amount + 1)
|
||||
dp[0] = 0
|
||||
# 遍历物品
|
||||
for coin in coins:
|
||||
# 遍历背包
|
||||
for j in range(coin, amount + 1):
|
||||
dp[j] = min(dp[j], dp[j - coin] + 1)
|
||||
return dp[amount] if dp[amount] != float("inf") else -1
|
||||
dp = [float('inf')] * (amount + 1) # 创建动态规划数组,初始值为正无穷大
|
||||
dp[0] = 0 # 初始化背包容量为0时的最小硬币数量为0
|
||||
|
||||
for coin in coins: # 遍历硬币列表,相当于遍历物品
|
||||
for i in range(coin, amount + 1): # 遍历背包容量
|
||||
if dp[i - coin] != float('inf'): # 如果dp[i - coin]不是初始值,则进行状态转移
|
||||
dp[i] = min(dp[i - coin] + 1, dp[i]) # 更新最小硬币数量
|
||||
|
||||
if dp[amount] == float('inf'): # 如果最终背包容量的最小硬币数量仍为正无穷大,表示无解
|
||||
return -1
|
||||
return dp[amount] # 返回背包容量为amount时的最小硬币数量
|
||||
|
||||
def coinChange1(self, coins: List[int], amount: int) -> int:
|
||||
'''版本二'''
|
||||
# 初始化
|
||||
dp = [float("inf")]*(amount + 1)
|
||||
dp[0] = 0
|
||||
# 遍历物品
|
||||
for j in range(1, amount + 1):
|
||||
# 遍历背包
|
||||
for coin in coins:
|
||||
if j >= coin:
|
||||
dp[j] = min(dp[j], dp[j - coin] + 1)
|
||||
return dp[amount] if dp[amount] != float("inf") else -1
|
||||
```
|
||||
|
||||
先遍历背包 后遍历物品
|
||||
```python
|
||||
class Solution:
|
||||
def coinChange(self, coins: List[int], amount: int) -> int:
|
||||
dp = [float('inf')] * (amount + 1) # 创建动态规划数组,初始值为正无穷大
|
||||
dp[0] = 0 # 初始化背包容量为0时的最小硬币数量为0
|
||||
|
||||
for i in range(1, amount + 1): # 遍历背包容量
|
||||
for j in range(len(coins)): # 遍历硬币列表,相当于遍历物品
|
||||
if i - coins[j] >= 0 and dp[i - coins[j]] != float('inf'): # 如果dp[i - coins[j]]不是初始值,则进行状态转移
|
||||
dp[i] = min(dp[i - coins[j]] + 1, dp[i]) # 更新最小硬币数量
|
||||
|
||||
if dp[amount] == float('inf'): # 如果最终背包容量的最小硬币数量仍为正无穷大,表示无解
|
||||
return -1
|
||||
return dp[amount] # 返回背包容量为amount时的最小硬币数量
|
||||
|
||||
```
|
||||
先遍历物品 后遍历背包(优化版)
|
||||
```python
|
||||
class Solution:
|
||||
def coinChange(self, coins: List[int], amount: int) -> int:
|
||||
dp = [float('inf')] * (amount + 1)
|
||||
dp[0] = 0
|
||||
|
||||
for coin in coins:
|
||||
for i in range(coin, amount + 1): # 进行优化,从能装得下的背包开始计算,则不需要进行比较
|
||||
# 更新凑成金额 i 所需的最少硬币数量
|
||||
dp[i] = min(dp[i], dp[i - coin] + 1)
|
||||
|
||||
return dp[amount] if dp[amount] != float('inf') else -1
|
||||
|
||||
|
||||
```
|
||||
先遍历背包 后遍历物品(优化版)
|
||||
```python
|
||||
class Solution:
|
||||
def coinChange(self, coins: List[int], amount: int) -> int:
|
||||
dp = [float('inf')] * (amount + 1)
|
||||
dp[0] = 0
|
||||
|
||||
for i in range(1, amount + 1): # 遍历背包容量
|
||||
for coin in coins: # 遍历物品
|
||||
if i - coin >= 0:
|
||||
# 更新凑成金额 i 所需的最少硬币数量
|
||||
dp[i] = min(dp[i], dp[i - coin] + 1)
|
||||
|
||||
return dp[amount] if dp[amount] != float('inf') else -1
|
||||
|
||||
|
||||
|
||||
```
|
||||
|
||||
Go:
|
||||
```go
|
||||
@ -315,23 +355,52 @@ func min(a, b int) int {
|
||||
Rust:
|
||||
|
||||
```rust
|
||||
pub fn coin_change(coins: Vec<i32>, amount: i32) -> i32 {
|
||||
let amount = amount as usize;
|
||||
let mut dp = vec![i32::MAX; amount + 1];
|
||||
dp[0] = 0;
|
||||
for i in 0..coins.len() {
|
||||
for j in coins[i] as usize..=amount {
|
||||
if dp[j - coins[i] as usize] != i32::MAX {
|
||||
dp[j] = dp[j].min(dp[j - coins[i] as usize] + 1);
|
||||
// 遍历物品
|
||||
impl Solution {
|
||||
pub fn coin_change(coins: Vec<i32>, amount: i32) -> i32 {
|
||||
let amount = amount as usize;
|
||||
let mut dp = vec![i32::MAX; amount + 1];
|
||||
dp[0] = 0;
|
||||
for coin in coins {
|
||||
for i in coin as usize..=amount {
|
||||
if dp[i - coin as usize] != i32::MAX {
|
||||
dp[i] = dp[i].min(dp[i - coin as usize] + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
if dp[amount] == i32::MAX {
|
||||
return -1;
|
||||
}
|
||||
dp[amount]
|
||||
}
|
||||
if dp[amount] == i32::MAX { -1 } else { dp[amount] }
|
||||
}
|
||||
```
|
||||
|
||||
```rust
|
||||
// 遍历背包
|
||||
impl Solution {
|
||||
pub fn coin_change(coins: Vec<i32>, amount: i32) -> i32 {
|
||||
let amount = amount as usize;
|
||||
let mut dp = vec![i32::MAX; amount + 1];
|
||||
dp[0] = 0;
|
||||
for i in 1..=amount {
|
||||
for &coin in &coins {
|
||||
if i >= coin as usize && dp[i - coin as usize] != i32::MAX {
|
||||
dp[i] = dp[i].min(dp[i - coin as usize] + 1)
|
||||
}
|
||||
}
|
||||
}
|
||||
if dp[amount] == i32::MAX {
|
||||
return -1;
|
||||
}
|
||||
dp[amount]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Javascript:
|
||||
```javascript
|
||||
// 遍历物品
|
||||
const coinChange = (coins, amount) => {
|
||||
if(!amount) {
|
||||
return 0;
|
||||
@ -340,7 +409,7 @@ const coinChange = (coins, amount) => {
|
||||
let dp = Array(amount + 1).fill(Infinity);
|
||||
dp[0] = 0;
|
||||
|
||||
for(let i =0; i < coins.length; i++) {
|
||||
for(let i = 0; i < coins.length; i++) {
|
||||
for(let j = coins[i]; j <= amount; j++) {
|
||||
dp[j] = Math.min(dp[j - coins[i]] + 1, dp[j]);
|
||||
}
|
||||
@ -350,9 +419,26 @@ const coinChange = (coins, amount) => {
|
||||
}
|
||||
```
|
||||
|
||||
```javascript
|
||||
// 遍历背包
|
||||
var coinChange = function(coins, amount) {
|
||||
const dp = Array(amount + 1).fill(Infinity)
|
||||
dp[0] = 0
|
||||
for (let i = 1; i <= amount; i++) {
|
||||
for (let j = 0; j < coins.length; j++) {
|
||||
if (i >= coins[j] && dp[i - coins[j]] !== Infinity) {
|
||||
dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1)
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[amount] === Infinity ? -1 : dp[amount]
|
||||
}
|
||||
```
|
||||
|
||||
TypeScript:
|
||||
|
||||
```typescript
|
||||
// 遍历物品
|
||||
function coinChange(coins: number[], amount: number): number {
|
||||
const dp: number[] = new Array(amount + 1).fill(Infinity);
|
||||
dp[0] = 0;
|
||||
@ -366,6 +452,23 @@ function coinChange(coins: number[], amount: number): number {
|
||||
};
|
||||
```
|
||||
|
||||
```typescript
|
||||
// 遍历背包
|
||||
function coinChange(coins: number[], amount: number): number {
|
||||
const dp: number[] = Array(amount + 1).fill(Infinity)
|
||||
dp[0] = 0
|
||||
for (let i = 1; i <= amount; i++) {
|
||||
for (let j = 0; j < coins.length; j++) {
|
||||
if (i >= coins[j] && dp[i - coins[j]] !== Infinity) {
|
||||
dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1)
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[amount] === Infinity ? -1 : dp[amount]
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
<p align="center">
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
<img src="../pics/网站星球宣传海报.jpg" width="1000"/>
|
||||
|
@ -347,64 +347,88 @@ class Solution {
|
||||
```
|
||||
|
||||
### python
|
||||
回溯 使用used数组
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def findItinerary(self, tickets: List[List[str]]) -> List[str]:
|
||||
# defaultdic(list) 是为了方便直接append
|
||||
tickets_dict = defaultdict(list)
|
||||
for item in tickets:
|
||||
tickets_dict[item[0]].append(item[1])
|
||||
# 给每一个机场的到达机场排序,小的在前面,在回溯里首先被pop(0)出去
|
||||
# 这样最先找的的path就是排序最小的答案,直接返回
|
||||
for airport in tickets_dict: tickets_dict[airport].sort()
|
||||
'''
|
||||
tickets_dict里面的内容是这样的
|
||||
{'JFK': ['ATL', 'SFO'], 'SFO': ['ATL'], 'ATL': ['JFK', 'SFO']})
|
||||
'''
|
||||
path = ["JFK"]
|
||||
def backtracking(start_point):
|
||||
# 终止条件
|
||||
if len(path) == len(tickets) + 1:
|
||||
return True
|
||||
for _ in tickets_dict[start_point]:
|
||||
#必须及时删除,避免出现死循环
|
||||
end_point = tickets_dict[start_point].pop(0)
|
||||
path.append(end_point)
|
||||
# 只要找到一个就可以返回了
|
||||
if backtracking(end_point):
|
||||
return True
|
||||
path.pop()
|
||||
tickets_dict[start_point].append(end_point)
|
||||
|
||||
backtracking("JFK")
|
||||
return path
|
||||
```
|
||||
|
||||
python - 使用used数组 - 神似之前几题写法
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def findItinerary(self, tickets: List[List[str]]) -> List[str]:
|
||||
global used,path,results
|
||||
used = [0]*len(tickets)
|
||||
tickets.sort() # 先排序,这样一旦找到第一个可行路径,一定是字母排序最小的
|
||||
used = [0] * len(tickets)
|
||||
path = ['JFK']
|
||||
results = []
|
||||
tickets.sort() # 先排序,这样一旦找到第一个可行路径,一定是字母排序最小的
|
||||
self.backtracking(tickets,'JFK')
|
||||
self.backtracking(tickets, used, path, 'JFK', results)
|
||||
return results[0]
|
||||
def backtracking(self,tickets,cur):
|
||||
if sum(used) == len(tickets):
|
||||
results.append(path[:])
|
||||
return True # 只要找到就返回
|
||||
for i in range(len(tickets)):
|
||||
if tickets[i][0]==cur and used[i]==0:
|
||||
used[i]=1
|
||||
path.append(tickets[i][1])
|
||||
state = self.backtracking(tickets,tickets[i][1])
|
||||
path.pop()
|
||||
used[i]=0
|
||||
if state: return True # 只要找到就返回,不继续搜索了
|
||||
|
||||
def backtracking(self, tickets, used, path, cur, results):
|
||||
if len(path) == len(tickets) + 1: # 终止条件:路径长度等于机票数量+1
|
||||
results.append(path[:]) # 将当前路径添加到结果列表
|
||||
return True
|
||||
|
||||
for i, ticket in enumerate(tickets): # 遍历机票列表
|
||||
if ticket[0] == cur and used[i] == 0: # 找到起始机场为cur且未使用过的机票
|
||||
used[i] = 1 # 标记该机票为已使用
|
||||
path.append(ticket[1]) # 将到达机场添加到路径中
|
||||
state = self.backtracking(tickets, used, path, ticket[1], results) # 递归搜索
|
||||
path.pop() # 回溯,移除最后添加的到达机场
|
||||
used[i] = 0 # 标记该机票为未使用
|
||||
if state:
|
||||
return True # 只要找到一个可行路径就返回,不继续搜索
|
||||
|
||||
```
|
||||
回溯 使用字典
|
||||
```python
|
||||
from collections import defaultdict
|
||||
|
||||
class Solution:
|
||||
def findItinerary(self, tickets: List[List[str]]) -> List[str]:
|
||||
targets = defaultdict(list) # 构建机场字典
|
||||
for ticket in tickets:
|
||||
targets[ticket[0]].append(ticket[1])
|
||||
for airport in targets:
|
||||
targets[airport].sort() # 对目的地列表进行排序
|
||||
|
||||
path = ["JFK"] # 起始机场为"JFK"
|
||||
self.backtracking(targets, path, len(tickets))
|
||||
return path
|
||||
|
||||
def backtracking(self, targets, path, ticketNum):
|
||||
if len(path) == ticketNum + 1:
|
||||
return True # 找到有效行程
|
||||
|
||||
airport = path[-1] # 当前机场
|
||||
destinations = targets[airport] # 当前机场可以到达的目的地列表
|
||||
for i, dest in enumerate(destinations):
|
||||
targets[airport].pop(i) # 标记已使用的机票
|
||||
path.append(dest) # 添加目的地到路径
|
||||
if self.backtracking(targets, path, ticketNum):
|
||||
return True # 找到有效行程
|
||||
targets[airport].insert(i, dest) # 回溯,恢复机票
|
||||
path.pop() # 移除目的地
|
||||
return False # 没有找到有效行程
|
||||
|
||||
```
|
||||
回溯 使用字典 逆序
|
||||
```python
|
||||
from collections import defaultdict
|
||||
|
||||
class Solution:
|
||||
def findItinerary(self, tickets):
|
||||
targets = defaultdict(list) # 创建默认字典,用于存储机场映射关系
|
||||
for ticket in tickets:
|
||||
targets[ticket[0]].append(ticket[1]) # 将机票输入到字典中
|
||||
|
||||
for key in targets:
|
||||
targets[key].sort(reverse=True) # 对到达机场列表进行字母逆序排序
|
||||
|
||||
result = []
|
||||
self.backtracking("JFK", targets, result) # 调用回溯函数开始搜索路径
|
||||
return result[::-1] # 返回逆序的行程路径
|
||||
|
||||
def backtracking(self, airport, targets, result):
|
||||
while targets[airport]: # 当机场还有可到达的机场时
|
||||
next_airport = targets[airport].pop() # 弹出下一个机场
|
||||
self.backtracking(next_airport, targets, result) # 递归调用回溯函数进行深度优先搜索
|
||||
result.append(airport) # 将当前机场添加到行程路径中
|
||||
```
|
||||
|
||||
### GO
|
||||
|
@ -490,6 +490,33 @@ function robNode(node: TreeNode | null): MaxValueArr {
|
||||
}
|
||||
```
|
||||
|
||||
### Rust
|
||||
|
||||
动态规划:
|
||||
|
||||
```rust
|
||||
use std::cell::RefCell;
|
||||
use std::rc::Rc;
|
||||
impl Solution {
|
||||
pub fn rob(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
|
||||
let (v1, v2) = Self::rob_tree(&root);
|
||||
v1.max(v2)
|
||||
}
|
||||
pub fn rob_tree(cur: &Option<Rc<RefCell<TreeNode>>>) -> (i32, i32) {
|
||||
match cur {
|
||||
None => (0, 0),
|
||||
Some(node) => {
|
||||
let left = Self::rob_tree(&node.borrow_mut().left);
|
||||
let right = Self::rob_tree(&node.borrow_mut().right);
|
||||
(
|
||||
left.0.max(left.1) + right.0.max(right.1), // 偷左右节点
|
||||
node.borrow().val + left.0 + right.0, // 偷父节点
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
<p align="center">
|
||||
|
@ -245,20 +245,68 @@ class Solution {
|
||||
```
|
||||
|
||||
### Python
|
||||
动态规划(版本一)
|
||||
```python
|
||||
class Solution:
|
||||
def integerBreak(self, n: int) -> int:
|
||||
dp = [0] * (n + 1)
|
||||
dp[2] = 1
|
||||
# 假设对正整数 i 拆分出的第一个正整数是 j(1 <= j < i),则有以下两种方案:
|
||||
# 1) 将 i 拆分成 j 和 i−j 的和,且 i−j 不再拆分成多个正整数,此时的乘积是 j * (i-j)
|
||||
# 2) 将 i 拆分成 j 和 i−j 的和,且 i−j 继续拆分成多个正整数,此时的乘积是 j * dp[i-j]
|
||||
def integerBreak(self, n):
|
||||
dp = [0] * (n + 1) # 创建一个大小为n+1的数组来存储计算结果
|
||||
dp[2] = 1 # 初始化dp[2]为1,因为当n=2时,只有一个切割方式1+1=2,乘积为1
|
||||
|
||||
# 从3开始计算,直到n
|
||||
for i in range(3, n + 1):
|
||||
# 假设对正整数 i 拆分出的第一个正整数是 j(1 <= j < i),则有以下两种方案:
|
||||
# 1) 将 i 拆分成 j 和 i−j 的和,且 i−j 不再拆分成多个正整数,此时的乘积是 j * (i-j)
|
||||
# 2) 将 i 拆分成 j 和 i−j 的和,且 i−j 继续拆分成多个正整数,此时的乘积是 j * dp[i-j]
|
||||
# 遍历所有可能的切割点
|
||||
for j in range(1, i // 2 + 1):
|
||||
dp[i] = max(dp[i], max(j * (i - j), j * dp[i - j]))
|
||||
return dp[n]
|
||||
```
|
||||
|
||||
# 计算切割点j和剩余部分(i-j)的乘积,并与之前的结果进行比较取较大值
|
||||
|
||||
dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j))
|
||||
|
||||
return dp[n] # 返回最终的计算结果
|
||||
|
||||
```
|
||||
动态规划(版本二)
|
||||
```python
|
||||
class Solution:
|
||||
def integerBreak(self, n):
|
||||
if n <= 3:
|
||||
return 1 * (n - 1) # 对于n小于等于3的情况,返回1 * (n - 1)
|
||||
|
||||
dp = [0] * (n + 1) # 创建一个大小为n+1的数组来存储最大乘积结果
|
||||
dp[1] = 1 # 当n等于1时,最大乘积为1
|
||||
dp[2] = 2 # 当n等于2时,最大乘积为2
|
||||
dp[3] = 3 # 当n等于3时,最大乘积为3
|
||||
|
||||
# 从4开始计算,直到n
|
||||
for i in range(4, n + 1):
|
||||
# 遍历所有可能的切割点
|
||||
for j in range(1, i // 2 + 1):
|
||||
# 计算切割点j和剩余部分(i - j)的乘积,并与之前的结果进行比较取较大值
|
||||
dp[i] = max(dp[i], dp[i - j] * dp[j])
|
||||
|
||||
return dp[n] # 返回整数拆分的最大乘积结果
|
||||
|
||||
```
|
||||
贪心
|
||||
```python
|
||||
class Solution:
|
||||
def integerBreak(self, n):
|
||||
if n == 2: # 当n等于2时,只有一种拆分方式:1+1=2,乘积为1
|
||||
return 1
|
||||
if n == 3: # 当n等于3时,只有一种拆分方式:1+1+1=3,乘积为1
|
||||
return 2
|
||||
if n == 4: # 当n等于4时,有两种拆分方式:2+2=4和1+1+1+1=4,乘积都为4
|
||||
return 4
|
||||
result = 1
|
||||
while n > 4:
|
||||
result *= 3 # 每次乘以3,因为3的乘积比其他数字更大
|
||||
n -= 3 # 每次减去3
|
||||
result *= n # 将剩余的n乘以最后的结果
|
||||
return result
|
||||
|
||||
```
|
||||
### Go
|
||||
```go
|
||||
func integerBreak(n int) int {
|
||||
|
@ -99,7 +99,7 @@
|
||||
|
||||
这里我们可以写死,就是 如果只有两个元素,且元素不同,那么结果为 2。
|
||||
|
||||
不写死的话,如果和我们的判断规则结合在一起呢?
|
||||
不写死的话,如何和我们的判断规则结合在一起呢?
|
||||
|
||||
可以假设,数组最前面还有一个数字,那这个数字应该是什么呢?
