Restructure folders.

This commit is contained in:
Oleksii Trekhleb
2018-04-26 07:26:12 +03:00
parent 9bef8de6b1
commit c62a6ceabf
20 changed files with 9 additions and 8 deletions

View File

@ -1,14 +0,0 @@
# Cartesian Product
In set theory a Cartesian product is a mathematical operation that returns a set
(or product set or simply product) from multiple sets. That is, for sets A and B,
the Cartesian product A × B is the set of all ordered pairs (a, b)
where a ∈ A and b ∈ B.
Cartesian product `AxB` of two sets `A={x,y,z}` and `B={1,2,3}`
![Cartesian Product of Two Sets](https://upload.wikimedia.org/wikipedia/commons/4/4e/Cartesian_Product_qtl1.svg)
## References
[Wikipedia](https://en.wikipedia.org/wiki/Cartesian_product)

View File

@ -1,19 +0,0 @@
import cartesianProduct from '../cartesianProduct';
describe('cartesianProduct', () => {
it('should return null if there is not enough info for calculation', () => {
const product1 = cartesianProduct([1], null);
const product2 = cartesianProduct([], null);
expect(product1).toBeNull();
expect(product2).toBeNull();
});
it('should calculate the product of two sets', () => {
const product1 = cartesianProduct([1], [1]);
const product2 = cartesianProduct([1, 2], [3, 5]);
expect(product1).toEqual([[1, 1]]);
expect(product2).toEqual([[1, 3], [1, 5], [2, 3], [2, 5]]);
});
});

View File

@ -1,15 +0,0 @@
export default function cartesianProduct(setA, setB) {
if (!setA || !setB || !setA.length || !setB.length) {
return null;
}
const product = [];
for (let indexA = 0; indexA < setA.length; indexA += 1) {
for (let indexB = 0; indexB < setB.length; indexB += 1) {
product.push([setA[indexA], setB[indexB]]);
}
}
return product;
}

View File

@ -1,55 +0,0 @@
# Combinations
When the order doesn't matter, it is a **Combination**.
When the order **does** matter it is a **Permutation**.
**"My fruit salad is a combination of apples, grapes and bananas"**
We don't care what order the fruits are in, they could also be
"bananas, grapes and apples" or "grapes, apples and bananas",
its the same fruit salad.
## Combinations without repetitions
This is how lotteries work. The numbers are drawn one at a
time, and if we have the lucky numbers (no matter what order)
we win!
No Repetition: such as lottery numbers `(2,14,15,27,30,33)`
**Number of combinations**
![Formula](https://www.mathsisfun.com/combinatorics/images/combinations-no-repeat.png)
where `n` is the number of things to choose from, and we choose `r` of them,
no repetition, order doesn't matter.
It is often called "n choose r" (such as "16 choose 3"). And is also known as the Binomial Coefficient.
## Combinations with repetitions
Repetition is Allowed: such as coins in your pocket `(5,5,5,10,10)`
Or let us say there are five flavours of icecream:
`banana`, `chocolate`, `lemon`, `strawberry` and `vanilla`.
We can have three scoops. How many variations will there be?
Let's use letters for the flavours: `{b, c, l, s, v}`.
Example selections include:
- `{c, c, c}` (3 scoops of chocolate)
- `{b, l, v}` (one each of banana, lemon and vanilla)
- `{b, v, v}` (one of banana, two of vanilla)
**Number of combinations**
![Formula](https://www.mathsisfun.com/combinatorics/images/combinations-repeat.gif)
Where `n` is the number of things to choose from, and we
choose `r` of them. Repetition allowed,
order doesn't matter.
## References
[Math Is Fun](https://www.mathsisfun.com/combinatorics/combinations-permutations.html)

View File

@ -1,59 +0,0 @@
import combineWithRepetitions from '../combineWithRepetitions';
import factorial from '../../factorial/factorial';
describe('combineWithRepetitions', () => {
it('should combine string with repetitions', () => {
expect(combineWithRepetitions(['A'], 1)).toEqual([
['A'],
]);
expect(combineWithRepetitions(['A', 'B'], 1)).toEqual([
['A'],
['B'],
]);
expect(combineWithRepetitions(['A', 'B'], 2)).toEqual([
['A', 'A'],
['A', 'B'],
['B', 'B'],
]);
expect(combineWithRepetitions(['A', 'B'], 3)).toEqual([
['A', 'A', 'A'],
['A', 'A', 'B'],
['A', 'B', 'B'],
['B', 'B', 'B'],
]);
expect(combineWithRepetitions(['A', 'B', 'C'], 2)).toEqual([
['A', 'A'],
['A', 'B'],
['A', 'C'],
['B', 'B'],
['B', 'C'],
['C', 'C'],
]);
expect(combineWithRepetitions(['A', 'B', 'C'], 3)).toEqual([
['A', 'A', 'A'],
['A', 'A', 'B'],
['A', 'A', 'C'],
['A', 'B', 'B'],
['A', 'B', 'C'],
['A', 'C', 'C'],
['B', 'B', 'B'],
['B', 'B', 'C'],
['B', 'C', 'C'],
['C', 'C', 'C'],
]);
const combinationOptions = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'];
const combinationSlotsNumber = 4;
const combinations = combineWithRepetitions(combinationOptions, combinationSlotsNumber);
const n = combinationOptions.length;
const r = combinationSlotsNumber;
const expectedNumberOfCombinations = factorial((r + n) - 1) / (factorial(r) * factorial(n - 1));
expect(combinations.length).toBe(expectedNumberOfCombinations);
});
});

View File

@ -1,60 +0,0 @@
import combineWithoutRepetitions from '../combineWithoutRepetitions';
import factorial from '../../factorial/factorial';
describe('combineWithoutRepetitions', () => {
it('should combine string without repetitions', () => {
expect(combineWithoutRepetitions(['A', 'B'], 3)).toEqual([]);
expect(combineWithoutRepetitions(['A', 'B'], 1)).toEqual([
['A'],
['B'],
]);
expect(combineWithoutRepetitions(['A'], 1)).toEqual([
['A'],
]);
expect(combineWithoutRepetitions(['A', 'B'], 2)).toEqual([
['A', 'B'],
]);
expect(combineWithoutRepetitions(['A', 'B', 'C'], 2)).toEqual([
['A', 'B'],
['A', 'C'],
['B', 'C'],
]);
expect(combineWithoutRepetitions(['A', 'B', 'C'], 3)).toEqual([
['A', 'B', 'C'],
]);
expect(combineWithoutRepetitions(['A', 'B', 'C', 'D'], 3)).toEqual([
['A', 'B', 'C'],
['A', 'B', 'D'],
['A', 'C', 'D'],
['B', 'C', 'D'],
]);
expect(combineWithoutRepetitions(['A', 'B', 'C', 'D', 'E'], 3)).toEqual([
['A', 'B', 'C'],
['A', 'B', 'D'],
['A', 'B', 'E'],
['A', 'C', 'D'],
['A', 'C', 'E'],
['A', 'D', 'E'],
['B', 'C', 'D'],
['B', 'C', 'E'],
['B', 'D', 'E'],
['C', 'D', 'E'],
]);
const combinationOptions = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'];
const combinationSlotsNumber = 4;
const combinations = combineWithoutRepetitions(combinationOptions, combinationSlotsNumber);
const n = combinationOptions.length;
const r = combinationSlotsNumber;
const expectedNumberOfCombinations = factorial(n) / (factorial(r) * factorial(n - r));
expect(combinations.length).toBe(expectedNumberOfCombinations);
});
});