|
||||
|
||||
@ -305,21 +305,43 @@ class Solution {
|
||||
|
||||
### Python
|
||||
|
||||
**贪心**
|
||||
贪心(版本一)
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def wiggleMaxLength(self, nums):
|
||||
if len(nums) <= 1:
|
||||
return len(nums) # 如果数组长度为0或1,则返回数组长度
|
||||
curDiff = 0 # 当前一对元素的差值
|
||||
preDiff = 0 # 前一对元素的差值
|
||||
result = 1 # 记录峰值的个数,初始为1(默认最右边的元素被视为峰值)
|
||||
for i in range(len(nums) - 1):
|
||||
curDiff = nums[i + 1] - nums[i] # 计算下一个元素与当前元素的差值
|
||||
# 如果遇到一个峰值
|
||||
if (preDiff <= 0 and curDiff > 0) or (preDiff >= 0 and curDiff < 0):
|
||||
result += 1 # 峰值个数加1
|
||||
preDiff = curDiff # 注意这里,只在摆动变化的时候更新preDiff
|
||||
return result # 返回最长摆动子序列的长度
|
||||
|
||||
```
|
||||
贪心(版本二)
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def wiggleMaxLength(self, nums: List[int]) -> int:
|
||||
preC,curC,res = 0,0,1 #题目里nums长度大于等于1,当长度为1时,其实到不了for循环里去,所以不用考虑nums长度
|
||||
if len(nums) <= 1:
|
||||
return len(nums) # 如果数组长度为0或1,则返回数组长度
|
||||
preDiff,curDiff ,result = 0,0,1 #题目里nums长度大于等于1,当长度为1时,其实到不了for循环里去,所以不用考虑nums长度
|
||||
for i in range(len(nums) - 1):
|
||||
curC = nums[i + 1] - nums[i]
|
||||
if curC * preC <= 0 and curC !=0: #差值为0时,不算摆动
|
||||
res += 1
|
||||
preC = curC #如果当前差值和上一个差值为一正一负时,才需要用当前差值替代上一个差值
|
||||
return res
|
||||
curDiff = nums[i + 1] - nums[i]
|
||||
if curDiff * preDiff <= 0 and curDiff !=0: #差值为0时,不算摆动
|
||||
result += 1
|
||||
preDiff = curDiff #如果当前差值和上一个差值为一正一负时,才需要用当前差值替代上一个差值
|
||||
return result
|
||||
|
||||
```
|
||||
|
||||
**动态规划**
|
||||
动态规划(版本一)
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
@ -341,25 +363,44 @@ class Solution:
|
||||
return max(dp[-1][0], dp[-1][1])
|
||||
```
|
||||
|
||||
动态规划(版本二)
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def wiggleMaxLength(self, nums: List[int]) -> int:
|
||||
# up i作为波峰最长的序列长度
|
||||
# down i作为波谷最长的序列长度
|
||||
n = len(nums)
|
||||
# 长度为0和1的直接返回长度
|
||||
if n<2: return n
|
||||
for i in range(1,n):
|
||||
if nums[i]>nums[i-1]:
|
||||
# nums[i] 为波峰,1. 前面是波峰,up值不变,2. 前面是波谷,down值加1
|
||||
# 目前up值取两者的较大值(其实down+1即可,可以推理前一步down和up最多相差1,所以down+1>=up)
|
||||
up = max(up, down+1)
|
||||
elif nums[i]<nums[i-1]:
|
||||
# nums[i] 为波谷,1. 前面是波峰,up+1,2. 前面是波谷,down不变,取较大值
|
||||
down = max(down, up+1)
|
||||
return max(up, down)
|
||||
def wiggleMaxLength(self, nums):
|
||||
dp = [[0, 0] for _ in range(len(nums))] # 创建二维dp数组,用于记录摆动序列的最大长度
|
||||
dp[0][0] = dp[0][1] = 1 # 初始条件,序列中的第一个元素默认为峰值,最小长度为1
|
||||
for i in range(1, len(nums)):
|
||||
dp[i][0] = dp[i][1] = 1 # 初始化当前位置的dp值为1
|
||||
for j in range(i):
|
||||
if nums[j] > nums[i]:
|
||||
dp[i][1] = max(dp[i][1], dp[j][0] + 1) # 如果前一个数比当前数大,可以形成一个上升峰值,更新dp[i][1]
|
||||
for j in range(i):
|
||||
if nums[j] < nums[i]:
|
||||
dp[i][0] = max(dp[i][0], dp[j][1] + 1) # 如果前一个数比当前数小,可以形成一个下降峰值,更新dp[i][0]
|
||||
return max(dp[-1][0], dp[-1][1]) # 返回最大的摆动序列长度
|
||||
|
||||
```
|
||||
|
||||
动态规划(版本三)优化
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def wiggleMaxLength(self, nums):
|
||||
if len(nums) <= 1:
|
||||
return len(nums) # 如果数组长度为0或1,则返回数组长度
|
||||
|
||||
up = down = 1 # 记录上升和下降摆动序列的最大长度
|
||||
for i in range(1, len(nums)):
|
||||
if nums[i] > nums[i-1]:
|
||||
up = down + 1 # 如果当前数比前一个数大,则可以形成一个上升峰值
|
||||
elif nums[i] < nums[i-1]:
|
||||
down = up + 1 # 如果当前数比前一个数小,则可以形成一个下降峰值
|
||||
|
||||
return max(up, down) # 返回上升和下降摆动序列的最大长度
|
||||
|
||||
|
||||
```
|
||||
### Go
|
||||
|
||||
**贪心**
|
||||
|
@ -176,21 +176,37 @@ class Solution {
|
||||
|
||||
Python:
|
||||
|
||||
|
||||
卡哥版
|
||||
```python
|
||||
class Solution:
|
||||
def combinationSum4(self, nums, target):
|
||||
def combinationSum4(self, nums: List[int], target: int) -> int:
|
||||
dp = [0] * (target + 1)
|
||||
dp[0] = 1
|
||||
for i in range(1, target + 1): # 遍历背包
|
||||
for j in range(len(nums)): # 遍历物品
|
||||
if i - nums[j] >= 0:
|
||||
dp[i] += dp[i - nums[j]]
|
||||
return dp[target]
|
||||
|
||||
for i in range(1, target+1):
|
||||
for j in nums:
|
||||
if i >= j:
|
||||
dp[i] += dp[i - j]
|
||||
|
||||
return dp[-1]
|
||||
```
|
||||
优化版
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def combinationSum4(self, nums: List[int], target: int) -> int:
|
||||
dp = [0] * (target + 1) # 创建动态规划数组,用于存储组合总数
|
||||
dp[0] = 1 # 初始化背包容量为0时的组合总数为1
|
||||
|
||||
for i in range(1, target + 1): # 遍历背包容量
|
||||
for j in nums: # 遍历物品列表
|
||||
if i >= j: # 当背包容量大于等于当前物品重量时
|
||||
dp[i] += dp[i - j] # 更新组合总数
|
||||
|
||||
return dp[-1] # 返回背包容量为target时的组合总数
|
||||
|
||||
|
||||
```
|
||||
Go:
|
||||
```go
|
||||
func combinationSum4(nums []int, target int) int {
|
||||
@ -253,16 +269,17 @@ Rust
|
||||
```Rust
|
||||
impl Solution {
|
||||
pub fn combination_sum4(nums: Vec<i32>, target: i32) -> i32 {
|
||||
let mut dp = vec![0; target as usize + 1];
|
||||
let target = target as usize;
|
||||
let mut dp = vec![0; target + 1];
|
||||
dp[0] = 1;
|
||||
for i in 1..=target as usize {
|
||||
for &j in nums.iter() {
|
||||
if i as i32 >= j {
|
||||
dp[i] += dp[i- j as usize];
|
||||
for i in 1..=target {
|
||||
for &n in &nums {
|
||||
if i >= n as usize {
|
||||
dp[i] += dp[i - n as usize];
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[target as usize];
|
||||
dp[target]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
@ -146,6 +146,7 @@ class Solution {
|
||||
|
||||
```
|
||||
|
||||
Python:
|
||||
(版本一)使用数组
|
||||
```python
|
||||
class Solution:
|
||||
@ -210,7 +211,6 @@ class Solution:
|
||||
class Solution:
|
||||
def canConstruct(self, ransomNote: str, magazine: str) -> bool:
|
||||
return all(ransomNote.count(c) <= magazine.count(c) for c in set(ransomNote))
|
||||
|
||||
```
|
||||
|
||||
Go:
|
||||
|
@ -14,12 +14,12 @@
|
||||
字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。
|
||||
|
||||
示例 1:
|
||||
输入:s = "abc", t = "ahbgdc"
|
||||
输出:true
|
||||
* 输入:s = "abc", t = "ahbgdc"
|
||||
* 输出:true
|
||||
|
||||
示例 2:
|
||||
输入:s = "axc", t = "ahbgdc"
|
||||
输出:false
|
||||
* 输入:s = "axc", t = "ahbgdc"
|
||||
* 输出:false
|
||||
|
||||
提示:
|
||||
|
||||
@ -28,6 +28,10 @@
|
||||
|
||||
两个字符串都只由小写字符组成。
|
||||
|
||||
# 算法公开课
|
||||
|
||||
**《代码随想录》算法视频公开课:[动态规划,用相似思路解决复杂问题 | LeetCode:392.判断子序列](https://www.bilibili.com/video/BV1tv4y1B7ym/),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
|
||||
|
||||
|
||||
## 思路
|
||||
|
||||
|
@ -191,14 +191,14 @@ class Solution {
|
||||
public int[][] reconstructQueue(int[][] people) {
|
||||
// 身高从大到小排(身高相同k小的站前面)
|
||||
Arrays.sort(people, (a, b) -> {
|
||||
if (a[0] == b[0]) return a[1] - b[1];
|
||||
return b[0] - a[0];
|
||||
if (a[0] == b[0]) return a[1] - b[1]; // a - b 是升序排列,故在a[0] == b[0]的狀況下,會根據k值升序排列
|
||||
return b[0] - a[0]; //b - a 是降序排列,在a[0] != b[0],的狀況會根據h值降序排列
|
||||
});
|
||||
|
||||
LinkedList<int[]> que = new LinkedList<>();
|
||||
|
||||
for (int[] p : people) {
|
||||
que.add(p[1],p);
|
||||
que.add(p[1],p); //Linkedlist.add(index, value),會將value插入到指定index裡。
|
||||
}
|
||||
|
||||
return que.toArray(new int[people.length][]);
|
||||
|
@ -218,8 +218,12 @@ class Solution {
|
||||
for(int i = 0; i < n; i++) {
|
||||
for(int j = target; j >= nums[i]; j--) {
|
||||
//物品 i 的重量是 nums[i],其价值也是 nums[i]
|
||||
dp[j] = Math.max(dp[j], dp[j-nums[i]] + nums[i]);
|
||||
dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);
|
||||
}
|
||||
|
||||
//剪枝一下,每一次完成內層的for-loop,立即檢查是否dp[target] == target,優化時間複雜度(26ms -> 20ms)
|
||||
if(dp[target] == target)
|
||||
return true;
|
||||
}
|
||||
return dp[target] == target;
|
||||
}
|
||||
@ -294,64 +298,142 @@ false true false false false true true false false false false false
|
||||
false true false false false true true false false false false true
|
||||
false true false false false true true false false false true true
|
||||
```
|
||||
二維數組整數版本
|
||||
```Java
|
||||
class Solution {
|
||||
public boolean canPartition(int[] nums) {
|
||||
//using 2-D DP array.
|
||||
int len = nums.length;
|
||||
//check edge cases;
|
||||
if(len == 0)
|
||||
return false;
|
||||
|
||||
### Python:
|
||||
```python
|
||||
# 一维度数组解法
|
||||
class Solution:
|
||||
def canPartition(self, nums: List[int]) -> bool:
|
||||
target = sum(nums)
|
||||
if target % 2 == 1: return False
|
||||
target //= 2
|
||||
dp = [0] * (target + 1)
|
||||
for i in range(len(nums)):
|
||||
for j in range(target, nums[i] - 1, -1):
|
||||
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i])
|
||||
return target == dp[target]
|
||||
int sum = 0;
|
||||
for (int num : nums)
|
||||
sum += num;
|
||||
//we only deal with even numbers. If sum is odd, return false;
|
||||
if(sum % 2 == 1)
|
||||
return false;
|
||||
|
||||
int target = sum / 2;
|
||||
int[][] dp = new int[nums.length][target + 1];
|
||||
|
||||
// for(int j = 0; j <= target; j++){
|
||||
// if(j < nums[0])
|
||||
// dp[0][j] = 0;
|
||||
// else
|
||||
// dp[0][j] = nums[0];
|
||||
// }
|
||||
|
||||
//initialize dp array
|
||||
for(int j = nums[0]; j <= target; j++){
|
||||
dp[0][j] = nums[0];
|
||||
}
|
||||
|
||||
for(int i = 1; i < len; i++){
|
||||
for(int j = 0; j <= target; j++){
|
||||
if (j < nums[i])
|
||||
dp[i][j] = dp[i - 1][j];
|
||||
else
|
||||
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - nums[i]] + nums[i]);
|
||||
}
|
||||
}
|
||||
|
||||
//print out DP array
|
||||
// for(int x : dp){
|
||||
// System.out.print(x + ",");
|
||||
// }
|
||||
// System.out.print(" "+i+" row"+"\n");
|
||||
return dp[len - 1][target] == target;
|
||||
}
|
||||
}
|
||||
//dp数组的打印结果 for test case 1.
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
0, 1, 1, 1, 1, 5, 6, 6, 6, 6, 6, 6,
|
||||
0, 1, 1, 1, 1, 5, 6, 6, 6, 6, 6, 11,
|
||||
0, 1, 1, 1, 1, 5, 6, 6, 6, 6, 10, 11,
|
||||
```
|
||||
|
||||
### Python:
|
||||
卡哥版
|
||||
```python
|
||||
# 二维度数组解法
|
||||
class Solution:
|
||||
def canPartition(self, nums: List[int]) -> bool:
|
||||
target = sum(nums)
|
||||
nums = sorted(nums)
|
||||
_sum = 0
|
||||
|
||||
# 做最初的判断
|
||||
if target % 2 != 0:
|
||||
# dp[i]中的i表示背包内总和
|
||||
# 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
|
||||
# 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
|
||||
dp = [0] * 10001
|
||||
for num in nums:
|
||||
_sum += num
|
||||
# 也可以使用内置函数一步求和
|
||||
# _sum = sum(nums)
|
||||
if _sum % 2 == 1:
|
||||
return False
|
||||
target = _sum // 2
|
||||
|
||||
# 开始 0-1背包
|
||||
for num in nums:
|
||||
for j in range(target, num - 1, -1): # 每一个元素一定是不可重复放入,所以从大到小遍历
|
||||
dp[j] = max(dp[j], dp[j - num] + num)
|
||||
|
||||
# 集合中的元素正好可以凑成总和target
|
||||
if dp[target] == target:
|
||||
return True
|
||||
return False
|
||||
|
||||
```
|
||||
二维DP版
|
||||
```python
|
||||
class Solution:
|
||||
def canPartition(self, nums: List[int]) -> bool:
|
||||
|
||||
total_sum = sum(nums)
|
||||
|
||||
if total_sum % 2 != 0:
|
||||
return False
|
||||
|
||||
# 找到 target value 可以认为这个是背包的体积
|
||||
target = target // 2
|
||||
target_sum = total_sum // 2
|
||||
dp = [[False] * (target_sum + 1) for _ in range(len(nums) + 1)]
|
||||
|
||||
row = len(nums)
|
||||
col = target + 1
|
||||
# 初始化第一行(空子集可以得到和为0)
|
||||
for i in range(len(nums) + 1):
|
||||
dp[i][0] = True
|
||||
|
||||
# 定义 dp table
|
||||
dp = [[0 for _ in range(col)] for _ in range(row)]
|
||||
|
||||
# 初始 dp value
|
||||
for i in range(row):
|
||||
dp[i][0] = 0
|
||||
|
||||
for j in range(1, target):
|
||||
if nums[0] <= j:
|
||||
dp[0][j] = nums[0]
|
||||
|
||||
# 遍历 先遍历物品再遍历背包
|
||||
for i in range(1, row):
|
||||
|
||||
cur_weight = nums[i]
|
||||
cur_value = nums[i]
|
||||
|
||||
for j in range(1, col):
|
||||
if cur_weight > j:
|
||||
for i in range(1, len(nums) + 1):
|
||||
for j in range(1, target_sum + 1):
|
||||
if j < nums[i - 1]:
|
||||
# 当前数字大于目标和时,无法使用该数字
|
||||
dp[i][j] = dp[i - 1][j]
|
||||
else:
|
||||
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - cur_weight] + cur_value)
|
||||
|
||||
# 输出结果
|
||||
return dp[-1][col - 1] == target
|
||||
# 当前数字小于等于目标和时,可以选择使用或不使用该数字
|
||||
dp[i][j] = dp[i - 1][j] or dp[i - 1][j - nums[i - 1]]
|
||||
|
||||
return dp[len(nums)][target_sum]
|
||||
|
||||
```
|
||||
一维DP版
|
||||
```python
|
||||
class Solution:
|
||||
def canPartition(self, nums: List[int]) -> bool:
|
||||
|
||||
total_sum = sum(nums)
|
||||
|
||||
if total_sum % 2 != 0:
|
||||
return False
|
||||
|
||||
target_sum = total_sum // 2
|
||||
dp = [False] * (target_sum + 1)
|
||||
dp[0] = True
|
||||
|
||||
for num in nums:
|
||||
# 从target_sum逆序迭代到num,步长为-1
|
||||
for i in range(target_sum, num - 1, -1):
|
||||
dp[i] = dp[i] or dp[i - num]
|
||||
return dp[target_sum]
|
||||
|
||||
|
||||
```
|
||||
|
||||
### Go:
|
||||
|
@ -140,7 +140,7 @@ public:
|
||||
|
||||
按照这样的逻辑,就可以写出如下遍历代码:(详细注释)
|
||||
|
||||
(如果对dfs基础内容就不懂,建议看 [「代码随想录」DFS算法精讲!](https://leetcode.cn/problems/all-paths-from-source-to-target/solution/by-carlsun-2-66pf/),还可以顺便解决 797. 所有可能的路径)
|
||||
(如果对dfs基础内容就不懂,建议看 [「代码随想录」DFS算法精讲!](https://programmercarl.com/图论深搜理论基础.html),还可以顺便解决 [797. 所有可能的路径](https://programmercarl.com/0797.%E6%89%80%E6%9C%89%E5%8F%AF%E8%83%BD%E7%9A%84%E8%B7%AF%E5%BE%84.html))
|
||||
|
||||
```CPP
|
||||
class Solution {
|
||||
|
@ -248,20 +248,45 @@ class Solution {
|
||||
```
|
||||
|
||||
### Python
|
||||
贪心 基于左边界
|
||||
```python
|
||||
class Solution:
|
||||
def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int:
|
||||
if len(intervals) == 0: return 0
|
||||
intervals.sort(key=lambda x: x[1])
|
||||
count = 1 # 记录非交叉区间的个数
|
||||
end = intervals[0][1] # 记录区间分割点
|
||||
if not intervals:
|
||||
return 0
|
||||
|
||||
intervals.sort(key=lambda x: x[0]) # 按照左边界升序排序
|
||||
count = 0 # 记录重叠区间数量
|
||||
|
||||
for i in range(1, len(intervals)):
|
||||
if end <= intervals[i][0]:
|
||||
if intervals[i][0] < intervals[i - 1][1]: # 存在重叠区间
|
||||
intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]) # 更新重叠区间的右边界
|
||||
count += 1
|
||||
end = intervals[i][1]
|
||||
return len(intervals) - count
|
||||
```
|
||||
|
||||
return count
|
||||
|
||||
```
|
||||
贪心 基于左边界 把452.用最少数量的箭引爆气球代码稍做修改
|
||||
```python
|
||||
class Solution:
|
||||
def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int:
|
||||
if not intervals:
|
||||
return 0
|
||||
|
||||
intervals.sort(key=lambda x: x[0]) # 按照左边界升序排序
|
||||
|
||||
result = 1 # 不重叠区间数量,初始化为1,因为至少有一个不重叠的区间
|
||||
|
||||
for i in range(1, len(intervals)):
|
||||
if intervals[i][0] >= intervals[i - 1][1]: # 没有重叠
|
||||
result += 1
|
||||
else: # 重叠情况
|
||||
intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]) # 更新重叠区间的右边界
|
||||
|
||||
return len(intervals) - result
|
||||
|
||||
|
||||
```
|
||||
### Go
|
||||
```go
|
||||
func eraseOverlapIntervals(intervals [][]int) int {
|
||||
|
@ -177,32 +177,33 @@ class Solution {
|
||||
```
|
||||
|
||||
### Python
|
||||
|
||||
贪心 大饼干优先
|
||||
```python
|
||||
class Solution:
|
||||
# 思路1:优先考虑小胃口
|
||||
def findContentChildren(self, g: List[int], s: List[int]) -> int:
|
||||
g.sort()
|
||||
s.sort()
|
||||
res = 0
|
||||
for i in range(len(s)):
|
||||
if res <len(g) and s[i] >= g[res]: #小饼干先喂饱小胃口
|
||||
res += 1
|
||||
return res
|
||||
def findContentChildren(self, g, s):
|
||||
g.sort() # 将孩子的贪心因子排序
|
||||
s.sort() # 将饼干的尺寸排序
|
||||
index = len(s) - 1 # 饼干数组的下标,从最后一个饼干开始
|
||||
result = 0 # 满足孩子的数量
|
||||
for i in range(len(g)-1, -1, -1): # 遍历胃口,从最后一个孩子开始
|
||||
if index >= 0 and s[index] >= g[i]: # 遍历饼干
|
||||
result += 1
|
||||
index -= 1
|
||||
return result
|
||||
|
||||
```
|
||||
|
||||
贪心 小饼干优先
|
||||
```python
|
||||
class Solution:
|
||||
# 思路2:优先考虑大胃口
|
||||
def findContentChildren(self, g: List[int], s: List[int]) -> int:
|
||||
g.sort()
|
||||
s.sort()
|
||||
start, count = len(s) - 1, 0
|
||||
for index in range(len(g) - 1, -1, -1): # 先喂饱大胃口
|
||||
if start >= 0 and g[index] <= s[start]:
|
||||
start -= 1
|
||||
count += 1
|
||||
return count
|
||||
def findContentChildren(self, g, s):
|
||||
g.sort() # 将孩子的贪心因子排序
|
||||
s.sort() # 将饼干的尺寸排序
|
||||
index = 0
|
||||
for i in range(len(s)): # 遍历饼干
|
||||
if index < len(g) and g[index] <= s[i]: # 如果当前孩子的贪心因子小于等于当前饼干尺寸
|
||||
index += 1 # 满足一个孩子,指向下一个孩子
|
||||
return index # 返回满足的孩子数目
|
||||
|
||||
```
|
||||
|
||||
### Go
|
||||
|
@ -3,6 +3,9 @@
|
||||
<img src="../pics/训练营.png" width="1000"/>
|
||||
</a>
|
||||
<p align="center"><strong><a href="https://mp.weixin.qq.com/s/tqCxrMEU-ajQumL1i8im9A">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
|
||||
|
||||
|
||||
|
||||
# 463. 岛屿的周长
|
||||
|
||||
[力扣题目链接](https://leetcode.cn/problems/island-perimeter/)
|
||||
|
@ -210,19 +210,35 @@ class Solution {
|
||||
```
|
||||
|
||||
### Python
|
||||
DP(版本一)
|
||||
```python
|
||||
class Solution:
|
||||
def findMaxForm(self, strs: List[str], m: int, n: int) -> int:
|
||||
dp = [[0] * (n + 1) for _ in range(m + 1)] # 默认初始化0
|
||||
dp = [[0] * (n + 1) for _ in range(m + 1)] # 创建二维动态规划数组,初始化为0
|
||||
for s in strs: # 遍历物品
|
||||
zeroNum = s.count('0') # 统计0的个数
|
||||
oneNum = len(s) - zeroNum # 统计1的个数
|
||||
for i in range(m, zeroNum - 1, -1): # 遍历背包容量且从后向前遍历
|
||||
for j in range(n, oneNum - 1, -1):
|
||||
dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1) # 状态转移方程
|
||||
return dp[m][n]
|
||||
|
||||
```
|
||||
DP(版本二)
|
||||
```python
|
||||
class Solution:
|
||||
def findMaxForm(self, strs: List[str], m: int, n: int) -> int:
|
||||
dp = [[0] * (n + 1) for _ in range(m + 1)] # 创建二维动态规划数组,初始化为0
|
||||
# 遍历物品
|
||||
for str in strs:
|
||||
ones = str.count('1')
|
||||
zeros = str.count('0')