View File

@ -1,38 +0,0 @@
/**
* @param {*[]} combinationOptions
* @param {number} combinationLength
* @return {*[]}
*/
export default function combineWithRepetitions(combinationOptions, combinationLength) {
// If combination length equal to 0 then return empty combination.
if (combinationLength === 0) {
return [[]];
}
// If combination options are empty then return "no-combinations" array.
if (combinationOptions.length === 0) {
return [];
}
// Init combinations array.
const combos = [];
// Find all shorter combinations and attach head to each of those.
const headCombo = [combinationOptions[0]];
const shorterCombos = combineWithRepetitions(combinationOptions, combinationLength - 1);
for (let combinationIndex = 0; combinationIndex < shorterCombos.length; combinationIndex += 1) {
const combo = headCombo.concat(shorterCombos[combinationIndex]);
combos.push(combo);
}
// Let's shift head to the right and calculate all the rest combinations.
const combinationsWithoutHead = combineWithRepetitions(
combinationOptions.slice(1),
combinationLength,
);
// Join all combinations and return them.
return combos.concat(combinationsWithoutHead);
}

View File

@ -1,68 +0,0 @@
/*
@see: https://stackoverflow.com/a/127898/7794070
Lets say your array of letters looks like this: "ABCDEFGH".
You have three indices (i, j, k) indicating which letters you
are going to use for the current word, You start with:
A B C D E F G H
^ ^ ^
i j k
First you vary k, so the next step looks like that:
A B C D E F G H
^ ^ ^
i j k
If you reached the end you go on and vary j and then k again.
A B C D E F G H
^ ^ ^
i j k
A B C D E F G H
^ ^ ^
i j k
Once you j reached G you start also to vary i.
A B C D E F G H
^ ^ ^
i j k
A B C D E F G H
^ ^ ^
i j k
...
*/
/**
* @param {*[]} combinationOptions
* @param {number} combinationLength
* @return {*[]}
*/
export default function combineWithoutRepetitions(combinationOptions, combinationLength) {
// If combination length is just 1 then return combinationOptions.
if (combinationLength === 1) {
return combinationOptions.map(option => [option]);
}
// Init combinations array.
const combinations = [];
for (let i = 0; i <= (combinationOptions.length - combinationLength); i += 1) {
const smallerCombinations = combineWithoutRepetitions(
combinationOptions.slice(i + 1),
combinationLength - 1,
);
for (let j = 0; j < smallerCombinations.length; j += 1) {
const combination = [combinationOptions[i]].concat(smallerCombinations[j]);
combinations.push(combination);
}
}
// Return all calculated combinations.
return combinations;
}

View File

@ -1,15 +0,0 @@
# FisherYates shuffle
The FisherYates shuffle is an algorithm for generating a random
permutation of a finite sequence—in plain terms, the algorithm
shuffles the sequence. The algorithm effectively puts all the
elements into a hat; it continually determines the next element
by randomly drawing an element from the hat until no elements
remain. The algorithm produces an unbiased permutation: every
permutation is equally likely. The modern version of the
algorithm is efficient: it takes time proportional to the
number of items being shuffled and shuffles them in place.
## References
[Wikipedia](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle)

View File

@ -1,19 +0,0 @@
import fisherYates from '../fisherYates';
import { sortedArr } from '../../../sorting/SortTester';
import QuickSort from '../../../sorting/quick-sort/QuickSort';
describe('fisherYates', () => {
it('should shuffle small arrays', () => {
expect(fisherYates([])).toEqual([]);
expect(fisherYates([1])).toEqual([1]);
});
it('should shuffle array randomly', () => {
const shuffledArray = fisherYates(sortedArr);
const sorter = new QuickSort();
expect(shuffledArray.length).toBe(sortedArr.length);
expect(shuffledArray).not.toEqual(sortedArr);
expect(sorter.sort(shuffledArray)).toEqual(sortedArr);
});
});

View File

@ -1,21 +0,0 @@
/**
* @param {*[]} originalArray
* @return {*[]}
*/
export default function fisherYates(originalArray) {
// Clone array from preventing original array from modification (for testing purpose).
const array = originalArray.slice(0);
if (array.length <= 1) {
return array;
}
for (let i = (array.length - 1); i > 0; i -= 1) {
const randomIndex = Math.floor(Math.random() * (i + 1));
const tmp = array[randomIndex];
array[randomIndex] = array[i];
array[i] = tmp;
}
return array;
}