|
||||
# 遍历背包容量且从后向前遍历!
|
||||
for s in strs:
|
||||
ones = s.count('1') # 统计字符串中1的个数
|
||||
zeros = s.count('0') # 统计字符串中0的个数
|
||||
# 遍历背包容量且从后向前遍历
|
||||
for i in range(m, zeros - 1, -1):
|
||||
for j in range(n, ones - 1, -1):
|
||||
dp[i][j] = max(dp[i][j], dp[i - zeros][j - ones] + 1)
|
||||
dp[i][j] = max(dp[i][j], dp[i - zeros][j - ones] + 1) # 状态转移方程
|
||||
return dp[m][n]
|
||||
|
||||
```
|
||||
|
||||
### Go
|
||||
@ -491,6 +507,33 @@ object Solution {
|
||||
}
|
||||
```
|
||||
|
||||
### Rust
|
||||
|
||||
```rust
|
||||
impl Solution {
|
||||
pub fn find_max_form(strs: Vec<String>, m: i32, n: i32) -> i32 {
|
||||
let (m, n) = (m as usize, n as usize);
|
||||
let mut dp = vec![vec![0; n + 1]; m + 1];
|
||||
for s in strs {
|
||||
let (mut one_num, mut zero_num) = (0, 0);
|
||||
for c in s.chars() {
|
||||
match c {
|
||||
'0' => zero_num += 1,
|
||||
'1' => one_num += 1,
|
||||
_ => (),
|
||||
}
|
||||
}
|
||||
for i in (zero_num..=m).rev() {
|
||||
for j in (one_num..=n).rev() {
|
||||
dp[i][j] = dp[i][j].max(dp[i - zero_num][j - one_num] + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
dp[m][n]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
<img src="../pics/网站星球宣传海报.jpg" width="1000"/>
|
||||
|
@ -205,6 +205,30 @@ public:
|
||||
|
||||
|
||||
### Java
|
||||
```Java
|
||||
//using set, aligned with the unimproved method
|
||||
class Solution {
|
||||
List<List<Integer>> result = new ArrayList<>();
|
||||
List<Integer> path = new ArrayList<>();
|
||||
public List<List<Integer>> findSubsequences(int[] nums) {
|
||||
backTracking(nums, 0);
|
||||
return result;
|
||||
}
|
||||
private void backTracking(int[] nums, int startIndex){
|
||||
if(path.size() >= 2)
|
||||
result.add(new ArrayList<>(path));
|
||||
HashSet<Integer> hs = new HashSet<>();
|
||||
for(int i = startIndex; i < nums.length; i++){
|
||||
if(!path.isEmpty() && path.get(path.size() -1 ) > nums[i] || hs.contains(nums[i]))
|
||||
continue;
|
||||
hs.add(nums[i]);
|
||||
path.add(nums[i]);
|
||||
backTracking(nums, i + 1);
|
||||
path.remove(path.size() - 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
```java
|
||||
class Solution {
|
||||
@ -268,80 +292,56 @@ class Solution {
|
||||
|
||||
### Python
|
||||
|
||||
python3
|
||||
**回溯**
|
||||
|
||||
回溯 利用set去重
|
||||
```python
|
||||
class Solution:
|
||||
def __init__(self):
|
||||
self.paths = []
|
||||
self.path = []
|
||||
|
||||
def findSubsequences(self, nums: List[int]) -> List[List[int]]:
|
||||
'''
|
||||
本题求自增子序列,所以不能改变原数组顺序
|
||||
'''
|
||||
self.backtracking(nums, 0)
|
||||
return self.paths
|
||||
|
||||
def backtracking(self, nums: List[int], start_index: int):
|
||||
# 收集结果,同78.子集,仍要置于终止条件之前
|
||||
if len(self.path) >= 2:
|
||||
# 本题要求所有的节点
|
||||
self.paths.append(self.path[:])
|
||||
def findSubsequences(self, nums):
|
||||
result = []
|
||||
path = []
|
||||
self.backtracking(nums, 0, path, result)
|
||||
return result
|
||||
|
||||
def backtracking(self, nums, startIndex, path, result):
|
||||
if len(path) > 1:
|
||||
result.append(path[:]) # 注意要使用切片将当前路径的副本加入结果集
|
||||
# 注意这里不要加return,要取树上的节点
|
||||
|
||||
# Base Case(可忽略)
|
||||
if start_index == len(nums):
|
||||
return
|
||||
|
||||
# 单层递归逻辑
|
||||
# 深度遍历中每一层都会有一个全新的usage_list用于记录本层元素是否重复使用
|
||||
usage_list = set()
|
||||
# 同层横向遍历
|
||||
for i in range(start_index, len(nums)):
|
||||
# 若当前元素值小于前一个时(非递增)或者曾用过,跳入下一循环
|
||||
if (self.path and nums[i] < self.path[-1]) or nums[i] in usage_list:
|
||||
uset = set() # 使用集合对本层元素进行去重
|
||||
for i in range(startIndex, len(nums)):
|
||||
if (path and nums[i] < path[-1]) or nums[i] in uset:
|
||||
continue
|
||||
usage_list.add(nums[i])
|
||||
self.path.append(nums[i])
|
||||
self.backtracking(nums, i+1)
|
||||
self.path.pop()
|
||||
|
||||
uset.add(nums[i]) # 记录这个元素在本层用过了,本层后面不能再用了
|
||||
path.append(nums[i])
|
||||
self.backtracking(nums, i + 1, path, result)
|
||||
path.pop()
|
||||
|
||||
```
|
||||
**回溯+哈希表去重**
|
||||
回溯 利用哈希表去重
|
||||
```python
|
||||
class Solution:
|
||||
def __init__(self):
|
||||
self.paths = []
|
||||
self.path = []
|
||||
def findSubsequences(self, nums):
|
||||
result = []
|
||||
path = []
|
||||
self.backtracking(nums, 0, path, result)
|
||||
return result
|
||||
|
||||
def findSubsequences(self, nums: List[int]) -> List[List[int]]:
|
||||
'''
|
||||
本题求自增子序列,所以不能改变原数组顺序
|
||||
'''
|
||||
self.backtracking(nums, 0)
|
||||
return self.paths
|
||||
|
||||
def backtracking(self, nums: List[int], start_index: int):
|
||||
# 收集结果,同78.子集,仍要置于终止条件之前
|
||||
if len(self.path) >= 2:
|
||||
# 本题要求所有的节点
|
||||
self.paths.append(self.path[:])
|
||||
def backtracking(self, nums, startIndex, path, result):
|
||||
if len(path) > 1:
|
||||
result.append(path[:]) # 注意要使用切片将当前路径的副本加入结果集
|
||||
|
||||
# Base Case(可忽略)
|
||||
if start_index == len(nums):
|
||||
return
|
||||
used = [0] * 201 # 使用数组来进行去重操作,题目说数值范围[-100, 100]
|
||||
for i in range(startIndex, len(nums)):
|
||||
if (path and nums[i] < path[-1]) or used[nums[i] + 100] == 1:
|
||||
continue # 如果当前元素小于上一个元素,或者已经使用过当前元素,则跳过当前元素
|
||||
|
||||
used[nums[i] + 100] = 1 # 标记当前元素已经使用过
|
||||
path.append(nums[i]) # 将当前元素加入当前递增子序列
|
||||
self.backtracking(nums, i + 1, path, result)
|
||||
path.pop()
|
||||
|
||||
|
||||
# 单层递归逻辑
|
||||
# 深度遍历中每一层都会有一个全新的usage_list用于记录本层元素是否重复使用
|
||||
usage_list = [False] * 201 # 使用列表去重,题中取值范围[-100, 100]
|
||||
# 同层横向遍历
|
||||
for i in range(start_index, len(nums)):
|
||||
# 若当前元素值小于前一个时(非递增)或者曾用过,跳入下一循环
|
||||
if (self.path and nums[i] < self.path[-1]) or usage_list[nums[i]+100] == True:
|
||||
continue
|
||||
usage_list[nums[i]+100] = True
|
||||
self.path.append(nums[i])
|
||||
self.backtracking(nums, i+1)
|
||||
self.path.pop()
|
||||
```
|
||||
### Go
|
||||
|
||||
|
@ -293,19 +293,84 @@ class Solution {
|
||||
```
|
||||
|
||||
### Python
|
||||
回溯版
|
||||
```python
|
||||
class Solution:
|
||||
|
||||
|
||||
def backtracking(self, candidates, target, total, startIndex, path, result):
|
||||
if total == target:
|
||||
result.append(path[:]) # 将当前路径的副本添加到结果中
|
||||
# 如果 sum + candidates[i] > target,则停止遍历
|
||||
for i in range(startIndex, len(candidates)):
|
||||
if total + candidates[i] > target:
|
||||
break
|
||||
total += candidates[i]
|
||||
path.append(candidates[i])
|
||||
self.backtracking(candidates, target, total, i + 1, path, result)
|
||||
total -= candidates[i]
|
||||
path.pop()
|
||||
|
||||
def findTargetSumWays(self, nums: List[int], target: int) -> int:
|
||||
total = sum(nums)
|
||||
if target > total:
|
||||
return 0 # 此时没有方案
|
||||
if (target + total) % 2 != 0:
|
||||
return 0 # 此时没有方案,两个整数相加时要注意数值溢出的问题
|
||||
bagSize = (target + total) // 2 # 转化为组合总和问题,bagSize就是目标和
|
||||
|
||||
# 以下是回溯法代码
|
||||
result = []
|
||||
nums.sort() # 需要对nums进行排序
|
||||
self.backtracking(nums, bagSize, 0, 0, [], result)
|
||||
return len(result)
|
||||
|
||||
```
|
||||
二维DP
|
||||
```python
|
||||
class Solution:
|
||||
def findTargetSumWays(self, nums: List[int], target: int) -> int:
|
||||
sumValue = sum(nums)
|
||||
#注意边界条件为 target>sumValue or target<-sumValue or (sumValue + target) % 2 == 1
|
||||
if abs(target) > sumValue or (sumValue + target) % 2 == 1: return 0
|
||||
bagSize = (sumValue + target) // 2
|
||||
dp = [0] * (bagSize + 1)
|
||||
dp[0] = 1
|
||||
for i in range(len(nums)):
|
||||
for j in range(bagSize, nums[i] - 1, -1):
|
||||
dp[j] += dp[j - nums[i]]
|
||||
return dp[bagSize]
|
||||
total_sum = sum(nums) # 计算nums的总和
|
||||
if abs(target) > total_sum:
|
||||
return 0 # 此时没有方案
|
||||
if (target + total_sum) % 2 == 1:
|
||||
return 0 # 此时没有方案
|
||||
target_sum = (target + total_sum) // 2 # 目标和
|
||||
|
||||
# 创建二维动态规划数组,行表示选取的元素数量,列表示累加和
|
||||
dp = [[0] * (target_sum + 1) for _ in range(len(nums) + 1)]
|
||||
|
||||
# 初始化状态
|
||||
dp[0][0] = 1
|
||||
|
||||
# 动态规划过程
|
||||
for i in range(1, len(nums) + 1):
|
||||
for j in range(target_sum + 1):
|
||||
dp[i][j] = dp[i - 1][j] # 不选取当前元素
|
||||
if j >= nums[i - 1]:
|
||||
dp[i][j] += dp[i - 1][j - nums[i - 1]] # 选取当前元素
|
||||
|
||||
return dp[len(nums)][target_sum] # 返回达到目标和的方案数
|
||||
|
||||
|
||||
```
|
||||
一维DP
|
||||
```python
|
||||
class Solution:
|
||||
def findTargetSumWays(self, nums: List[int], target: int) -> int:
|
||||
total_sum = sum(nums) # 计算nums的总和
|
||||
if abs(target) > total_sum:
|
||||
return 0 # 此时没有方案
|
||||
if (target + total_sum) % 2 == 1:
|
||||
return 0 # 此时没有方案
|
||||
target_sum = (target + total_sum) // 2 # 目标和
|
||||
dp = [0] * (target_sum + 1) # 创建动态规划数组,初始化为0
|
||||
dp[0] = 1 # 当目标和为0时,只有一种方案,即什么都不选
|
||||
for num in nums:
|
||||
for j in range(target_sum, num - 1, -1):
|
||||
dp[j] += dp[j - num] # 状态转移方程,累加不同选择方式的数量
|
||||
return dp[target_sum] # 返回达到目标和的方案数
|
||||
|
||||
```
|
||||
|
||||
### Go
|
||||
@ -417,6 +482,31 @@ object Solution {
|
||||
}
|
||||
```
|
||||
|
||||
### Rust
|
||||
|
||||
```rust
|
||||
impl Solution {
|
||||
pub fn find_target_sum_ways(nums: Vec<i32>, target: i32) -> i32 {
|
||||
let sum = nums.iter().sum::<i32>();
|
||||
if target.abs() > sum {
|
||||
return 0;
|
||||
}
|
||||
if (target + sum) % 2 == 1 {
|
||||
return 0;
|
||||
}
|
||||
let size = (sum + target) as usize / 2;
|
||||
let mut dp = vec![0; size + 1];
|
||||
dp[0] = 1;
|
||||
for n in nums {
|
||||
for s in (n as usize..=size).rev() {
|
||||
dp[s] += dp[s - n as usize];
|
||||
}
|
||||
}
|
||||
dp[size]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
<img src="../pics/网站星球宣传海报.jpg" width="1000"/>
|
||||
|
@ -164,6 +164,7 @@ class Solution {
|
||||
|
||||
Python:
|
||||
```python
|
||||
# 方法 1:
|
||||
class Solution:
|
||||
def nextGreaterElements(self, nums: List[int]) -> List[int]:
|
||||
dp = [-1] * len(nums)
|
||||
@ -174,6 +175,26 @@ class Solution:
|
||||
stack.pop()
|
||||
stack.append(i%len(nums))
|
||||
return dp
|
||||
|
||||
# 方法 2:
|
||||
class Solution:
|
||||
def nextGreaterElement(self, nums1: List[int], nums2: List[int]) -> List[int]:
|
||||
stack = []
|
||||
# 创建答案数组
|
||||
ans = [-1] * len(nums1)
|
||||
for i in range(len(nums2)):
|
||||
while len(stack) > 0 and nums2[i] > nums2[stack[-1]]:
|
||||
# 判断 num1 是否有 nums2[stack[-1]]。如果没有这个判断会出现指针异常
|
||||
if nums2[stack[-1]] in nums1:
|
||||
# 锁定 num1 检索的 index
|
||||
index = nums1.index(nums2[stack[-1]])
|
||||
# 更新答案数组
|
||||
ans[index] = nums2[i]
|
||||
# 弹出小元素
|
||||
# 这个代码一定要放在 if 外面。否则单调栈的逻辑就不成立了
|
||||
stack.pop()
|
||||
stack.append(i)
|
||||
return ans
|
||||
```
|
||||
Go:
|
||||
```go
|
||||
|
@ -203,18 +203,9 @@ class Solution {
|
||||
```
|
||||
|
||||
### Python
|
||||
动态规划(版本一)
|
||||
```python
|
||||
class Solution:
|
||||
def fib(self, n: int) -> int:
|
||||
if n < 2:
|
||||
return n
|
||||
a, b, c = 0, 1, 0
|
||||
for i in range(1, n):
|
||||
c = a + b
|
||||
a, b = b, c
|
||||
return c
|
||||
|
||||
# 动态规划 (注释版。无修饰)
|
||||
class Solution:
|
||||
def fib(self, n: int) -> int:
|
||||
|
||||
@ -238,7 +229,48 @@ class Solution:
|
||||
# 返回答案
|
||||
return dp[n]
|
||||
|
||||
# 递归实现
|
||||
```
|
||||
动态规划(版本二)
|
||||
```python
|
||||
|
||||
class Solution:
|
||||
def fib(self, n: int) -> int:
|
||||
if n <= 1:
|
||||
return n
|
||||
|
||||
dp = [0, 1]
|
||||
|
||||
for i in range(2, n + 1):
|
||||
total = dp[0] + dp[1]
|
||||
dp[0] = dp[1]
|
||||
dp[1] = total
|
||||
|
||||
return dp[1]
|
||||
|
||||
|
||||
```
|
||||
动态规划(版本三)
|
||||
```python
|
||||
class Solution:
|
||||
def fib(self, n: int) -> int:
|
||||
if n <= 1:
|
||||
return n
|
||||
|
||||
prev1, prev2 = 0, 1
|
||||
|
||||
for _ in range(2, n + 1):
|
||||
curr = prev1 + prev2
|
||||
prev1, prev2 = prev2, curr
|
||||
|
||||
return prev2
|
||||
|
||||
|
||||
|
||||
|
||||
```
|
||||
递归(版本一)
|
||||
```python
|
||||
|
||||
class Solution:
|
||||
def fib(self, n: int) -> int:
|
||||
if n < 2:
|
||||
|
@ -282,17 +282,18 @@ func change(amount int, coins []int) int {
|
||||
|
||||
Rust:
|
||||
```rust
|
||||
pub fn change(amount: i32, coins: Vec<i32>) -> i32 {
|
||||
let amount = amount as usize;
|
||||
let coins = coins.iter().map(|&c|c as usize).collect::<Vec<usize>>();
|
||||
let mut dp = vec![0usize; amount + 1];
|
||||
dp[0] = 1;
|
||||
for i in 0..coins.len() {
|
||||
for j in coins[i]..=amount {
|
||||
dp[j] += dp[j - coins[i]];
|
||||
impl Solution {
|
||||
pub fn change(amount: i32, coins: Vec<i32>) -> i32 {
|
||||
let amount = amount as usize;
|
||||
let mut dp = vec![0; amount + 1];
|
||||
dp[0] = 1;
|
||||
for coin in coins {
|
||||
for j in coin as usize..=amount {
|
||||
dp[j] += dp[j - coin as usize];
|
||||
}
|
||||
}
|
||||
dp[amount]
|
||||
}
|
||||
dp[amount] as i32
|
||||
}
|
||||
```
|
||||
|
||||
|
@ -177,6 +177,8 @@ public:
|
||||
|
||||
|
||||
## Java
|
||||
**递归**
|
||||
|
||||
```Java
|
||||
class Solution {
|
||||
int sum;
|
||||
@ -198,6 +200,42 @@ class Solution {
|
||||
}
|
||||
}
|
||||
```
|
||||
**迭代**
|
||||
|
||||
```Java
|
||||
class Solution {
|
||||
//DFS iteraion統一迭代法
|
||||
public TreeNode convertBST(TreeNode root) {
|
||||
int pre = 0;
|
||||
Stack<TreeNode> stack = new Stack<>();
|
||||
if(root == null) //edge case check
|
||||
return null;
|
||||
|
||||
stack.add(root);
|
||||
|
||||
while(!stack.isEmpty()){
|
||||
TreeNode curr = stack.peek();
|
||||
//curr != null的狀況,只負責存node到stack中
|
||||
if(curr != null){
|
||||
stack.pop();
|
||||
if(curr.left != null) //左
|
||||
stack.add(curr.left);
|
||||
stack.add(curr); //中
|
||||
stack.add(null);
|
||||
if(curr.right != null) //右
|
||||
stack.add(curr.right);
|
||||
}else{
|
||||
//curr == null的狀況,只負責做單層邏輯
|
||||
stack.pop();
|
||||
TreeNode temp = stack.pop();
|
||||
temp.val += pre;
|
||||
pre = temp.val;
|
||||
}
|
||||
}
|
||||
return root;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Python
|
||||
递归法(版本一)
|
||||
|
@ -27,6 +27,10 @@
|
||||
* 0 <= nums.length <= 10^4
|
||||
* -10^9 <= nums[i] <= 10^9
|
||||
|
||||
## 算法公开课
|
||||
|
||||
**《代码随想录》算法视频公开课:[动态规划之子序列问题,重点在于连续!| LeetCode:674.最长连续递增序列](https://www.bilibili.com/video/BV1bD4y1778v),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
|
||||
|
||||
|
||||
## 思路
|
||||
|
||||
@ -204,7 +208,7 @@ public static int findLengthOfLCIS(int[] nums) {
|
||||
|
||||
Python:
|
||||
|
||||
> 动态规划:
|
||||
DP
|
||||
```python
|
||||
class Solution:
|
||||
def findLengthOfLCIS(self, nums: List[int]) -> int:
|
||||
@ -219,8 +223,27 @@ class Solution:
|
||||
return result
|
||||
```
|
||||
|
||||
DP(优化版)
|
||||
```python
|
||||
class Solution:
|
||||
def findLengthOfLCIS(self, nums: List[int]) -> int:
|
||||
if not nums:
|
||||
return 0
|
||||
|
||||
> 贪心法:
|
||||
max_length = 1
|
||||
current_length = 1
|
||||
|
||||
for i in range(1, len(nums)):
|
||||
if nums[i] > nums[i - 1]:
|
||||
current_length += 1
|
||||
max_length = max(max_length, current_length)
|
||||
else:
|
||||
current_length = 1
|
||||
|
||||
return max_length
|
||||
|
||||
```
|
||||
贪心
|
||||
```python
|
||||
class Solution:
|
||||
def findLengthOfLCIS(self, nums: List[int]) -> int:
|
||||
|
@ -39,8 +39,8 @@
|
||||
这里整理出我的并查集模板如下:
|
||||
|
||||
```CPP
|
||||
int n = 1005; // 节点数量3 到 1000
|
||||
int father[1005];
|
||||
int n = 1005; // n根据题目中节点数量而定,一般比节点数量大一点就好
|
||||
vector<int> father = vector<int> (n, 0); // C++里的一种数组结构
|
||||
|
||||
// 并查集初始化
|
||||
void init() {
|
||||
@ -50,40 +50,58 @@ void init() {
|
||||
}
|
||||
// 并查集里寻根的过程
|
||||
int find(int u) {
|
||||
return u == father[u] ? u : father[u] = find(father[u]);
|
||||
}
|
||||
// 将v->u 这条边加入并查集
|
||||
void join(int u, int v) {
|
||||
u = find(u);
|
||||
v = find(v);
|
||||
if (u == v) return ;
|
||||
father[v] = u;
|
||||
return u == father[u] ? u : father[u] = find(father[u]); // 路径压缩
|
||||
}
|
||||
|
||||
// 判断 u 和 v是否找到同一个根
|
||||
bool same(int u, int v) {
|
||||
bool isSame(int u, int v) {
|
||||
u = find(u);
|
||||
v = find(v);
|
||||
return u == v;
|
||||
}
|
||||
|
||||
// 将v->u 这条边加入并查集
|
||||
void join(int u, int v) {
|
||||
u = find(u); // 寻找u的根
|
||||
v = find(v); // 寻找v的根
|
||||
if (u == v) return ; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回
|
||||
father[v] = u;
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
以上模板汇总,只要修改 n 和father数组的大小就可以了。
|
||||
以上模板 只要修改 n 就可以了,本题 节点数量不会超过1000。
|
||||
|
||||
并查集主要有三个功能。
|
||||
|
||||
1. 寻找根节点,函数:find(int u),也就是判断这个节点的祖先节点是哪个
|
||||
2. 将两个节点接入到同一个集合,函数:join(int u, int v),将两个节点连在同一个根节点上
|
||||
3. 判断两个节点是否在同一个集合,函数:same(int u, int v),就是判断两个节点是不是同一个根节点
|
||||
3. 判断两个节点是否在同一个集合,函数:isSame(int u, int v),就是判断两个节点是不是同一个根节点
|
||||
|
||||
简单介绍并查集之后,我们再来看一下这道题目。
|
||||
|
||||
题目说是无向图,返回一条可以删去的边,使得结果图是一个有着N个节点的树。
|
||||
题目说是无向图,返回一条可以删去的边,使得结果图是一个有着N个节点的树(即:只有一个根节点)。
|
||||
|
||||
如果有多个答案,则返回二维数组中最后出现的边。
|
||||
|
||||
那么我们就可以从前向后遍历每一条边,边的两个节点如果不在同一个集合,就加入集合(即:同一个根节点)。
|
||||
那么我们就可以从前向后遍历每一条边(因为优先让前面的边连上),边的两个节点如果不在同一个集合,就加入集合(即:同一个根节点)。
|
||||
|
||||
如果边的两个节点已经出现在同一个集合里,说明着边的两个节点已经连在一起了,如果再加入这条边一定就出现环了。
|
||||
如图所示:
|
||||
|
||||

|
||||
|
||||
节点A 和节点 B 不在同一个集合,那么就可以将两个 节点连在一起。
|
||||
|
||||
|
||||
(如果题目中说:如果有多个答案,则返回二维数组中最前出现的边。 那我们就要 从后向前遍历每一条边了)
|
||||
|
||||
如果边的两个节点已经出现在同一个集合里,说明着边的两个节点已经连在一起了,再加入这条边一定就出现环了。
|
||||
|
||||
如图所示:
|
||||
|
||||

|
||||
|
||||
已经判断 节点A 和 节点B 在在同一个集合(同一个根),如果将 节点A 和 节点B 连在一起就一定会出现环。
|
||||
|
||||
这个思路清晰之后,代码就很好写了。
|
||||
|
||||
@ -93,7 +111,7 @@ bool same(int u, int v) {
|
||||
class Solution {
|
||||
private:
|
||||
int n = 1005; // 节点数量3 到 1000
|
||||
int father[1005];
|
||||
vector<int> father = vector<int> (n, 0); // C++里的一种数组结构
|
||||
|
||||
// 并查集初始化
|
||||
void init() {
|
||||
@ -105,24 +123,24 @@ private:
|
||||
int find(int u) {
|
||||
return u == father[u] ? u : father[u] = find(father[u]);
|
||||
}
|
||||
// 将v->u 这条边加入并查集
|
||||
void join(int u, int v) {
|
||||
u = find(u);
|
||||
v = find(v);
|
||||
if (u == v) return ;
|
||||
father[v] = u;
|
||||
}
|
||||
// 判断 u 和 v是否找到同一个根,本题用不上
|
||||
bool same(int u, int v) {
|
||||
// 判断 u 和 v是否找到同一个根
|
||||
bool isSame(int u, int v) {
|
||||
u = find(u);
|
||||
v = find(v);
|
||||
return u == v;
|
||||
}
|
||||
// 将v->u 这条边加入并查集
|
||||
void join(int u, int v) {
|
||||
u = find(u); // 寻找u的根
|
||||
v = find(v); // 寻找v的根
|
||||
if (u == v) return ; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回
|
||||
father[v] = u;
|
||||
}
|
||||
public:
|
||||
vector<int> findRedundantConnection(vector<vector<int>>& edges) {
|
||||
init();
|
||||
for (int i = 0; i < edges.size(); i++) {
|
||||
if (same(edges[i][0], edges[i][1])) return edges[i];
|
||||
if (isSame(edges[i][0], edges[i][1])) return edges[i];
|
||||
else join(edges[i][0], edges[i][1]);
|
||||
}
|
||||
return {};
|
||||
|
@ -44,7 +44,6 @@
|
||||
|
||||
且只有一个节点入度为2,为什么不看出度呢,出度没有意义,一棵树中随便一个父节点就有多个出度。
|
||||
|
||||
|
||||
第三种情况是没有入度为2的点,那么图中一定出现了有向环(**注意这里强调是有向环!**)
|
||||
|
||||
如图:
|
||||
@ -52,7 +51,27 @@
|
||||
<img src='https://code-thinking.cdn.bcebos.com/pics/685.冗余连接II2.png' width=600> </img></div>
|
||||
|
||||
|
||||
首先先计算节点的入度,代码如下:
|
||||
首先先计算节点的入度,这里不少录友在计算入度的时候就搞蒙了,分不清 edges[i][j] 表示的都是什么。
|
||||
|
||||
例如题目示例一给的是:edges = [[1,2],[1,3],[2,3]]
|
||||
|
||||
那大家很自然就想 对应二维数组的数值是: edges[1][2] ,edges[1][3],edges[2][3],但又想不出来 edges[1][2] 数值又是什么呢? 越想约懵。
|
||||
|
||||
其实 edges = [[1,2],[1,3],[2,3]],表示的是
|
||||
|
||||
edges[0][0] = 1,edges[0][1] = 2,
|
||||
|
||||
edges[1][0] = 1,edges[1][1] = 3,
|
||||
|
||||
edges[2][0] = 2,edges[2][1] = 3,
|
||||
|
||||
二维数组大家都学过,但是往往和图结合在一起的时候,就非常容易搞混,哪里是数组,哪里是下标了。
|
||||
|
||||
搞清楚之后,我们如何统计入度呢?
|
||||
|
||||
即 edges[i][1] 表示的节点都是 箭头指向的节点,即这个几点有一个入度! (如果想统计出度,那么就是 edges[i][0])。
|
||||
|
||||
所以,统计入度的代码如下:
|
||||
|
||||
```cpp
|
||||
int inDegree[N] = {0}; // 记录节点入度
|
||||
@ -94,7 +113,7 @@ if (vec.size() > 0) {
|
||||
vector<int> getRemoveEdge(const vector<vector<int>>& edges)
|
||||
```
|
||||
|
||||
此时 大家应该知道了,我们要实现两个最为关键的函数:
|
||||
大家应该知道了,我们要实现两个最为关键的函数:
|
||||
|
||||
* `isTreeAfterRemoveEdge()` 判断删一个边之后是不是树了
|
||||
* `getRemoveEdge` 确定图中一定有了有向环,那么要找到需要删除的那条边
|
||||
|
@ -35,8 +35,8 @@
|
||||
|
||||
本题思路上比较简单,难点其实都是 dfs 和 bfs的理论基础,关于理论基础我在这里都有详细讲解 :
|
||||
|
||||
* [DFS理论基础](https://leetcode.cn/problems/all-paths-from-source-to-target/solution/by-carlsun-2-66pf/)
|
||||
* [BFS理论基础](https://leetcode.cn/circle/discuss/V3FulB/)
|
||||
* [DFS理论基础](https://programmercarl.com/图论深搜理论基础.html)
|
||||
* [BFS理论基础](https://programmercarl.com/图论广搜理论基础.html)
|
||||
|
||||
## DFS
|
||||
|
||||
@ -136,7 +136,7 @@ public:
|
||||
|
||||
## BFS
|
||||
|
||||
关于广度优先搜索,如果大家还不了解的话,看这里:[广度优先搜索精讲](https://leetcode.cn/circle/discuss/V3FulB/)
|
||||
关于广度优先搜索,如果大家还不了解的话,看这里:[广度优先搜索精讲](https://programmercarl.com/图论广搜理论基础.html)
|
||||
|
||||
本题BFS代码如下:
|
||||
|
||||
|
@ -326,7 +326,22 @@ class Solution:
|
||||
return root
|
||||
```
|
||||
|
||||
递归法(版本四)
|
||||
```python
|
||||
class Solution:
|
||||
def insertIntoBST(self, root, val):
|
||||
if root is None:
|
||||
node = TreeNode(val)
|
||||
return node
|
||||
|
||||
if root.val > val:
|
||||
root.left = self.insertIntoBST(root.left, val)
|
||||
if root.val < val:
|
||||
root.right = self.insertIntoBST(root.right, val)
|
||||
|
||||
return root
|
||||
|
||||
```
|
||||
|
||||
迭代法
|
||||
```python
|
||||
|
@ -23,6 +23,11 @@
|
||||
* 1 <= len(A), len(B) <= 1000
|
||||
* 0 <= A[i], B[i] < 100
|
||||
|
||||
## 算法公开课
|
||||
|
||||
**《代码随想录》算法视频公开课:[动态规划之子序列问题,想清楚DP数组的定义 | LeetCode:718.最长重复子数组](https://www.bilibili.com/video/BV178411H7hV),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
|
||||
|
||||
|
||||
|
||||
## 思路
|
||||
|
||||
@ -198,7 +203,57 @@ public:
|
||||
|
||||
而且为了让 `if (dp[i][j] > result) result = dp[i][j];` 收集到全部结果,两层for训练一定从0开始遍历,这样需要加上 `&& i > 0 && j > 0`的判断。
|
||||
|
||||
相对于版本一来说还是多写了不少代码。而且逻辑上也复杂了一些。 优势就是dp数组的定义,更直观一点。
|
||||
对于基础不牢的小白来说,在推导出转移方程后可能疑惑上述代码为什么要从`i=0,j=0`遍历而不是从`i=1,j=1`开始遍历,原因在于这里如果不是从`i=0,j=0`位置开始遍历,会漏掉如下样例结果:
|
||||
```txt
|
||||
nums1 = [70,39,25,40,7]
|
||||
nums2 = [52,20,67,5,31]
|
||||
```
|
||||
|
||||
当然,如果你愿意也可以使用如下代码,与上面那个c++是同一思路:
|
||||
```java
|
||||
class Solution {
|
||||
public int findLength(int[] nums1, int[] nums2) {
|
||||
int len1 = nums1.length;
|
||||
int len2 = nums2.length;
|
||||
int[][] result = new int[len1][len2];
|
||||
|
||||
int maxresult = Integer.MIN_VALUE;
|
||||
|
||||
for(int i=0;i<len1;i++){
|
||||
if(nums1[i] == nums2[0])
|
||||
result[i][0] = 1;
|
||||
if(maxresult<result[i][0])
|
||||
maxresult = result[i][0];
|
||||
}
|
||||
|
||||
for(int j=0;j<len2;j++){
|
||||
if(nums1[0] == nums2[j])
|
||||
result[0][j] = 1;
|
||||
if(maxresult<result[0][j])
|
||||
maxresult = result[0][j];
|
||||
}
|
||||
|
||||
for(int i=1;i<len1;i++){
|
||||
for(int j=1;j<len2;j++){
|
||||
|
||||
if(nums1[i]==nums2[j])
|
||||
result[i][j] = result[i-1][j-1]+1;
|
||||
|
||||
if(maxresult<result[i][j])
|
||||
maxresult = result[i][j];
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return maxresult;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
对于小白来说一定要明确dp数组中初始化的数据是什么
|
||||
|
||||
整体而言相对于版本一来说还是多写了不少代码。而且逻辑上也复杂了一些。 优势就是dp数组的定义,更直观一点。
|
||||
|
||||
## 其他语言版本
|
||||
|
||||
@ -247,37 +302,99 @@ class Solution {
|
||||
|
||||
Python:
|
||||
|
||||
> 动态规划:
|
||||
2维DP
|
||||
```python
|
||||
class Solution:
|
||||
def findLength(self, A: List[int], B: List[int]) -> int:
|
||||
dp = [[0] * (len(B)+1) for _ in range(len(A)+1)]
|
||||
def findLength(self, nums1: List[int], nums2: List[int]) -> int:
|
||||
# 创建一个二维数组 dp,用于存储最长公共子数组的长度
|
||||
dp = [[0] * (len(nums2) + 1) for _ in range(len(nums1) + 1)]
|
||||
# 记录最长公共子数组的长度
|
||||
result = 0
|
||||
for i in range(1, len(A)+1):
|
||||
for j in range(1, len(B)+1):
|
||||
if A[i-1] == B[j-1]:
|
||||
dp[i][j] = dp[i-1][j-1] + 1
|
||||
result = max(result, dp[i][j])
|
||||
|
||||
# 遍历数组 nums1
|
||||
for i in range(1, len(nums1) + 1):
|
||||
# 遍历数组 nums2
|
||||
for j in range(1, len(nums2) + 1):
|
||||
# 如果 nums1[i-1] 和 nums2[j-1] 相等
|
||||
if nums1[i - 1] == nums2[j - 1]:
|
||||
# 在当前位置上的最长公共子数组长度为前一个位置上的长度加一
|
||||
dp[i][j] = dp[i - 1][j - 1] + 1
|
||||
# 更新最长公共子数组的长度
|
||||
if dp[i][j] > result:
|
||||
result = dp[i][j]
|
||||
|
||||
# 返回最长公共子数组的长度
|
||||
return result
|
||||
|
||||
```
|
||||
|
||||
> 动态规划:滚动数组
|
||||
1维DP
|
||||
```python
|
||||
class Solution:
|
||||
def findLength(self, A: List[int], B: List[int]) -> int:
|
||||
dp = [0] * (len(B) + 1)
|
||||
def findLength(self, nums1: List[int], nums2: List[int]) -> int:
|
||||
# 创建一个一维数组 dp,用于存储最长公共子数组的长度
|
||||
dp = [0] * (len(nums2) + 1)
|
||||
# 记录最长公共子数组的长度
|
||||
result = 0
|
||||
for i in range(1, len(A)+1):
|
||||
for j in range(len(B), 0, -1):
|
||||
if A[i-1] == B[j-1]:
|
||||
dp[j] = dp[j-1] + 1
|
||||
|
||||
# 遍历数组 nums1
|
||||
for i in range(1, len(nums1) + 1):
|
||||
# 用于保存上一个位置的值
|
||||
prev = 0
|
||||
# 遍历数组 nums2
|
||||
for j in range(1, len(nums2) + 1):
|
||||
# 保存当前位置的值,因为会在后面被更新
|
||||
current = dp[j]
|
||||
# 如果 nums1[i-1] 和 nums2[j-1] 相等
|
||||
if nums1[i - 1] == nums2[j - 1]:
|
||||
# 在当前位置上的最长公共子数组长度为上一个位置的长度加一
|
||||
dp[j] = prev + 1
|
||||
# 更新最长公共子数组的长度
|
||||
if dp[j] > result:
|
||||
result = dp[j]
|
||||
else:
|
||||
dp[j] = 0 #注意这里不相等的时候要有赋0的操作
|
||||
result = max(result, dp[j])
|
||||
# 如果不相等,将当前位置的值置为零
|
||||
dp[j] = 0
|
||||
# 更新 prev 变量为当前位置的值,供下一次迭代使用
|
||||
prev = current
|
||||
|
||||
# 返回最长公共子数组的长度
|
||||
return result
|
||||
|
||||
```
|
||||
|
||||
2维DP 扩展
|
||||
```python
|
||||
class Solution:
|
||||
def findLength(self, nums1: List[int], nums2: List[int]) -> int:
|
||||
# 创建一个二维数组 dp,用于存储最长公共子数组的长度
|
||||
dp = [[0] * (len(nums2) + 1) for _ in range(len(nums1) + 1)]
|
||||
# 记录最长公共子数组的长度
|
||||
result = 0
|
||||
|
||||
# 对第一行和第一列进行初始化
|
||||
for i in range(len(nums1)):
|
||||
if nums1[i] == nums2[0]:
|
||||
dp[i + 1][1] = 1
|
||||
for j in range(len(nums2)):
|
||||
if nums1[0] == nums2[j]:
|
||||
dp[1][j + 1] = 1
|
||||
|
||||
# 填充dp数组
|
||||
for i in range(1, len(nums1) + 1):
|
||||
for j in range(1, len(nums2) + 1):
|
||||
if nums1[i - 1] == nums2[j - 1]:
|
||||
# 如果 nums1[i-1] 和 nums2[j-1] 相等,则当前位置的最长公共子数组长度为左上角位置的值加一
|
||||
dp[i][j] = dp[i - 1][j - 1] + 1
|
||||
if dp[i][j] > result:
|
||||
# 更新最长公共子数组的长度
|
||||
result = dp[i][j]
|
||||
|
||||
# 返回最长公共子数组的长度
|
||||
return result
|
||||
|
||||
|
||||
```
|
||||
Go:
|
||||
```Go
|
||||
func findLength(A []int, B []int) int {
|
||||
|
@ -164,17 +164,110 @@ class Solution {
|
||||
|
||||
|
||||
### Python:
|
||||
暴力
|
||||
```python
|
||||
class Solution:
|
||||
def monotoneIncreasingDigits(self, n: int) -> int:
|
||||
a = list(str(n))
|
||||
for i in range(len(a)-1,0,-1):
|
||||
if int(a[i]) < int(a[i-1]):
|
||||
a[i-1] = str(int(a[i-1]) - 1)
|
||||
a[i:] = '9' * (len(a) - i) #python不需要设置flag值,直接按长度给9就好了
|
||||
return int("".join(a))
|
||||
```
|
||||
def checkNum(self, num):
|
||||
max_digit = 10
|
||||
while num:
|
||||
digit = num % 10
|
||||
if max_digit >= digit:
|
||||
max_digit = digit
|
||||
else:
|
||||
return False
|
||||
num //= 10
|
||||
return True
|
||||
|
||||
def monotoneIncreasingDigits(self, N):
|
||||
for i in range(N, 0, -1):
|
||||
if self.checkNum(i):
|
||||
return i
|
||||
return 0
|
||||
|
||||
```
|
||||
贪心(版本一)
|
||||
```python
|
||||
class Solution:
|
||||
def monotoneIncreasingDigits(self, N: int) -> int:
|
||||
# 将整数转换为字符串
|
||||
strNum = str(N)
|
||||
# flag用来标记赋值9从哪里开始
|
||||
# 设置为字符串长度,为了防止第二个for循环在flag没有被赋值的情况下执行
|
||||
flag = len(strNum)
|
||||
|
||||
# 从右往左遍历字符串
|
||||
for i in range(len(strNum) - 1, 0, -1):
|
||||
# 如果当前字符比前一个字符小,说明需要修改前一个字符
|
||||
if strNum[i - 1] > strNum[i]:
|
||||
flag = i # 更新flag的值,记录需要修改的位置