View File

@ -1,42 +0,0 @@
# Permutations
When the order doesn't matter, it is a **Combination**.
When the order **does** matter it is a **Permutation**.
**"The combination to the safe is 472"**. We do care about the order. `724` won't work, nor will `247`.
It has to be exactly `4-7-2`.
## Permutations without repetitions
A permutation, also called an “arrangement number” or “order”, is a rearrangement of
the elements of an ordered list `S` into a one-to-one correspondence with `S` itself.
Below are the permutations of string `ABC`.
`ABC ACB BAC BCA CBA CAB`
Or for example the first three people in a running race: you can't be first and second.
**Number of combinations**
```
n * (n-1) * (n -2) * ... * 1 = n!
```
## Permutations with repetitions
When repetition is allowed we have permutations with repetitions.
For example the the lock below: it could be `333`.
![Permutation Lock](https://www.mathsisfun.com/combinatorics/images/combination-lock.jpg)
**Number of combinations**
```
n * n * n ... (r times) = n^r
```
## References
[Math Is Fun](https://www.mathsisfun.com/combinatorics/combinations-permutations.html)

View File

@ -1,55 +0,0 @@
import permutateWithRepetitions from '../permutateWithRepetitions';
describe('permutateWithRepetitions', () => {
it('should permutate string with repetition', () => {
const permutations0 = permutateWithRepetitions([]);
expect(permutations0).toEqual([]);
const permutations1 = permutateWithRepetitions(['A']);
expect(permutations1).toEqual([
['A'],
]);
const permutations2 = permutateWithRepetitions(['A', 'B']);
expect(permutations2).toEqual([
['A', 'A'],
['A', 'B'],
['B', 'A'],
['B', 'B'],
]);
const permutations3 = permutateWithRepetitions(['A', 'B', 'C']);
expect(permutations3).toEqual([
['A', 'A', 'A'],
['A', 'A', 'B'],
['A', 'A', 'C'],
['A', 'B', 'A'],
['A', 'B', 'B'],
['A', 'B', 'C'],
['A', 'C', 'A'],
['A', 'C', 'B'],
['A', 'C', 'C'],
['B', 'A', 'A'],
['B', 'A', 'B'],
['B', 'A', 'C'],
['B', 'B', 'A'],
['B', 'B', 'B'],
['B', 'B', 'C'],
['B', 'C', 'A'],
['B', 'C', 'B'],
['B', 'C', 'C'],
['C', 'A', 'A'],
['C', 'A', 'B'],
['C', 'A', 'C'],
['C', 'B', 'A'],
['C', 'B', 'B'],
['C', 'B', 'C'],
['C', 'C', 'A'],
['C', 'C', 'B'],
['C', 'C', 'C'],
]);
const permutations4 = permutateWithRepetitions(['A', 'B', 'C', 'D']);
expect(permutations4.length).toBe(4 * 4 * 4 * 4);
});
});