|
||||
# 将前一个字符减1,以保证递增性质
|
||||
strNum = strNum[:i - 1] + str(int(strNum[i - 1]) - 1) + strNum[i:]
|
||||
|
||||
# 将flag位置及之后的字符都修改为9,以保证最大的递增数字
|
||||
for i in range(flag, len(strNum)):
|
||||
strNum = strNum[:i] + '9' + strNum[i + 1:]
|
||||
|
||||
# 将最终的字符串转换回整数并返回
|
||||
return int(strNum)
|
||||
|
||||
```
|
||||
贪心(版本二)
|
||||
```python
|
||||
class Solution:
|
||||
def monotoneIncreasingDigits(self, N: int) -> int:
|
||||
# 将整数转换为字符串
|
||||
strNum = list(str(N))
|
||||
|
||||
# 从右往左遍历字符串
|
||||
for i in range(len(strNum) - 1, 0, -1):
|
||||
# 如果当前字符比前一个字符小,说明需要修改前一个字符
|
||||
if strNum[i - 1] > strNum[i]:
|
||||
strNum[i - 1] = str(int(strNum[i - 1]) - 1) # 将前一个字符减1
|
||||
# 将修改位置后面的字符都设置为9,因为修改前一个字符可能破坏了递增性质
|
||||
for j in range(i, len(strNum)):
|
||||
strNum[j] = '9'
|
||||
|
||||
# 将列表转换为字符串,并将字符串转换为整数并返回
|
||||
return int(''.join(strNum))
|
||||
|
||||
|
||||
```
|
||||
贪心(版本三)
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def monotoneIncreasingDigits(self, N: int) -> int:
|
||||
# 将整数转换为字符串
|
||||
strNum = list(str(N))
|
||||
|
||||
# 从右往左遍历字符串
|
||||
for i in range(len(strNum) - 1, 0, -1):
|
||||
# 如果当前字符比前一个字符小,说明需要修改前一个字符
|
||||
if strNum[i - 1] > strNum[i]:
|
||||
strNum[i - 1] = str(int(strNum[i - 1]) - 1) # 将前一个字符减1
|
||||
# 将修改位置后面的字符都设置为9,因为修改前一个字符可能破坏了递增性质
|
||||
strNum[i:] = '9' * (len(strNum) - i)
|
||||
|
||||
# 将列表转换为字符串,并将字符串转换为整数并返回
|
||||
return int(''.join(strNum))
|
||||
|
||||
```
|
||||
贪心(版本四)精简
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def monotoneIncreasingDigits(self, N: int) -> int:
|
||||
strNum = str(N)
|
||||
for i in range(len(strNum) - 1, 0, -1):
|
||||
# 如果当前字符比前一个字符小,说明需要修改前一个字符
|
||||
if strNum[i - 1] > strNum[i]:
|
||||
# 将前一个字符减1,以保证递增性质
|
||||
# 使用字符串切片操作将修改后的前面部分与后面部分进行拼接
|
||||
strNum = strNum[:i - 1] + str(int(strNum[i - 1]) - 1) + '9' * (len(strNum) - i)
|
||||
return int(strNum)
|
||||
|
||||
|
||||
```
|
||||
### Go
|
||||
```go
|
||||
func monotoneIncreasingDigits(N int) int {
|
||||
|
@ -245,26 +245,42 @@ class Solution {
|
||||
```
|
||||
|
||||
### Python
|
||||
|
||||
动态规划(版本一)
|
||||
```python
|
||||
# 第一步不支付费用
|
||||
class Solution:
|
||||
def minCostClimbingStairs(self, cost: List[int]) -> int:
|
||||
n = len(cost)
|
||||
dp = [0]*(n+1) # 到达前两步费用为0
|
||||
for i in range(2, n+1):
|
||||
dp[i] = min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2])
|
||||
return dp[-1]
|
||||
```
|
||||
```python
|
||||
# 第一步支付费用
|
||||
|
||||
class Solution:
|
||||
def minCostClimbingStairs(self, cost: List[int]) -> int:
|
||||
dp = [0] * (len(cost) + 1)
|
||||
dp[0] = 0
|
||||
dp[1] = 0
|
||||
dp[0] = 0 # 初始值,表示从起点开始不需要花费体力
|
||||
dp[1] = 0 # 初始值,表示经过第一步不需要花费体力
|
||||
|
||||
for i in range(2, len(cost) + 1):
|
||||
dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i-2])
|
||||
return dp[len(cost)]
|
||||
# 在第i步,可以选择从前一步(i-1)花费体力到达当前步,或者从前两步(i-2)花费体力到达当前步
|
||||
# 选择其中花费体力较小的路径,加上当前步的花费,更新dp数组
|
||||
dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])
|
||||
|
||||
return dp[len(cost)] # 返回到达楼顶的最小花费
|
||||
|
||||
```
|
||||
动态规划(版本二)
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def minCostClimbingStairs(self, cost: List[int]) -> int:
|
||||
dp0 = 0 # 初始值,表示从起点开始不需要花费体力
|
||||
dp1 = 0 # 初始值,表示经过第一步不需要花费体力
|
||||
|
||||
for i in range(2, len(cost) + 1):
|
||||
# 在第i步,可以选择从前一步(i-1)花费体力到达当前步,或者从前两步(i-2)花费体力到达当前步
|
||||
# 选择其中花费体力较小的路径,加上当前步的花费,得到当前步的最小花费
|
||||
dpi = min(dp1 + cost[i - 1], dp0 + cost[i - 2])
|
||||
|
||||
dp0 = dp1 # 更新dp0为前一步的值,即上一次循环中的dp1
|
||||
dp1 = dpi # 更新dp1为当前步的最小花费
|
||||
|
||||
return dp1 # 返回到达楼顶的最小花费
|
||||
|
||||
```
|
||||
|
||||
### Go
|
||||
|
@ -231,83 +231,56 @@ class Solution{
|
||||
```
|
||||
|
||||
### Python
|
||||
贪心(版本一)
|
||||
```python
|
||||
class Solution:
|
||||
def partitionLabels(self, s: str) -> List[int]:
|
||||
hash = [0] * 26
|
||||
for i in range(len(s)):
|
||||
hash[ord(s[i]) - ord('a')] = i
|
||||
last_occurrence = {} # 存储每个字符最后出现的位置
|
||||
for i, ch in enumerate(s):
|
||||
last_occurrence[ch] = i
|
||||
|
||||
result = []
|
||||
left = 0
|
||||
right = 0
|
||||
for i in range(len(s)):
|
||||
right = max(right, hash[ord(s[i]) - ord('a')])
|
||||
if i == right:
|
||||
result.append(right - left + 1)
|
||||
left = i + 1
|
||||
start = 0
|
||||
end = 0
|
||||
for i, ch in enumerate(s):
|
||||
end = max(end, last_occurrence[ch]) # 找到当前字符出现的最远位置
|
||||
if i == end: # 如果当前位置是最远位置,表示可以分割出一个区间
|
||||
result.append(end - start + 1)
|
||||
start = i + 1
|
||||
|
||||
return result
|
||||
|
||||
# 解法二(不相交区间法)
|
||||
|
||||
```
|
||||
贪心(版本二)与452.用最少数量的箭引爆气球 (opens new window)、435.无重叠区间 (opens new window)相同的思路。
|
||||
```python
|
||||
class Solution:
|
||||
def partitionLabels(self, s: str) -> List[int]:
|
||||
# 记录每个字母出现的区间
|
||||
def getBord(s):
|
||||
hash = [[-float('inf')] * 2 for _ in range(26)]
|
||||
for i in range(len(s)):
|
||||
if hash[ord(s[i]) - ord('a')][0] == -float('inf'):
|
||||
hash[ord(s[i]) - ord('a')][0] = i
|
||||
hash[ord(s[i]) - ord('a')][1] = i
|
||||
# 去除字符串中未出现的字母所占用区间
|
||||
hash_filter = []
|
||||
for item in hash:
|
||||
if item[0] != -float('inf'): hash_filter.append(item)
|
||||
return hash_filter
|
||||
|
||||
# 得到无重叠区间题意中的输入样例格式:区间列表
|
||||
hash = getBord(s)
|
||||
# 按照左边界从小到大排序
|
||||
hash.sort(key= lambda x: x[0])
|
||||
res = []
|
||||
left = 0
|
||||
# 记录最大右边界
|
||||
right = hash[0][1]
|
||||
def countLabels(self, s):
|
||||
# 初始化一个长度为26的区间列表,初始值为负无穷
|
||||
hash = [[float('-inf'), float('-inf')] for _ in range(26)]
|
||||
hash_filter = []
|
||||
for i in range(len(s)):
|
||||
if hash[ord(s[i]) - ord('a')][0] == float('-inf'):
|
||||
hash[ord(s[i]) - ord('a')][0] = i
|
||||
hash[ord(s[i]) - ord('a')][1] = i
|
||||
for i in range(len(hash)):
|
||||
# 一旦下一区间左边界大于当前右边界,即可认为出现分割点
|
||||
if hash[i][0] > right:
|
||||
res.append(right - left + 1)
|
||||
left = hash[i][0]
|
||||
# 实时更新最大右边界
|
||||
right = max(right, hash[i][1])
|
||||
# 最右侧区间(字符串长度为1时的特殊情况也包含于其中)
|
||||
res.append(right - left + 1)
|
||||
if hash[i][0] != float('-inf'):
|
||||
hash_filter.append(hash[i])
|
||||
return hash_filter
|
||||
|
||||
def partitionLabels(self, s):
|
||||
res = []
|
||||
hash = self.countLabels(s)
|
||||
hash.sort(key=lambda x: x[0]) # 按左边界从小到大排序
|
||||
rightBoard = hash[0][1] # 记录最大右边界
|
||||
leftBoard = 0
|
||||
for i in range(1, len(hash)):
|
||||
if hash[i][0] > rightBoard: # 出现分割点
|
||||
res.append(rightBoard - leftBoard + 1)
|
||||
leftBoard = hash[i][0]
|
||||
rightBoard = max(rightBoard, hash[i][1])
|
||||
res.append(rightBoard - leftBoard + 1) # 最右端
|
||||
return res
|
||||
|
||||
# 解法三:区间合并法 (结合下一题 56. Merge Intervals 的写法)
|
||||
class Solution: #
|
||||
def partitionLabels(self, s: str) -> List[int]:
|
||||
aaa = list(set(s))
|
||||
#aaa.sort()
|
||||
bbb = list(s)
|
||||
ccc = []
|
||||
for i in reversed(bbb):
|
||||
ccc.append(i)
|
||||
intervals = []
|
||||
for i in range(len(aaa)):
|
||||
intervals.append([bbb.index(aaa[i]),len(bbb)-ccc.index(aaa[i])-1])
|
||||
# 先求出各个字母的存在区间,之后利用区间合并方法得出所有不相邻的最大区间。
|
||||
intervals.sort(key = lambda x:x[0])
|
||||
newinterval = []
|
||||
left, right = intervals[0][0], intervals[0][1]
|
||||
for i in range(1,len(intervals)):
|
||||
if intervals[i][0] in range(left, right+1):
|
||||
right = max(intervals[i][1],intervals[i-1][1],right)
|
||||
left = min(intervals[i-1][0],left)
|
||||
else:
|
||||
newinterval.append(right-left+1)
|
||||
left = intervals[i][0]
|
||||
right = intervals[i][1]
|
||||
newinterval.append(right-left+1)
|
||||
return newinterval
|
||||
|
||||
```
|
||||
|
||||
### Go
|
||||
|
@ -159,7 +159,7 @@ public:
|
||||
|
||||
## 其他语言版本
|
||||
|
||||
## Java
|
||||
Java
|
||||
|
||||
```Java
|
||||
// 深度优先遍历
|
||||
@ -190,7 +190,7 @@ class Solution {
|
||||
}
|
||||
```
|
||||
|
||||
## Python
|
||||
Python
|
||||
```python
|
||||
class Solution:
|
||||
def __init__(self):
|
||||
|
@ -39,7 +39,7 @@
|
||||
|
||||
每改变一个0的方格,都需要重新计算一个地图的最大面积,所以 整体时间复杂度为:n^4。
|
||||
|
||||
如果对深度优先搜索不了解的录友,可以看这里:[深度优先搜索精讲](https://leetcode.cn/problems/all-paths-from-source-to-target/solution/by-carlsun-2-66pf/)
|
||||
如果对深度优先搜索不了解的录友,可以看这里:[深度优先搜索精讲](https://programmercarl.com/图论深搜理论基础.html)
|
||||
|
||||
|
||||
## 优化思路
|
||||
|
@ -56,7 +56,7 @@
|
||||
|
||||
所以本题是一个有向图搜索全路径的问题。 只能用深搜(DFS)或者广搜(BFS)来搜。
|
||||
|
||||
关于DFS的理论,如果大家有困惑,可以先看我这篇题解: [DFS理论基础](https://programmercarl.com/%E5%9B%BE%E8%AE%BA%E6%B7%B1%E6%90%9C%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html)
|
||||
关于DFS的理论,如果大家有困惑,可以先看我这篇题解: [DFS理论基础](https://programmercarl.com/图论深搜理论基础.html)
|
||||
|
||||
**以下dfs分析 大家一定要仔细看,本题有两种dfs的解法,很多题解没有讲清楚**。 看完之后 相信你对dfs会有更深的理解。
|
||||
|
||||
|
@ -164,24 +164,39 @@ class Solution {
|
||||
```python
|
||||
class Solution:
|
||||
def lemonadeChange(self, bills: List[int]) -> bool:
|
||||
five, ten = 0, 0
|
||||
five = 0
|
||||
ten = 0
|
||||
twenty = 0
|
||||
|
||||
for bill in bills:
|
||||
# 情况一:收到5美元
|
||||
if bill == 5:
|
||||
five += 1
|
||||
elif bill == 10:
|
||||
if five < 1: return False
|
||||
five -= 1
|
||||
|
||||
# 情况二:收到10美元
|
||||
if bill == 10:
|
||||
if five <= 0:
|
||||
return False
|
||||
ten += 1
|
||||
else:
|
||||
if ten > 0 and five > 0:
|
||||
ten -= 1
|
||||
five -= 1
|
||||
|
||||
# 情况三:收到20美元
|
||||
if bill == 20:
|
||||
# 先尝试使用10美元和5美元找零
|
||||
if five > 0 and ten > 0:
|
||||
five -= 1
|
||||
elif five > 2:
|
||||
ten -= 1
|
||||
#twenty += 1
|
||||
# 如果无法使用10美元找零,则尝试使用三张5美元找零
|
||||
elif five >= 3:
|
||||
five -= 3
|
||||
#twenty += 1
|
||||
else:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
```
|
||||
|
||||
### Go
|
||||
|
@ -371,56 +371,104 @@ class Solution {
|
||||
|
||||
|
||||
### Python
|
||||
|
||||
贪心(版本一)
|
||||
```python
|
||||
class Solution:
|
||||
def minCameraCover(self, root: TreeNode) -> int:
|
||||
# Greedy Algo:
|
||||
# Greedy Algo:
|
||||
# 从下往上安装摄像头:跳过leaves这样安装数量最少,局部最优 -> 全局最优
|
||||
# 先给leaves的父节点安装,然后每隔两层节点安装一个摄像头,直到Head
|
||||
# 0: 该节点未覆盖
|
||||
# 1: 该节点有摄像头
|
||||
# 2: 该节点有覆盖
|
||||
def minCameraCover(self, root: TreeNode) -> int:
|
||||
# 定义递归函数
|
||||
result = [0] # 用于记录摄像头的安装数量
|
||||
if self.traversal(root, result) == 0:
|
||||
result[0] += 1
|
||||
|
||||
result = 0
|
||||
# 从下往上遍历:后序(左右中)
|
||||
def traversal(curr: TreeNode) -> int:
|
||||
nonlocal result
|
||||
return result[0]
|
||||
|
||||
if not curr: return 2
|
||||
left = traversal(curr.left)
|
||||
right = traversal(curr.right)
|
||||
|
||||
def traversal(self, cur: TreeNode, result: List[int]) -> int:
|
||||
if not cur:
|
||||
return 2
|
||||
|
||||
# Case 1:
|
||||
# 左右节点都有覆盖
|
||||
if left == 2 and right == 2:
|
||||
return 0
|
||||
left = self.traversal(cur.left, result)
|
||||
right = self.traversal(cur.right, result)
|
||||
|
||||
# Case 2:
|
||||
# left == 0 && right == 0 左右节点无覆盖
|
||||
# left == 1 && right == 0 左节点有摄像头,右节点无覆盖
|
||||
# left == 0 && right == 1 左节点有无覆盖,右节点摄像头
|
||||
# left == 0 && right == 2 左节点无覆盖,右节点覆盖
|
||||
# left == 2 && right == 0 左节点覆盖,右节点无覆盖
|
||||
elif left == 0 or right == 0:
|
||||
result += 1
|
||||
return 1
|
||||
# 情况1: 左右节点都有覆盖
|
||||
if left == 2 and right == 2:
|
||||
return 0
|
||||
|
||||
# Case 3:
|
||||
# left == 1 && right == 2 左节点有摄像头,右节点有覆盖
|
||||
# left == 2 && right == 1 左节点有覆盖,右节点有摄像头
|
||||
# left == 1 && right == 1 左右节点都有摄像头
|
||||
elif left == 1 or right == 1:
|
||||
return 2
|
||||
# 情况2:
|
||||
# left == 0 && right == 0 左右节点无覆盖
|
||||
# left == 1 && right == 0 左节点有摄像头,右节点无覆盖
|
||||
# left == 0 && right == 1 左节点无覆盖,右节点有摄像头
|
||||
# left == 0 && right == 2 左节点无覆盖,右节点覆盖
|
||||
# left == 2 && right == 0 左节点覆盖,右节点无覆盖
|
||||
if left == 0 or right == 0:
|
||||
result[0] += 1
|
||||
return 1
|
||||
|
||||
# 其他情况前段代码均已覆盖
|
||||
# 情况3:
|
||||
# left == 1 && right == 2 左节点有摄像头,右节点有覆盖
|
||||
# left == 2 && right == 1 左节点有覆盖,右节点有摄像头
|
||||
# left == 1 && right == 1 左右节点都有摄像头
|
||||
if left == 1 or right == 1:
|
||||
return 2
|
||||
|
||||
if traversal(root) == 0:
|
||||
result += 1
|
||||
|
||||
return result
|
||||
```
|
||||
贪心(版本二)利用elif精简代码
|
||||
```python
|
||||
class Solution:
|
||||
# Greedy Algo:
|
||||
# 从下往上安装摄像头:跳过leaves这样安装数量最少,局部最优 -> 全局最优
|
||||
# 先给leaves的父节点安装,然后每隔两层节点安装一个摄像头,直到Head
|
||||
# 0: 该节点未覆盖
|
||||
# 1: 该节点有摄像头
|
||||
# 2: 该节点有覆盖
|
||||
def minCameraCover(self, root: TreeNode) -> int:
|
||||
# 定义递归函数
|
||||
result = [0] # 用于记录摄像头的安装数量
|
||||
if self.traversal(root, result) == 0:
|
||||
result[0] += 1
|
||||
|
||||
return result[0]
|
||||
|
||||
|
||||
def traversal(self, cur: TreeNode, result: List[int]) -> int:
|
||||
if not cur:
|
||||
return 2
|
||||
|
||||
left = self.traversal(cur.left, result)
|
||||
right = self.traversal(cur.right, result)
|
||||
|
||||
# 情况1: 左右节点都有覆盖
|
||||
if left == 2 and right == 2:
|
||||
return 0
|
||||
|
||||
# 情况2:
|
||||
# left == 0 && right == 0 左右节点无覆盖
|
||||
# left == 1 && right == 0 左节点有摄像头,右节点无覆盖
|
||||
# left == 0 && right == 1 左节点无覆盖,右节点有摄像头
|
||||
# left == 0 && right == 2 左节点无覆盖,右节点覆盖
|
||||
# left == 2 && right == 0 左节点覆盖,右节点无覆盖
|
||||
elif left == 0 or right == 0:
|
||||
result[0] += 1
|
||||
return 1
|
||||
|
||||
# 情况3:
|
||||
# left == 1 && right == 2 左节点有摄像头,右节点有覆盖
|
||||
# left == 2 && right == 1 左节点有覆盖,右节点有摄像头
|
||||
# left == 1 && right == 1 左右节点都有摄像头
|
||||
else:
|
||||
return 2
|
||||
|
||||
|
||||
|
||||
|
||||
```
|
||||
### Go
|
||||
|
||||
```go
|
||||
|
@ -488,6 +488,14 @@ public class Solution {
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
C# LINQ:
|
||||
```csharp
|
||||
public class Solution {
|
||||
public int[] SortedSquares(int[] nums) {
|
||||
return nums.Select(x => x * x).OrderBy(x => x).ToArray();
|
||||
}
|
||||
}
|
||||
```
|
||||
<p align="center">
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
|
@ -131,17 +131,23 @@ class Solution {
|
||||
```
|
||||
|
||||
### Python
|
||||
贪心
|
||||
```python
|
||||
class Solution:
|
||||
def largestSumAfterKNegations(self, A: List[int], K: int) -> int:
|
||||
A = sorted(A, key=abs, reverse=True) # 将A按绝对值从大到小排列
|
||||
for i in range(len(A)):
|
||||
if K > 0 and A[i] < 0:
|
||||
A.sort(key=lambda x: abs(x), reverse=True) # 第一步:按照绝对值降序排序数组A
|
||||
|
||||
for i in range(len(A)): # 第二步:执行K次取反操作
|
||||
if A[i] < 0 and K > 0:
|
||||
A[i] *= -1
|
||||
K -= 1
|
||||
if K > 0:
|
||||
A[-1] *= (-1)**K #取A最后一个数只需要写-1
|
||||
return sum(A)
|
||||
|
||||
if K % 2 == 1: # 第三步:如果K还有剩余次数,将绝对值最小的元素取反
|
||||
A[-1] *= -1
|
||||
|
||||
result = sum(A) # 第四步:计算数组A的元素和
|
||||
return result
|
||||
|
||||
```
|
||||
|
||||
### Go
|
||||
@ -189,9 +195,9 @@ var largestSumAfterKNegations = function(nums, k) {
|
||||
nums[nums.length-1] = - nums[nums.length-1]
|
||||
k--;
|
||||
}
|
||||
return nums.reduce((a, b) => {
|
||||
a + b
|
||||
})
|
||||
|
||||
// 使用箭头函数的隐式返回值时,需使用简写省略花括号,否则要在 a + b 前加上 return
|
||||
return nums.reduce((a, b) => a + b)
|
||||
};
|
||||
|
||||
// 版本二 (优化: 一次遍历)
|
||||
|
@ -42,7 +42,8 @@
|
||||
|
||||
然后我们再去遍历这个地图,遇到有陆地的地方,去采用深搜或者广搜,边统计所有陆地。
|
||||
|
||||
如果对深搜或者广搜不够了解,建议先看这里:[深度优先搜索精讲](https://leetcode.cn/problems/all-paths-from-source-to-target/solution/by-carlsun-2-66pf/),[广度优先搜索精讲](https://leetcode.cn/circle/discuss/V3FulB/)
|
||||
如果对深搜或者广搜不够了解,建议先看这里:[深度优先搜索精讲](https://programmercarl.com/图论深搜理论基础.html),[广度优先搜索精讲](https://programmercarl.com/图论广搜理论基础.html)。
|
||||
|
||||
|
||||
采用深度优先搜索的代码如下:
|
||||
|
||||
|
@ -17,6 +17,11 @@
|
||||
|
||||

|
||||
|
||||
## 算法公开课
|
||||
|
||||
**《代码随想录》算法视频公开课:[动态规划之子序列问题,换汤不换药 | LeetCode:1035.不相交的线](https://www.bilibili.com/video/BV1h84y1x7MP),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
|
||||
|
||||
|
||||
## 思路
|
||||
|
||||
相信不少录友看到这道题目都没啥思路,我们来逐步分析一下。
|
||||
|
@ -224,18 +224,79 @@ class Solution {
|
||||
```
|
||||
|
||||
### Python:
|
||||
卡哥版
|
||||
```python
|
||||
class Solution:
|
||||
def lastStoneWeightII(self, stones: List[int]) -> int:
|
||||
sumweight = sum(stones)
|
||||
target = sumweight // 2
|
||||
dp = [0] * (target + 1)
|
||||
for i in range(len(stones)):
|
||||
for j in range(target, stones[i] - 1, -1):
|
||||
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i])
|
||||
return sumweight - 2 * dp[target]
|
||||
```
|
||||
dp = [0] * 15001
|
||||
total_sum = sum(stones)
|
||||
target = total_sum // 2
|
||||
|
||||
for stone in stones: # 遍历物品
|
||||
for j in range(target, stone - 1, -1): # 遍历背包
|
||||
dp[j] = max(dp[j], dp[j - stone] + stone)
|
||||
|
||||
return total_sum - dp[target] - dp[target]
|
||||
|
||||
```
|
||||
二维DP版
|
||||
```python
|
||||
class Solution:
|
||||
def lastStoneWeightII(self, stones: List[int]) -> int:
|
||||
total_sum = sum(stones)
|
||||
target = total_sum // 2
|
||||
|
||||
# 创建二维dp数组,行数为石头的数量加1,列数为target加1
|
||||
# dp[i][j]表示前i个石头能否组成总重量为j
|
||||
dp = [[False] * (target + 1) for _ in range(len(stones) + 1)]
|
||||
|
||||
# 初始化第一列,表示总重量为0时,前i个石头都能组成
|
||||
for i in range(len(stones) + 1):
|
||||
dp[i][0] = True
|
||||
|
||||
for i in range(1, len(stones) + 1):
|
||||
for j in range(1, target + 1):
|
||||
# 如果当前石头重量大于当前目标重量j,则无法选择该石头
|
||||
if stones[i - 1] > j:
|
||||
dp[i][j] = dp[i - 1][j]
|
||||
else:
|
||||
# 可选择该石头或不选择该石头
|
||||
dp[i][j] = dp[i - 1][j] or dp[i - 1][j - stones[i - 1]]
|
||||
|
||||
# 找到最大的重量i,使得dp[len(stones)][i]为True
|
||||
# 返回总重量减去两倍的最接近总重量一半的重量
|
||||
for i in range(target, -1, -1):
|
||||
if dp[len(stones)][i]:
|
||||
return total_sum - 2 * i
|
||||
|
||||
return 0
|
||||
|
||||
|
||||
```
|
||||
一维DP版
|
||||
```python
|
||||
class Solution:
|
||||
def lastStoneWeightII(self, stones):
|
||||
total_sum = sum(stones)
|
||||
target = total_sum // 2
|
||||
dp = [False] * (target + 1)
|
||||
dp[0] = True
|
||||
|
||||
for stone in stones:
|
||||
for j in range(target, stone - 1, -1):
|
||||
# 判断当前重量是否可以通过选择之前的石头得到或选择当前石头和之前的石头得到
|
||||
dp[j] = dp[j] or dp[j - stone]
|
||||
|
||||
for i in range(target, -1, -1):
|
||||
if dp[i]:
|
||||
# 返回剩余石头的重量,即总重量减去两倍的最接近总重量一半的重量
|
||||
return total_sum - 2 * i
|
||||
|
||||
return 0
|
||||
|
||||
|
||||
|
||||
```
|
||||
### Go:
|
||||
```go
|
||||
func lastStoneWeightII(stones []int) int {
|
||||
@ -379,8 +440,23 @@ object Solution {
|
||||
}
|
||||
```
|
||||
|
||||
### Rust
|
||||
|
||||
|
||||
```rust
|
||||
impl Solution {
|
||||
pub fn last_stone_weight_ii(stones: Vec<i32>) -> i32 {
|
||||
let sum = stones.iter().sum::<i32>();
|
||||
let target = sum as usize / 2;
|
||||
let mut dp = vec![0; target + 1];
|
||||
for s in stones {
|
||||
for j in (s as usize..=target).rev() {
|
||||
dp[j] = dp[j].max(dp[j - s as usize] + s);
|
||||
}
|
||||
}
|
||||
sum - dp[target] * 2
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
|
@ -18,25 +18,30 @@
|
||||
|
||||
示例 1:
|
||||
|
||||
输入:text1 = "abcde", text2 = "ace"
|
||||
输出:3
|
||||
解释:最长公共子序列是 "ace",它的长度为 3。
|
||||
* 输入:text1 = "abcde", text2 = "ace"
|
||||
* 输出:3
|
||||
* 解释:最长公共子序列是 "ace",它的长度为 3。
|
||||
|
||||
示例 2:
|
||||
输入:text1 = "abc", text2 = "abc"
|
||||
输出:3
|
||||
解释:最长公共子序列是 "abc",它的长度为 3。
|
||||
* 输入:text1 = "abc", text2 = "abc"
|
||||
* 输出:3
|
||||
* 解释:最长公共子序列是 "abc",它的长度为 3。
|
||||
|
||||
示例 3:
|
||||
输入:text1 = "abc", text2 = "def"
|
||||
输出:0
|
||||
解释:两个字符串没有公共子序列,返回 0。
|
||||
* 输入:text1 = "abc", text2 = "def"
|
||||
* 输出:0
|
||||
* 解释:两个字符串没有公共子序列,返回 0。
|
||||
|
||||
提示:
|
||||
* 1 <= text1.length <= 1000
|
||||
* 1 <= text2.length <= 1000
|
||||
输入的字符串只含有小写英文字符。
|
||||
|
||||
## 算法公开课
|
||||
|
||||
**《代码随想录》算法视频公开课:[动态规划子序列问题经典题目 | LeetCode:1143.最长公共子序列](https://www.bilibili.com/video/BV1ye4y1L7CQ),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
|
||||
|
||||
|
||||
## 思路
|
||||
|
||||
本题和[动态规划:718. 最长重复子数组](https://programmercarl.com/0718.最长重复子数组.html)区别在于这里不要求是连续的了,但要有相对顺序,即:"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。
|
||||
@ -198,21 +203,49 @@ class Solution {
|
||||
```
|
||||
|
||||
Python:
|
||||
|
||||
2维DP
|
||||
```python
|
||||
class Solution:
|
||||
def longestCommonSubsequence(self, text1: str, text2: str) -> int:
|
||||
len1, len2 = len(text1)+1, len(text2)+1
|
||||
dp = [[0 for _ in range(len1)] for _ in range(len2)] # 先对dp数组做初始化操作
|
||||
for i in range(1, len2):
|
||||
for j in range(1, len1): # 开始列出状态转移方程
|
||||
if text1[j-1] == text2[i-1]:
|
||||
dp[i][j] = dp[i-1][j-1]+1
|
||||
# 创建一个二维数组 dp,用于存储最长公共子序列的长度
|
||||
dp = [[0] * (len(text2) + 1) for _ in range(len(text1) + 1)]
|
||||
|
||||
# 遍历 text1 和 text2,填充 dp 数组
|
||||
for i in range(1, len(text1) + 1):
|
||||
for j in range(1, len(text2) + 1):
|
||||
if text1[i - 1] == text2[j - 1]:
|
||||
# 如果 text1[i-1] 和 text2[j-1] 相等,则当前位置的最长公共子序列长度为左上角位置的值加一
|
||||
dp[i][j] = dp[i - 1][j - 1] + 1
|
||||
else:
|
||||
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
|
||||
return dp[-1][-1]
|
||||
```
|
||||
# 如果 text1[i-1] 和 text2[j-1] 不相等,则当前位置的最长公共子序列长度为上方或左方的较大值
|
||||
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
|
||||
|
||||
# 返回最长公共子序列的长度
|
||||
return dp[len(text1)][len(text2)]
|
||||
|
||||
```
|
||||
1维DP
|
||||
```python
|
||||
class Solution:
|
||||
def longestCommonSubsequence(self, text1: str, text2: str) -> int:
|
||||
m, n = len(text1), len(text2)
|
||||
dp = [0] * (n + 1) # 初始化一维DP数组
|
||||
|
||||
for i in range(1, m + 1):
|
||||
prev = 0 # 保存上一个位置的最长公共子序列长度
|
||||
for j in range(1, n + 1):
|
||||
curr = dp[j] # 保存当前位置的最长公共子序列长度
|
||||
if text1[i - 1] == text2[j - 1]:
|
||||
# 如果当前字符相等,则最长公共子序列长度加一
|
||||
dp[j] = prev + 1
|
||||
else:
|
||||
# 如果当前字符不相等,则选择保留前一个位置的最长公共子序列长度中的较大值
|
||||
dp[j] = max(dp[j], dp[j - 1])
|
||||
prev = curr # 更新上一个位置的最长公共子序列长度
|
||||
|
||||
return dp[n] # 返回最后一个位置的最长公共子序列长度作为结果
|
||||
|
||||
```
|
||||
|
||||
Go:
|
||||
```Go
|
||||
|
@ -3,6 +3,7 @@
|
||||
<img src="../pics/训练营.png" width="1000"/>
|
||||
</a>
|
||||
<p align="center"><strong><a href="https://mp.weixin.qq.com/s/tqCxrMEU-ajQumL1i8im9A">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
|
||||
|
||||
# 1971. 寻找图中是否存在路径
|
||||
|
||||
[题目链接](https://leetcode.cn/problems/find-if-path-exists-in-graph/)
|
||||
@ -30,7 +31,7 @@
|
||||
|
||||
## 思路
|
||||
|
||||
这道题目也是并查集基础题目。
|
||||
本题是并查集基础题目。
|
||||
|
||||
首先要知道并查集可以解决什么问题呢?
|
||||
|
||||
@ -39,8 +40,8 @@
|
||||
这里整理出我的并查集模板如下:
|
||||
|
||||
```CPP
|
||||
int n = 1005; // 节点数量3 到 1000
|
||||
int father[1005];
|
||||
int n = 1005; // n根据题目中节点数量而定,一般比节点数量大一点就好
|
||||
vector<int> father = vector<int> (n, 0); // C++里的一种数组结构
|
||||
|
||||
// 并查集初始化
|
||||
void init() {
|
||||
@ -50,79 +51,86 @@ void init() {
|
||||
}
|
||||
// 并查集里寻根的过程
|
||||
int find(int u) {
|
||||
return u == father[u] ? u : father[u] = find(father[u]);
|
||||
}
|
||||
// 将v->u 这条边加入并查集
|
||||
void join(int u, int v) {
|
||||
u = find(u);
|
||||
v = find(v);
|
||||
if (u == v) return ;
|
||||
father[v] = u;
|
||||
return u == father[u] ? u : father[u] = find(father[u]); // 路径压缩
|
||||
}
|
||||
|
||||
// 判断 u 和 v是否找到同一个根
|
||||
bool same(int u, int v) {
|
||||
bool isSame(int u, int v) {
|
||||
u = find(u);
|
||||
v = find(v);
|
||||
return u == v;
|
||||
}
|
||||
|
||||
// 将v->u 这条边加入并查集
|
||||
void join(int u, int v) {
|
||||
u = find(u); // 寻找u的根
|
||||
v = find(v); // 寻找v的根
|
||||
if (u == v) return ; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回
|
||||
father[v] = u;
|
||||
}
|
||||
```
|
||||
|
||||
以上模板汇总,只要修改 n 和father数组的大小就可以了。
|
||||
以上模板中,只要修改 n 大小就可以,本科n不会超过2 * 10^5。
|
||||
|
||||
并查集主要有三个功能。
|
||||
|
||||
1. 寻找根节点,函数:find(int u),也就是判断这个节点的祖先节点是哪个
|
||||
2. 将两个节点接入到同一个集合,函数:join(int u, int v),将两个节点连在同一个根节点上
|
||||
3. 判断两个节点是否在同一个集合,函数:same(int u, int v),就是判断两个节点是不是同一个根节点
|
||||
3. 判断两个节点是否在同一个集合,函数:isSame(int u, int v),就是判断两个节点是不是同一个根节点
|
||||
|
||||
简单介绍并查集之后,我们再来看一下这道题目。
|
||||
|
||||
为什么说这道题目是并查集基础题目,因为 可以直接套用模板。
|
||||
为什么说这道题目是并查集基础题目,题目中各个点是双向图链接,那么判断 一个顶点到另一个顶点有没有有效路径其实就是看这两个顶点是否在同一个集合里。
|
||||
|
||||
如何算是同一个集合呢,有边连在一起,就算是一个集合。
|
||||
|
||||
此时我们就可以直接套用并查集模板。
|
||||
|
||||
使用join(int u, int v)将每条边加入到并查集。
|
||||
|
||||
最后 same(int u, int v) 判断是否是同一个根 就可以里。
|
||||
最后 isSame(int u, int v) 判断是否是同一个根 就可以了。
|
||||
|
||||
代码如下:
|
||||
C++代码如下:
|
||||
|
||||
```c++
|
||||
```CPP
|
||||
class Solution {
|
||||
|
||||
private:
|
||||
int n = 200005; // 节点数量 20000
|
||||
int father[200005];
|
||||
int n = 200005; // 节点数量 20000
|
||||
vector<int> father = vector<int> (n, 0); // C++里的一种数组结构
|
||||
|
||||
// 并查集初始化
|
||||
void init() {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
father[i] = i;
|
||||
for (int i = 0; i < n; ++i) { father[i] = i;
|
||||
}
|
||||
}
|
||||
// 并查集里寻根的过程
|
||||
int find(int u) {
|
||||
return u == father[u] ? u : father[u] = find(father[u]);
|
||||
}
|
||||
// 将v->u 这条边加入并查集
|
||||
void join(int u, int v) {
|
||||
u = find(u);
|
||||
v = find(v);
|
||||
if (u == v) return ;
|
||||
father[v] = u;
|
||||
}
|
||||
// 判断 u 和 v是否找到同一个根,本题用不上
|
||||
bool same(int u, int v) {
|
||||
|
||||
// 判断 u 和 v是否找到同一个根
|
||||
bool isSame(int u, int v) {
|
||||
u = find(u);
|
||||
v = find(v);
|
||||
return u == v;
|
||||
}
|
||||
|
||||
// 将v->u 这条边加入并查集
|
||||
void join(int u, int v) {
|
||||
u = find(u); // 寻找u的根
|
||||
v = find(v); // 寻找v的根
|
||||
if (u == v) return ; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回
|
||||
father[v] = u;
|
||||
}
|
||||
|
||||
public:
|
||||
bool validPath(int n, vector<vector<int>>& edges, int source, int destination) {
|
||||
init();
|
||||
init();
|
||||
for (int i = 0; i < edges.size(); i++) {
|
||||
join(edges[i][0], edges[i][1]);
|
||||
join(edges[i][0], edges[i][1]);
|
||||
}
|
||||
return same(source, destination);
|
||||
return isSame(source, destination);
|
||||
|
||||
}
|
||||
};
|
||||
```
|
||||
|
131
problems/qita/kstar.md
Normal file
131
problems/qita/kstar.md
Normal file
@ -0,0 +1,131 @@
|
||||
# 代码随想录知识星球
|
||||
|
||||
前一阵知识星球刚刚发布了[星球精华-大厂八股文(第三版)](https://programmercarl.com/other/kstar_baguwen.html)
|
||||
|
||||
这份八股文,就有30w字,将近400张思维导图,表格,分析图,整个PDF将近900页的篇幅。
|
||||
|
||||
这些其实都是星球录友们,每日打卡的内容,但这我也仅仅是整理了一部分,因为信息量确实巨大。
|
||||
|
||||
目前星球里已经有将近1000 个精华帖:
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20221028105054.png' width=500 alt=''> </img></div>
|
||||
|
||||
同时还有[计算机2023届求职薪资PDF](https://programmercarl.com/other/2022salary.html)等一些列独家资料,都在星期置顶帖里:
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20230516112821.png' width=500 alt=''> </img></div>
|
||||
|
||||
星球里的录友都可以得到我1V1的指导,**我已经详细回答了7000+个问题**: (这个回答问题数量,可以看出我有劳模的潜质 哈哈)
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20230426103803.png' width=500 alt=''> </img></div>
|
||||
|
||||
有的时候,大家还是需要过来人,给指点一点,甚至是“踹一脚” 就会想清楚很多。
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20220215164352.png' width=500 alt=''> </img></div>
|
||||
|
||||
不仅我回答问题,我还会邀请星球里各个方向的录友来和大家一起交流具体技术问题,这个就是星球导师计划: (如果想提问的话,也在星球置顶1可以找到链接)
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20230516113144.png' width=500 alt=''> </img></div>
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20230516113058.png' width=500 alt=''> </img></div>
|
||||
|
||||
可以看看星球导师计划里具体的问答:
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20230516115057.png' width=500 alt=''> </img></div>
|
||||
|
||||
同时我还给录友们至少修改了上千份的简历,我也总结了很多大家写简历上问题。在 「写简历」这个tab上,可以找到我总结的所有问题和简历模板
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20220516160018.png' width=500 alt=''> </img></div>
|
||||
|
||||
【专业技能】【项目经验】【自我评价】都应该怎么写,面试时候 自我介绍,应该怎么说,我都给出了我的建议:
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20220516155906.png' width=500 alt=''> </img></div>
|
||||
|
||||
|
||||
如果你还在犹豫要不要加入的话,**可以进来体验三天,三天内点击知识星球APP右上角,可以自助全额退款**。 绝对不会坑大家!
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20230607171843.png' width=400 alt=''> </img></div>
|
||||
|
||||
|
||||
一些录友当初也是进来 白嫖一波资料,就退款跑了 哈哈哈,不过后面又加回来,例如这位录友:
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20220516160948.png' width=500 alt=''> </img></div>
|
||||
|
||||
**星球里的资料仅仅是辅助,更重要的是星球里的这一圈人,你会发现 这个圈子的质量非常高!**
|
||||
|
||||
不仅仅是 **211、985录友非常之多**,关键是大家都非常努力上进!
|
||||
|
||||
这是知识星球APP里可以看到,录友们的日常打卡:
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20220516161612.png' width=500 alt=''> </img></div>
|
||||
|
||||
刷星球上的内容,要刷朋友圈,刷抖音,有意义的多。
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20220321152039.png' width=500 alt=''> </img></div>
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20211208223737.png' width=500 alt=''> </img></div>
|
||||
|
||||
星球网页版是这样的:
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20220517161228.png' width=500 alt=''> </img></div>
|
||||
|
||||
加入星球,是很多录友当年做的最有意义的一件事情
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20220103142102.png' width=500 alt=''> </img></div>
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20220310154516.png' width=500 alt=''> </img></div>
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20211217103704.png' width=500 alt=''> </img></div>
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20211122223125.png' width=500 alt=''> </img></div>
|
||||
|
||||
可以看看星球里的交流氛围:
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20211112170200.png' width=500 alt=''> </img></div>
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20211112170840.png' width=500 alt=''> </img></div>
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20211115182306.png' width=500 alt=''> </img></div>
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20220115000350.png' width=500 alt=''> </img></div>
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20220130214431.png' width=500 alt=''> </img></div>
|
||||
|
||||
大家的很多疑问在星球置顶3,我都做了详细的整理,录友都说我是“整理狂魔”,不过大家懒,我就得勤劳一些。
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20220516162241.png' width=500 alt=''> </img></div>
|
||||
|
||||
星球置顶3的信息量非常大,不仅仅是整理各个求职方向的学习路线,还有大家的常见疑惑,我之前回答过的内容,都做了整理。
|
||||
|
||||
大家看完之后,其实对自己就会有明确的规划了。
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20220506151741.png' width=500 alt=''> </img></div>
|
||||
|
||||
给大家看看星球置顶帖3的部分内容,以下仅仅是部分截图:
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20220516215651.png' width=500 alt=''> </img></div>
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20220516215720.png' width=500 alt=''> </img></div>
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20220516215746.png' width=500 alt=''> </img></div>
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20220516215820.png' width=500 alt=''> </img></div>
|
||||
|
||||
|
||||
大家加入星球后,一定要看星球置顶帖和精华帖的内容,你会发现这里很有优秀录友的帖子,包括:各种资料,学习路线,学习心得,规划,职场发展等等。
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20220517161701.png' width=500 alt=''> </img></div>
|
||||
|
||||
很多录友看完之后都更加明确了自己的方向。
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20220506151741.png' width=500 alt=''> </img></div>
|
||||
|
||||
|
||||
相对于其他星球,「代码随想录」知识星球到底怎么样,可以看看录友们是怎么说的。
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.cos.ap-guangzhou.myqcloud.com/pics/20210721143201.png' width=500 alt=''> </img></div>
|
||||
|
||||
最后也欢迎大家加入代码随想录[知识星球](https://mp.weixin.qq.com/s/wPaJumc8afuzWLo72yRlIw),**这里有很多优秀的人,有很多精彩的事!**
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20220209171637.png' width=500 alt=''> </img></div>
|
||||
|
||||
这里依然给出10元代金券,微信扫领代金券加入,如果感觉不值得,**三天内知识星球APP右上角直接全额退款!** 无任何套路。
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20230607171843.png' width=400 alt=''> </img></div>
|
||||
|
||||
|
298
problems/qita/xunlianying.md
Normal file
298
problems/qita/xunlianying.md
Normal file
@ -0,0 +1,298 @@
|
||||
|
||||
# 代码随想录算法训练营
|
||||
|
||||
> 训练营17期将在6月28日开营,目前可以报名,提前拉群,在群里等着开营就好!
|
||||
|
||||
大家可以百度搜索:代码随想录算法训练营, 看看往期录友们在训练营里打卡总结的博客。
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20221104123405.png' width=500 alt=''> </img></div>
|
||||
|
||||
这是训练营里录友坚持到最后一天的打卡,大家可以看看他们的博客是每天都有记录的:
|
||||
|
||||
* [训练营结束,深感坚持是最难的(Java-犯困-东南研二)](https://blog.csdn.net/weixin_57956443/article/details/128995318)
|
||||
* [训练营一刷总结(Java-HQH-研二)](https://blog.csdn.net/weixin_43821876/article/details/128991822)
|
||||
* [训练营总结,一群人才能走的更远(Java-Lixy-已工作南京)](https://blog.csdn.net/weixin_45368277/article/details/128997823)
|
||||
* [训练营总结,中途🐑了,也坚持下来(C++-Jane-科大研二)](https://blog.csdn.net/Jane_10358/article/details/128977424)
|
||||
* [这两个月有很多不可控因素,但依然坚持下来(java-hha-南工大二)](https://blog.csdn.net/qerwtrt4t/article/details/128975401)
|
||||
* [训练营总结,最后坚持下来(C++ - 阿舟 - 已工作武汉)](https://blog.csdn.net/m0_74360161/article/details/129000723)
|
||||
* [训练营总结,一刷知识点回顾(Java-魏-待就业)](https://blog.csdn.net/weixin_48111139/article/details/128973746)
|
||||
* [在训练营中,零基础刷一遍的感受(C++-东风-东北大学研二)](https://blog.csdn.net/nightcood/article/details/128947111)
|
||||
|
||||
|
||||
博客链接:[https://blog.csdn.net/m0_61724447/article/details/128443084](https://blog.csdn.net/m0_61724447/article/details/128443084)
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20230101122746.png' width=500 alt=''> </img></div>
|
||||
|
||||
博客链接:[https://juejin.cn/post/7170304080504586254](https://juejin.cn/post/7170304080504586254)
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20230101122837.png' width=500 alt=''> </img></div>
|
||||
|
||||
博客链接:[https://blog.csdn.net/weixin_44047621/article/details/128430623](https://blog.csdn.net/weixin_44047621/article/details/128430623)
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20230101122913.png' width=500 alt=''> </img></div>
|
||||
|
||||
博客链接:[https://blog.csdn.net/weixin_47467016/article/details/128460565](https://blog.csdn.net/weixin_47467016/article/details/128460565v)
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20230101123012.png' width=500 alt=''> </img></div>
|
||||
|
||||
也有一些录友,把总结发在训练营内部打卡表里,例如:
|
||||
|
||||
昵称:java-低调-已工作
|
||||
|
||||
通过两个月的时间系统性的学习了算法,然后按照不同的题目去做分类,设计的刷题进度也很好,让自己有了一个质的提升,贵在坚持,好在自己也是坚持了下来,**通过自己的坚持,让自己养成了一个刷题的好习惯,这才是最难能可贵的**。
|
||||
|
||||
但是时间跨度有点大,还是要继续坚持之后自己去二刷,这样才能更好的巩固,把算法知识学习的更好。
|
||||
|
||||
---------
|
||||
|
||||
昵称:java-岂几岂几-毕业
|
||||
|
||||
收获真的很大,这是第一次刷算法题,清楚了面试高频题的题型,**巩固了之前摇摇欲坠的自学算法基础**。接下来计划是重刷随想录,并且补充上一亩三分地刷题区置顶贴里列出的题型,在巩固一刷的基础上增加做题量。
|
||||
|
||||
------------
|
||||
|
||||
昵称:python/go-ds-研三
|
||||
|
||||
跟着卡哥的训练营最大的收获就是把代码随想录都通读了一遍,因为进营之前就已经刷过不少力扣题了,但很多都是当时自己捣鼓出来或者看官方题解的。
|
||||
|
||||
而这一次的60天刷题,不管题目做没做过,都看过卡哥的代码随想录了,**这其中的区别也是最大的收获就是知识体系建立起来了**,越往后做题,条理越清晰。
|
||||
|
||||
即使有些题一刷还是做不太出来,但不再像之前自己做那样做题前后都是懵逼状态了,而是有一个清晰明了的判断了。
|
||||
|
||||
但coding能力还是有待改进,接下来要进行二刷,同时也祝卡哥的事业蒸蒸日上,代码随想录越办越好!
|
||||
|
||||
------------
|
||||
|
||||
昵称:Python-ukn-研二
|
||||
|
||||
完美收官,有点小遗憾的是后面dp做得有点赶,没有沉下心来消化,接下来重点把自己不擅长的专题和重点专题二刷甚至三刷。
|
||||
|
||||
**跟着训练营练下来最大的感受是很有信心,有节奏有计划**,每过完一个专题,就多一分成就感,题感也越来越好,期待自己的规律二刷,谢谢一路坚持的小伙伴们!谢谢大佬助手和卡哥!
|
||||
|
||||
|
||||
-----------
|
||||
|
||||
|
||||
### 训练营的目的是什么?
|
||||
|
||||
对于刷题,学算法,[《代码随想录》](https://programmercarl.com/other/publish.html)(programmercarl.com)已经把刷题顺序给大家列好了,大家跟着刷就行。
|
||||
|
||||
但即使这样,其实不少录友还会有很多疑问,不知道怎么用代码随想录,例如:
|
||||
|
||||
* 卡哥,**有没有一起从0开始刷代码随想录的录友,想一起组个队**
|
||||
* 卡哥您好,我是985准研一非科班,自学java, 然后现在在刷代码随想录,**请问需要每个题目的所有解法都掌握吗**?请教下卡哥正确的刷题姿势🙏
|
||||
* **我大概多久才能刷完代码随想录**?
|
||||
* 二叉树,我只掌握 递归够用么?
|
||||
* 很多解法,我是不是只用暴力就可以,**时间比较紧,我还要去掌握优化方法吗**?
|
||||
* 卡哥,**请问跟着代码随想录刷题有答疑的服务吗**? 因为有的题目 自己写的怎么都不对,浪费很多时间,可能过来人指点一下立刻就知道。
|
||||
* 卡哥,我KMP太难了,我跳过可以吗?
|
||||
* 卡哥,我进了刷题群,可是**大家刷题进度不尽相同,所以讨论起来经常不在一个频道上**。
|
||||
* 刚开始还看了一周代码随想录,后来又..摆烂了... **最近又重新再看代码随想录,然后卡住了又摆烂了好几天了**......
|
||||
* 卡哥,**我刷题很容易囫囵吞枣,虽然说代码随想录一刷,但很多内容根本没消化,在进度上欺骗自己**,好像一刷完了,但感觉自己理解的,不到30%。
|
||||
* 卡哥,**感觉之前刷的都忘了,能力没有什么提升,现在还是一道都不会做**。我一刷每道题都得先看看题解然后忘了再去看边看边写。
|
||||
|
||||
**以上这些是不是有戳中某些录友们的痛处**。
|
||||
|
||||
其实对于很多算法基础不太好的录友,即使资料已经很齐全,但还是需要一些规划和答疑。
|
||||
|
||||
而且在时间规划上,因为刚开始刷的录友,不知道 前方题目 是多大难度,所以 一开始计划 一天刷三道,往往因为遇到了一道难题,一天也解决不了,耽误了整体进度,甚至直接开始摆烂,下次再开始刷题可能就很久以后了......
|
||||
|
||||
所以 **代码随想录算法训练营** 帮助大家在规划时间内,有质量的完成代码随想录一刷。
|
||||
|
||||
我亲自给大家规划节奏,大家一起按照我的节奏来,规定时间内,一刷一定能把代码随想录所有内容吃透,然后大家自己去二刷,三刷就好了,师傅领进门修行在个人。
|
||||
|
||||
### 训练营提供一些什么呢?
|
||||
|
||||
1.具体内容
|
||||
|
||||
针对代码随想录上,**195篇算法文章,主要题目150道**,手把手带大家刷完,帮大家做好详细刷题规划,每天布置刷题任务,监督博客记录总结。
|
||||
|
||||
任务布置
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20221007104512.png' width=500 alt=''> </img></div>
|
||||
|
||||
每日规划:
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20221007104345.png' width=500 alt=''> </img></div>
|
||||
|
||||
训练营周期内,每天应该做哪些题目,同时我根据题目的难度,适当调整每天学习安排,不会是 每天固定3题的这种,而是根据难度而定。
|
||||
|
||||
我会告诉大家,哪些解法是一刷的时候必须掌握的,哪些解法可以二刷再去学习,哪些总结是必看的。
|
||||
|
||||
每日打卡:
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20221007104738.png' width=500 alt=''> </img></div>
|
||||
|
||||
关于如果debug自己的代码,训练营会给具体建议:
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20221007105631.png' width=500 alt=''> </img></div>
|
||||
|
||||
训练营群中每日讨论的重点内容都会做整理,在分享给大家训练营成员:
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20221007110042.png' width=500 alt=''> </img></div>
|
||||
|
||||
**同时每天做针对大家的疑问做详细答疑,保证大家消化当天的学习内容**。
|
||||
|
||||
2.**气氛气氛还是气氛**
|
||||
|
||||
训练营中,**大家都是同一个基础,同一个进度刷题,每天刷题题目都是一样的**,这样的一个学习群,大家讨论起来更有意义。
|
||||
**还有会监督机制**,训练营的成员要注册一个自己的博客(自己搭建或者使用博客网站都可以),每天要去写今日刷题心得和总结,来进行打卡。
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20221007103231.png' width=500 alt=''> </img></div>
|
||||
|
||||
3.带大家写博客
|
||||
|
||||
很多录友平时刷题,或者学习技术,没有写博客的习惯,或者因为懒,就不写了。
|
||||
|
||||
但大家学了很多技术之后,发现 好像都忘了。。。
|
||||
|
||||
所以训练营会带着大家写博客,每天都要写博客,博客的标题,格式,我都帮大家规划好,倒逼自己养生记录的习惯。
|
||||
|
||||
因为训练营很多录友开始有了写博客的习惯,以下是一些录友博客的结尾部分:
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20221008095645.png' width=500 alt=''> </img></div>
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20221008095408.png' width=500 alt=''> </img></div>
|
||||
|
||||
每天训练营群里会每天统计大家的博客情况。这样不仅可以监督自己总结,针对大家写的比较好的博客,会给予曝光,增加自己写博客的动力。
|
||||
|
||||
训练营里的录友们可以相互参考对方的博客,看谁总结的更好。
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20221007111116.png' width=500 alt=''> </img></div>
|
||||
|
||||
|
||||
4.关于答疑
|
||||
|
||||
很多录友可能担心自己的问题,得不到解决,或者在群里和大家讨论,也没人回复 导致自己因为小问题卡了很久,甚至直接摆烂好一阵子。
|
||||
|
||||
所以训练营里大家的问题,我都会做答疑。
|
||||
|
||||
估计训练营里的问题会比较多,我也可能回答不过来。所以我会找了算法能力很强的助手协助我给大家答疑,也就是说,**大家刷题遇到问题,不会有后顾之忧,当天的问题,当天一定会得到解决**。
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20221008103558.png' width=500 alt=''> </img></div>
|
||||
|
||||
当然训练营题目答疑,**仅限于 每天规划的题目**,并不会大家刷的其他算法题都做答疑,那样的话工作量很容易不可控(这里我也不会夸大承诺,欺骗大家报名之类的),如果是其他算法题可以在群里和大家交流。
|
||||
|
||||
### 训练营的资料是什么呢?
|
||||
|
||||
**强调一下:训练营里所有的资料,都是我独立制作而且是开源免费的:即代码随想录网站(programmercarl.com),Github:https://github.com/youngyangyang04/leetcode-master和[代码随想录算法公开课](https://mp.weixin.qq.com/s/xncn6IHJGs45sJOChN6V_g)**
|
||||
|
||||
训练营提供给大家的服务是**规划,监督,指导和答疑**。
|
||||
|
||||
至于代码随想录算法内容的质量如何,这个已经是有口皆碑了,基本是面试求职必刷的资料。
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20220815160227.png' width=500 alt=''> </img></div>
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20220815160306.png' width=500 alt=''> </img></div>
|
||||
|
||||
而且代码随想录开源的内容要比市面上 大家付费几百,上千元报的算法训练营的资料都要好的多。
|
||||
|
||||
毕竟内容是开源的,质量如何 大家自己去看就好。
|
||||
|
||||
### 训练营的学习方式
|
||||
|
||||
组织方式:一个学习微信群(180人左右),大家进群之后,等群公告就好,我会通知开始时间和每日刷题计划。
|
||||
|
||||
所需时间:训练营为期60天(两个月),群里每天会布置学习任务,只要大家跟上节奏,60天一定可以刷完代码随想录。
|
||||
|
||||
每日任务:需要花费3-4个小时左右的时间来完成。这是针对一般算法水平的学习速度来规划的时间,不同水平会有差异。
|
||||
|
||||
每周周日会休息一天,没跟上进度的录友,可以跟进度,跟上进度的录友可以复习或者适当放松一下。
|
||||
|
||||
监督机制:训练营里,每天会针对大家每天所刷的题目做答疑,同时也会有监督打卡机制,在群公告里会详细描述。
|
||||
|
||||
所需语言:**所有语种都可以**,毕竟代码随想录几乎支持所有主流语言,**也会针对大家所用的语言做针对性答疑**。
|
||||
|
||||
### 开营时间
|
||||
|
||||
**训练营开始常态化报名,即一直可以报名,当人满180人的时候,就开始新的一期**。 最新的一期可以看文章评论区。
|
||||
|
||||
### 训练营的价格
|
||||
|
||||
大家应该最关心的是价格了,**定价依然是268元**,注意这是两个月训练营的费用,而且是全程规划,指导,监督和答疑。
|
||||
|
||||
(对于[知识星球](https://programmercarl.com/other/kstar.html)里的录友的话,训练营会立减30元,也就是238元,后面如果推出其他服务,星球录友都相当于VIP,都会有优惠。当然如果你已经报了训练营,再去报知识星球,并不给再给大家优惠了,一定要先是星球成员,再报训练营才有优惠)
|
||||
|
||||
大家能在市面上找到算法训练营都价格不菲,基本都是上千的单价,**而且内容和质量并没有 代码随想录 优质**。
|
||||
|
||||
后面一定会涨价的,**如果你确实需要有人带,有监督,给规划,有答疑,能花两个月时间更下来的话,还是早报早学习**。
|
||||
|
||||
### 我适合报名吗?
|
||||
|
||||
符合一下特点的录友可以报名:
|
||||
|
||||
* 基础比较差,没刷过代码随想录或者刚开始刷
|
||||
* 刷过一些代码随想录的题目了,感觉掌握不扎实,想用2个月时间系统重刷一遍
|
||||
* 自己刷题,**很容易遇到各种代码问题,需要有人答疑**
|
||||
* 以前一刷过,但基本都忘了,想高质量二刷
|
||||
* **想找队友,一起从0刷代码随想录**
|
||||
* 自控能力差,遇到点问题就容易躺好一阵子,需要别人监督学习
|
||||
* **想有一个规划时间,来刷完代码随想录**
|
||||
* 不知道代码随想录中哪些解法是必备的,哪些解法是可以简单了解的
|
||||
* 刷题总会忘,感觉刷了和没刷差不多,**不擅长做总结,不擅长写博客记录心得**,自己也懒得写博客写总结
|
||||
|
||||
以下录友不合适报名:
|
||||
|
||||
* 自学能力强,代码随想录资料都是开源的,刷题顺序也列好了,自学能力强的录友自己学就行
|
||||
* 有算法和代码基础,基本算法题遇到的问题,都能通过自己debug解决
|
||||
* 没有两个月时间,每天也不能抽出那么多时间学习算法
|
||||
* 算法0基础,基本的数据结构都没听说过,例如数组,链表。
|
||||
* 编程0基础,基本的编程语言还不会,因为训练营还是默认大家会熟悉所用编程语言里的各种容器的使用
|
||||
|
||||
**训练营不限编程语言**,任何语言都可以报名,都会答疑。
|
||||
|
||||
|
||||
### 常见疑问
|
||||
|
||||
**海外录友有时差可以报名吗**?
|
||||
|
||||
可以的,一期就有很多海外的录友,有疑问在群里也会回复,而且群里讨论的重点内容,都会有总结,不用担心错过了精彩内容。
|
||||
|
||||
**已经工作的录友适合报名吗**?
|
||||
|
||||
适合报名。对于工作的录友,每天未必说一定挤出3-4个小时来刷题。
|
||||
|
||||
对于时间充足的录友,要刷拓展题,要写博客作总结。 如果时间紧张,任务上是可以适当精简。
|
||||
|
||||
所以每日任务弹性还是比较大的,至少跟上进度保证每天的题目代码提交通过了,看看群里的讨论,自己理解加深了就可以。
|
||||
|
||||
工作的录友要学会挤时间,训练营一期录友有不少是工作的,他们是这么搞的:
|
||||
|
||||
训练营每日晚上提前发布明天的任务, 他们第二天通勤 时候 可以先看题想思路,白天抽空看文章解析 看看思路是否一致,看看群里讨论内容,晚上下班可以一口气把当天的题目刷完。
|
||||
|
||||
加入训练营,每日对自己有一个压迫感,挤一挤 时间就有了。
|
||||
|
||||
对于工作的录友,我之前本来计划是安排一期 工作日题量小 休息日题量多一些的训练营,但通过一期发现,包括已经工作的录友,**大家休息日真的没有心思学习,甚至“比工作日更忙”**,所以理想很丰满,现实很骨感。
|
||||
|
||||
**要不要搞三个月四个月半年的训练营**?
|
||||
|
||||
目前来看四个月以上的时间有点太长了,时间长价格也会高,毕竟要服务的时间长了。
|
||||
|
||||
而且刷题在于一鼓作气,把时间拉的太长,很多录友都是前期 动力十足,后面无论是 如何@ 如何公告 如果催大家 赶进度,大家都会无动于衷,从最终效果来看 战线不能太长。
|
||||
|
||||
所以没有逼自己一把 跟上进度的决心,就算搞一年时间的训练营,该放弃的还是会放弃。
|
||||
|
||||
至于三个月的训练营,是可以考虑的,不过安排时间还要待定。
|
||||
|
||||
### 报名方式
|
||||
|
||||
扫码支付268元。 (如果是[代码随想录知识星球](https://programmercarl.com/other/kstar.html)成员录友,只需要支付238元,提交客服的时候需提供知识星球截图,**注意一定要是代码随想录知识星球**)
|
||||
|
||||
<div align="center"><img src='https://code-thinking-1253855093.file.myqcloud.com/pics/20230603175016.png' width=500 alt=''> </img></div>
|
||||
|
||||
付款后,将付款截图发给客服,客服会在24h内统一回复,**所以大家发给客服信息不要急,当天一定会回复的**。
|
||||
|
||||

|
||||
|
||||
客服的联系方式就在大家的微信聊天窗口,不用担心突出聊天窗口错过消息,客服回复之后 会有微信提示的。
|
||||
|
||||
关于训练营的任何问题,可以在客服这里咨询!
|
||||
|
||||
|
||||
### 最后
|
||||
|
||||
训练营其实算是代码随想录的一个补充,其内容都是免费开放的,有学习能力的录友自己学习就好。
|
||||
|
||||
单就从我的 [代码随想录算法公开课](https://mp.weixin.qq.com/s/xncn6IHJGs45sJOChN6V_g) 来说,质量如何,大家可以去看评论区,我完全可以把它做成付费的视频课,但我还是选择免费开放给大家,目前一周会更新四个算法视频,已经快把二叉树系列更完了。
|
||||
|
||||
之所以做训练营,是因为大家太多的问题,不是视频或者文章教程可以解决的,需要的是规划,组织,监督和答疑。
|
||||
|
||||
所以我才组织训练营,搞成付费的也是为了质量更高一些,同时也是因为需要一些门槛,要不然就和普通刷题群没什么区别了。
|
||||
|
||||
等大家跟着代码随想录训练营一路走下来之后,大家再回顾自己两个月学习的内容和总结的博客,**一定会发现 这个价格 物超所值**!
|
||||
|
||||
关于训练营的任何疑问都可以扫码联系客服
|
||||
|
||||

|
||||
|
@ -39,7 +39,7 @@
|
||||
|
||||
什么是完全二叉树?
|
||||
|
||||
完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^(h-1) 个节点。
|
||||
完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层(h从1开始),则该层包含 1~ 2^(h-1) 个节点。
|
||||
|
||||
**大家要自己看完全二叉树的定义,很多同学对完全二叉树其实不是真正的懂了。**
|
||||
|
||||
|
@ -356,76 +356,80 @@ Python:
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def subsetsWithDup(self, nums: List[int]) -> List[List[int]]:
|
||||
res = []
|
||||
nums.sort()
|
||||
def backtracking(start, path):
|
||||
res.append(path)
|
||||
uset = set()
|
||||
for i in range(start, len(nums)):
|
||||
if nums[i] not in uset:
|
||||
backtracking(i + 1, path + [nums[i]])
|
||||
uset.add(nums[i])
|
||||
def subsetsWithDup(self, nums):
|
||||
nums.sort() # 去重需要排序
|
||||
result = []
|
||||
self.backtracking(nums, 0, [], result)
|
||||
return result
|
||||
|
||||
def backtracking(self, nums, startIndex, path, result):
|
||||
result.append(path[:])
|
||||
used = set()
|
||||
for i in range(startIndex, len(nums)):
|
||||
if nums[i] in used:
|
||||
continue
|
||||
used.add(nums[i])
|
||||
path.append(nums[i])
|
||||
self.backtracking(nums, i + 1, path, result)
|
||||
path.pop()
|
||||
|
||||
backtracking(0, [])
|
||||
return res
|
||||
```
|
||||
|
||||
**40. 组合总和 II**
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
|
||||
|
||||
res = []
|
||||
def combinationSum2(self, candidates, target):
|
||||
candidates.sort()
|
||||
result = []
|
||||
self.backtracking(candidates, target, 0, 0, [], result)
|
||||
return result
|
||||
|
||||
def backtracking(start, path):
|
||||
if sum(path) == target:
|
||||
res.append(path)
|
||||
elif sum(path) < target:
|
||||
used = set()
|
||||
for i in range(start, len(candidates)):
|
||||
if candidates[i] in used:
|
||||
continue
|
||||
else:
|
||||
used.add(candidates[i])
|
||||
backtracking(i + 1, path + [candidates[i]])
|
||||
|
||||
backtracking(0, [])
|
||||
def backtracking(self, candidates, target, sum, startIndex, path, result):
|
||||
if sum == target:
|
||||
result.append(path[:])
|
||||
return
|
||||
used = set()
|
||||
for i in range(startIndex, len(candidates)):
|
||||
if sum + candidates[i] > target:
|
||||
break
|
||||
if candidates[i] in used:
|
||||
continue
|
||||
used.add(candidates[i])
|
||||
sum += candidates[i]
|
||||
path.append(candidates[i])
|
||||
self.backtracking(candidates, target, sum, i + 1, path, result)
|
||||
sum -= candidates[i]
|
||||
path.pop()
|
||||
|
||||
return res
|
||||
```
|
||||
|
||||
**47. 全排列 II**
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def permuteUnique(self, nums: List[int]) -> List[List[int]]:
|
||||
path = []
|
||||
res = []
|
||||
used = [False]*len(nums)
|
||||
def permuteUnique(self, nums):
|
||||
nums.sort() # 排序
|
||||
result = []
|
||||
self.backtracking(nums, [False] * len(nums), [], result)
|
||||
return result
|
||||
|
||||
def backtracking():
|
||||
if len(path) == len(nums):
|
||||
res.append(path.copy())
|
||||
|
||||
deduplicate = set()
|
||||
for i, num in enumerate(nums):
|
||||
if used[i] == True:
|
||||
continue
|
||||
if num in deduplicate:
|
||||
continue
|
||||
def backtracking(self, nums, used, path, result):
|
||||
if len(path) == len(nums):
|
||||
result.append(path[:])
|
||||
return
|
||||
used_set = set()
|
||||
for i in range(len(nums)):
|
||||
if nums[i] in used_set:
|
||||
continue
|
||||
if not used[i]:
|
||||
used_set.add(nums[i])
|
||||
used[i] = True
|
||||
path.append(nums[i])
|
||||
backtracking()
|
||||
used[i] = False
|
||||
self.backtracking(nums, used, path, result)
|
||||
path.pop()
|
||||
deduplicate.add(num)
|
||||
|
||||
backtracking()
|
||||
used[i] = False
|
||||
|
||||
return res
|
||||
```
|
||||
|
||||
JavaScript:
|
||||
|
@ -8,7 +8,7 @@
|
||||
|
||||
> 号外!!代码随想录图论内容已经计划开更了!
|
||||
|
||||
在[深度优先搜索](https://leetcode.cn/problems/all-paths-from-source-to-target/solution/by-carlsun-2-66pf/)的讲解中,我们就讲过深度优先搜索和广度优先搜索的区别。
|
||||
在[深度优先搜索](https://programmercarl.com/图论深搜理论基础.html)的讲解中,我们就讲过深度优先搜索和广度优先搜索的区别。
|
||||
|
||||
广搜(bfs)是一圈一圈的搜索过程,和深搜(dfs)是一条路跑到黑然后在回溯。
|
||||
|
@ -6,7 +6,7 @@
|
||||
|
||||
# 深度优先搜索理论基础
|
||||
|
||||
录友们期待图论内容已久了,为什么鸽了这么久,主要是最近半年开始更新[代码随想录算法公开课](https://mp.weixin.qq.com/s/xncn6IHJGs45sJOChN6V_g),是开源在B站的算法视频,已经帮助非常多基础不好的录友学习算法。
|
||||
录友们期待图论内容已久了,为什么鸽了这么久,主要是最近半年开始更新[代码随想录算法公开课](https://www.bilibili.com/video/BV1fA4y1o715/),是开源在B站的算法视频,已经帮助非常多基础不好的录友学习算法。
|
||||
|
||||
录视频其实是非常累的,也要花很多时间,所以图论这边就没抽出时间来。
|
||||
|
||||
|
@ -339,38 +339,63 @@ public class BagProblem {
|
||||
```
|
||||
|
||||
### python
|
||||
|
||||
无参数版
|
||||
```python
|
||||
def test_2_wei_bag_problem1(bag_size, weight, value) -> int:
|
||||
rows, cols = len(weight), bag_size + 1
|
||||
dp = [[0 for _ in range(cols)] for _ in range(rows)]
|
||||
def test_2_wei_bag_problem1():
|
||||
weight = [1, 3, 4]
|
||||
value = [15, 20, 30]
|
||||
bagweight = 4
|
||||
|
||||
# 初始化dp数组.
|
||||
for i in range(rows):
|
||||
dp[i][0] = 0
|
||||
first_item_weight, first_item_value = weight[0], value[0]
|
||||
for j in range(1, cols):
|
||||
if first_item_weight <= j:
|
||||
dp[0][j] = first_item_value
|
||||
# 二维数组
|
||||
dp = [[0] * (bagweight + 1) for _ in range(len(weight))]
|
||||
|
||||
# 更新dp数组: 先遍历物品, 再遍历背包.
|
||||
for i in range(1, len(weight)):
|
||||
cur_weight, cur_val = weight[i], value[i]
|
||||
for j in range(1, cols):
|
||||
if cur_weight > j: # 说明背包装不下当前物品.
|
||||
dp[i][j] = dp[i - 1][j] # 所以不装当前物品.
|
||||
else:
|
||||
# 定义dp数组: dp[i][j] 前i个物品里,放进容量为j的背包,价值总和最大是多少。
|
||||
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - cur_weight]+ cur_val)
|
||||
# 初始化
|
||||
for j in range(weight[0], bagweight + 1):
|
||||
dp[0][j] = value[0]
|
||||
|
||||
print(dp)
|
||||
# weight数组的大小就是物品个数
|
||||
for i in range(1, len(weight)): # 遍历物品
|
||||
for j in range(bagweight + 1): # 遍历背包容量
|
||||
if j < weight[i]:
|
||||
dp[i][j] = dp[i - 1][j]
|
||||
else:
|
||||
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])
|
||||
|
||||
print(dp[len(weight) - 1][bagweight])
|
||||
|
||||
test_2_wei_bag_problem1()
|
||||
|
||||
```
|
||||
有参数版
|
||||
```python
|
||||
def test_2_wei_bag_problem1(weight, value, bagweight):
|
||||
# 二维数组
|
||||
dp = [[0] * (bagweight + 1) for _ in range(len(weight))]
|
||||
|
||||
# 初始化
|
||||
for j in range(weight[0], bagweight + 1):
|
||||
dp[0][j] = value[0]
|
||||
|
||||
# weight数组的大小就是物品个数
|
||||
for i in range(1, len(weight)): # 遍历物品
|
||||
for j in range(bagweight + 1): # 遍历背包容量
|
||||
if j < weight[i]:
|
||||
dp[i][j] = dp[i - 1][j]
|
||||
else:
|
||||
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])
|
||||
|
||||
return dp[len(weight) - 1][bagweight]
|
||||
|
||||
if __name__ == "__main__":
|
||||
bag_size = 4
|
||||
weight = [1, 3, 4]
|
||||
value = [15, 20, 30]
|
||||
test_2_wei_bag_problem1(bag_size, weight, value)
|
||||
|
||||
weight = [1, 3, 4]
|
||||
value = [15, 20, 30]
|
||||
bagweight = 4
|
||||
|
||||
result = test_2_wei_bag_problem1(weight, value, bagweight)
|
||||
print(result)
|
||||
|
||||
|
||||
```
|
||||
|
||||
|
||||
|
@ -246,25 +246,46 @@ int main() {
|
||||
|
||||
|
||||
### Python
|
||||
无参版
|
||||
```python
|
||||
def test_1_wei_bag_problem():
|
||||
weight = [1, 3, 4]
|
||||
value = [15, 20, 30]
|
||||
bag_weight = 4
|
||||
# 初始化: 全为0
|
||||
dp = [0] * (bag_weight + 1)
|
||||
bagWeight = 4
|
||||
|
||||
# 先遍历物品, 再遍历背包容量
|
||||
for i in range(len(weight)):
|
||||
for j in range(bag_weight, weight[i] - 1, -1):
|
||||
# 递归公式
|
||||
# 初始化
|
||||
dp = [0] * (bagWeight + 1)
|
||||
for i in range(len(weight)): # 遍历物品
|
||||
for j in range(bagWeight, weight[i] - 1, -1): # 遍历背包容量
|
||||
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
|
||||
|
||||
print(dp)
|
||||
print(dp[bagWeight])
|
||||
|
||||
|
||||
test_1_wei_bag_problem()
|
||||
```
|
||||
有参版
|
||||
```python
|
||||
def test_1_wei_bag_problem(weight, value, bagWeight):
|
||||
# 初始化
|
||||
dp = [0] * (bagWeight + 1)
|
||||
for i in range(len(weight)): # 遍历物品
|
||||
for j in range(bagWeight, weight[i] - 1, -1): # 遍历背包容量
|
||||
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
|
||||
|
||||
return dp[bagWeight]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
weight = [1, 3, 4]
|
||||
value = [15, 20, 30]
|
||||
bagweight = 4
|
||||
|
||||
result = test_1_wei_bag_problem(weight, value, bagweight)
|
||||
print(result)
|
||||
|
||||
```
|
||||
### Go
|
||||
```go
|
||||
func test_1_wei_bag_problem(weight, value []int, bagWeight int) int {
|
||||
|
@ -194,55 +194,127 @@ public void testMultiPack2(){
|
||||
|
||||
Python:
|
||||
|
||||
改变物品数量为01背包格式(无参版)
|
||||
```python
|
||||
def test_multi_pack1():
|
||||
'''版本一:改变物品数量为01背包格式'''
|
||||
def test_multi_pack():
|
||||
weight = [1, 3, 4]
|
||||
value = [15, 20, 30]
|
||||
nums = [2, 3, 2]
|
||||
bag_weight = 10
|
||||
bagWeight = 10
|
||||
|
||||
# 将数量大于1的物品展开
|
||||
for i in range(len(nums)):
|
||||
# 将物品展开数量为1
|
||||
while nums[i] > 1:
|
||||
weight.append(weight[i])
|
||||
value.append(value[i])
|
||||
nums[i] -= 1
|
||||
|
||||
dp = [0]*(bag_weight + 1)
|
||||
# 遍历物品
|
||||
for i in range(len(weight)):
|
||||
# 遍历背包
|
||||
for j in range(bag_weight, weight[i] - 1, -1):
|
||||
|
||||
dp = [0] * (bagWeight + 1)
|
||||
for i in range(len(weight)): # 遍历物品
|
||||
for j in range(bagWeight, weight[i] - 1, -1): # 遍历背包容量
|
||||
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
|
||||
|
||||
print(" ".join(map(str, dp)))
|
||||
for j in range(bagWeight + 1):
|
||||
print(dp[j], end=" ")
|
||||
print()
|
||||
|
||||
def test_multi_pack2():
|
||||
'''版本:改变遍历个数'''
|
||||
weight = [1, 3, 4]
|
||||
value = [15, 20, 30]
|
||||
nums = [2, 3, 2]
|
||||
bag_weight = 10
|
||||
|
||||
dp = [0]*(bag_weight + 1)
|
||||
for i in range(len(weight)):
|
||||
for j in range(bag_weight, weight[i] - 1, -1):
|
||||
# 以上是01背包,加上遍历个数
|
||||
for k in range(1, nums[i] + 1):
|
||||
if j - k*weight[i] >= 0:
|
||||
dp[j] = max(dp[j], dp[j - k*weight[i]] + k*value[i])
|
||||
|
||||
print(" ".join(map(str, dp)))
|
||||
print(dp[bagWeight])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_multi_pack1()
|
||||
test_multi_pack2()
|
||||
test_multi_pack()
|
||||
|
||||
```
|
||||
|
||||
|
||||
改变遍历个数(无参版)
|
||||
```python
|
||||
def test_multi_pack():
|
||||
weight = [1, 3, 4]
|
||||
value = [15, 20, 30]
|
||||
nums = [2, 3, 2]
|
||||
bagWeight = 10
|
||||
dp = [0] * (bagWeight + 1)
|
||||
|
||||
for i in range(len(weight)): # 遍历物品
|
||||
for j in range(bagWeight, weight[i] - 1, -1): # 遍历背包容量
|
||||
# 以上为01背包,然后加一个遍历个数
|
||||
for k in range(1, nums[i] + 1): # 遍历个数
|
||||
if j - k * weight[i] >= 0:
|
||||
dp[j] = max(dp[j], dp[j - k * weight[i]] + k * value[i])
|
||||
|
||||
# 打印一下dp数组
|
||||
for j in range(bagWeight + 1):
|
||||
print(dp[j], end=" ")
|
||||
print()
|
||||
|
||||
print(dp[bagWeight])
|
||||
|
||||
|
||||
test_multi_pack()
|
||||
|
||||
```
|
||||
|
||||
|
||||
改变物品数量为01背包格式(有参版)
|
||||
```python
|
||||
def test_multi_pack(weight, value, nums, bagWeight):
|
||||
# 将数量大于1的物品展开
|
||||
for i in range(len(nums)):
|
||||
while nums[i] > 1:
|
||||
weight.append(weight[i])
|
||||
value.append(value[i])
|
||||
nums[i] -= 1
|
||||
|
||||
dp = [0] * (bagWeight + 1)
|
||||
for i in range(len(weight)): # 遍历物品
|
||||
for j in range(bagWeight, weight[i] - 1, -1): # 遍历背包容量
|
||||
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
|
||||
for j in range(bagWeight + 1):
|
||||
print(dp[j], end=" ")
|
||||
print()
|
||||
|
||||
print(dp[bagWeight])
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
weight = [1, 3, 4]
|
||||
value = [15, 20, 30]
|
||||
nums = [2, 3, 2]
|
||||
bagWeight = 10
|
||||
test_multi_pack(weight, value, nums, bagWeight)
|
||||
```
|
||||
|
||||
|
||||
改变遍历个数(有参版)
|
||||
```python
|
||||
def test_multi_pack(weight, value, nums, bagWeight):
|
||||
dp = [0] * (bagWeight + 1)
|
||||
|
||||
for i in range(len(weight)): # 遍历物品
|
||||
for j in range(bagWeight, weight[i] - 1, -1): # 遍历背包容量
|
||||
# 以上为01背包,然后加一个遍历个数
|
||||
for k in range(1, nums[i] + 1): # 遍历个数
|
||||
if j - k * weight[i] >= 0:
|
||||
dp[j] = max(dp[j], dp[j - k * weight[i]] + k * value[i])
|
||||
|
||||
# 使用 join 函数打印 dp 数组
|
||||
print(' '.join(str(dp[j]) for j in range(bagWeight + 1)))
|
||||
|
||||
print(dp[bagWeight])
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
weight = [1, 3, 4]
|
||||
value = [15, 20, 30]
|
||||
nums = [2, 3, 2]
|
||||
bagWeight = 10
|
||||
test_multi_pack(weight, value, nums, bagWeight)
|
||||
|
||||
```
|
||||
Go:
|
||||
|
||||
```go
|
||||
|
@ -223,43 +223,81 @@ private static void testCompletePackAnotherWay(){
|
||||
|
||||
Python:
|
||||
|
||||
|
||||
|
||||
先遍历物品,再遍历背包(无参版)
|
||||
```python
|
||||
# 先遍历物品,再遍历背包
|
||||
def test_complete_pack1():
|
||||
def test_CompletePack():
|
||||
weight = [1, 3, 4]
|
||||
value = [15, 20, 30]
|
||||
bag_weight = 4
|
||||
|
||||
dp = [0]*(bag_weight + 1)
|
||||
|
||||
for i in range(len(weight)):
|
||||
for j in range(weight[i], bag_weight + 1):
|
||||
bagWeight = 4
|
||||
dp = [0] * (bagWeight + 1)
|
||||
for i in range(len(weight)): # 遍历物品
|
||||
for j in range(weight[i], bagWeight + 1): # 遍历背包容量
|
||||
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
|
||||
|
||||
print(dp[bag_weight])
|
||||
print(dp[bagWeight])
|
||||
|
||||
# 先遍历背包,再遍历物品
|
||||
def test_complete_pack2():
|
||||
weight = [1, 3, 4]
|
||||
value = [15, 20, 30]
|
||||
bag_weight = 4
|
||||
test_CompletePack()
|
||||
|
||||
dp = [0]*(bag_weight + 1)
|
||||
|
||||
for j in range(bag_weight + 1):
|
||||
for i in range(len(weight)):
|
||||
if j >= weight[i]: dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
|
||||
|
||||
print(dp[bag_weight])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_complete_pack1()
|
||||
test_complete_pack2()
|
||||
```
|
||||
|
||||
先遍历物品,再遍历背包(有参版)
|
||||
```python
|
||||
def test_CompletePack(weight, value, bagWeight):
|
||||
dp = [0] * (bagWeight + 1)
|
||||
for i in range(len(weight)): # 遍历物品
|
||||
for j in range(weight[i], bagWeight + 1): # 遍历背包容量
|
||||
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
|
||||
return dp[bagWeight]
|
||||
|
||||
if __name__ == "__main__":
|
||||
weight = [1, 3, 4]
|
||||
value = [15, 20, 30]
|
||||
bagWeight = 4
|
||||
result = test_CompletePack(weight, value, bagWeight)
|
||||
print(result)
|
||||
|
||||
```
|
||||
先遍历背包,再遍历物品(无参版)
|
||||
```python
|
||||
def test_CompletePack():
|
||||
weight = [1, 3, 4]
|
||||
value = [15, 20, 30]
|
||||
bagWeight = 4
|
||||
|
||||
dp = [0] * (bagWeight + 1)
|
||||
|
||||
for j in range(bagWeight + 1): # 遍历背包容量
|
||||
for i in range(len(weight)): # 遍历物品
|
||||
if j - weight[i] >= 0:
|
||||
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
|
||||
|
||||
print(dp[bagWeight])
|
||||
|
||||
test_CompletePack()
|
||||
|
||||
|
||||
```
|
||||
|
||||
先遍历背包,再遍历物品(有参版)
|
||||
```python
|
||||
def test_CompletePack(weight, value, bagWeight):
|
||||
dp = [0] * (bagWeight + 1)
|
||||
for j in range(bagWeight + 1): # 遍历背包容量
|
||||
for i in range(len(weight)): # 遍历物品
|
||||
if j - weight[i] >= 0:
|
||||
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
|
||||
return dp[bagWeight]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
weight = [1, 3, 4]
|
||||
value = [15, 20, 30]
|
||||
bagWeight = 4
|
||||
result = test_CompletePack(weight, value, bagWeight)
|
||||
print(result)
|
||||
|
||||
```
|
||||
|
||||
Go:
|
||||
```go
|
||||
@ -388,6 +426,43 @@ object Solution {
|
||||
}
|
||||
```
|
||||
|
||||
Rust:
|
||||
|
||||
```rust
|
||||
impl Solution {
|
||||
// 先遍历物品
|
||||
fn complete_pack() {
|
||||
let (goods, bag_size) = (vec![(1, 15), (3, 20), (4, 30)], 4);
|
||||
let mut dp = vec![0; bag_size + 1];
|
||||
for (weight, value) in goods {
|
||||
for j in weight..=bag_size {
|
||||
dp[j] = dp[j].max(dp[j - weight] + value);
|
||||
}
|
||||
}
|
||||
println!("先遍历物品:{}", dp[bag_size]);
|
||||
}
|
||||
|
||||
// 先遍历背包
|
||||
fn complete_pack_after() {
|
||||
let (goods, bag_size) = (vec![(1, 15), (3, 20), (4, 30)], 4);
|
||||
let mut dp = vec![0; bag_size + 1];
|
||||
for i in 0..=bag_size {
|
||||
for (weight, value) in &goods {
|
||||
if i >= *weight {
|
||||
dp[i] = dp[i].max(dp[i - weight] + value);
|
||||
}
|
||||
}
|
||||
}
|
||||
println!("先遍历背包:{}", dp[bag_size]);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_complete_pack() {
|
||||
Solution::complete_pack();
|
||||
Solution::complete_pack_after();
|
||||
}
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
|
Reference in New Issue
Block a user