View File

@ -1,71 +0,0 @@
import permutateWithoutRepetitions from '../permutateWithoutRepetitions';
import factorial from '../../factorial/factorial';
describe('permutateWithoutRepetitions', () => {
it('should permutate string', () => {
const permutations0 = permutateWithoutRepetitions([]);
expect(permutations0).toEqual([]);
const permutations1 = permutateWithoutRepetitions(['A']);
expect(permutations1).toEqual([
['A'],
]);
const permutations2 = permutateWithoutRepetitions(['A', 'B']);
expect(permutations2.length).toBe(2);
expect(permutations2).toEqual([
['B', 'A'],
['A', 'B'],
]);
const permutations6 = permutateWithoutRepetitions(['A', 'A']);
expect(permutations6.length).toBe(2);
expect(permutations6).toEqual([
['A', 'A'],
['A', 'A'],
]);
const permutations3 = permutateWithoutRepetitions(['A', 'B', 'C']);
expect(permutations3.length).toBe(factorial(3));
expect(permutations3).toEqual([
['C', 'B', 'A'],
['B', 'C', 'A'],
['B', 'A', 'C'],
['C', 'A', 'B'],
['A', 'C', 'B'],
['A', 'B', 'C'],
]);
const permutations4 = permutateWithoutRepetitions(['A', 'B', 'C', 'D']);
expect(permutations4.length).toBe(factorial(4));
expect(permutations4).toEqual([
['D', 'C', 'B', 'A'],
['C', 'D', 'B', 'A'],
['C', 'B', 'D', 'A'],
['C', 'B', 'A', 'D'],
['D', 'B', 'C', 'A'],
['B', 'D', 'C', 'A'],
['B', 'C', 'D', 'A'],
['B', 'C', 'A', 'D'],
['D', 'B', 'A', 'C'],
['B', 'D', 'A', 'C'],
['B', 'A', 'D', 'C'],
['B', 'A', 'C', 'D'],
['D', 'C', 'A', 'B'],
['C', 'D', 'A', 'B'],
['C', 'A', 'D', 'B'],
['C', 'A', 'B', 'D'],
['D', 'A', 'C', 'B'],
['A', 'D', 'C', 'B'],
['A', 'C', 'D', 'B'],
['A', 'C', 'B', 'D'],
['D', 'A', 'B', 'C'],
['A', 'D', 'B', 'C'],
['A', 'B', 'D', 'C'],
['A', 'B', 'C', 'D'],
]);
const permutations5 = permutateWithoutRepetitions(['A', 'B', 'C', 'D', 'E', 'F']);
expect(permutations5.length).toBe(factorial(6));
});
});

View File

@ -1,42 +0,0 @@
/**
* @param {*[]} permutationOptions
* @return {*[]}
*/
export default function permutateWithRepetitions(permutationOptions) {
// There is no permutations for empty array.
if (!permutationOptions || permutationOptions.length === 0) {
return [];
}
// There is only one permutation for the 1-element array.
if (permutationOptions.length === 1) {
return [permutationOptions];
}
// Let's create initial set of permutations.
let previousPermutations = permutationOptions.map(option => [option]);
let currentPermutations = [];
let permutationSize = 1;
// While the size of each permutation is less then or equal to options length...
while (permutationSize < permutationOptions.length) {
// Reset all current permutations.
currentPermutations = [];
for (let permIndex = 0; permIndex < previousPermutations.length; permIndex += 1) {
for (let optionIndex = 0; optionIndex < permutationOptions.length; optionIndex += 1) {
let currentPermutation = previousPermutations[permIndex];
currentPermutation = currentPermutation.concat([permutationOptions[optionIndex]]);
currentPermutations.push(currentPermutation);
}
}
// Make current permutations to be the previous ones.
previousPermutations = currentPermutations.slice(0);
// Increase permutation size counter.
permutationSize += 1;
}
return currentPermutations;
}

View File

@ -1,39 +0,0 @@
/**
* @param {*[]} permutationOptions
* @return {*[]}
*/
export default function permutateWithoutRepetitions(permutationOptions) {
if (permutationOptions.length === 0) {
return [];
}
if (permutationOptions.length === 1) {
return [permutationOptions];
}
const permutations = [];
// Get all permutations of length (n - 1).
const previousOptions = permutationOptions.slice(0, permutationOptions.length - 1);
const previousPermutations = permutateWithoutRepetitions(previousOptions);
// Insert last option into every possible position of every previous permutation.
const lastOption = permutationOptions.slice(permutationOptions.length - 1);
for (
let permutationIndex = 0;
permutationIndex < previousPermutations.length;
permutationIndex += 1
) {
const currentPermutation = previousPermutations[permutationIndex];
// Insert last option into every possible position of currentPermutation.
for (let positionIndex = 0; positionIndex <= currentPermutation.length; positionIndex += 1) {
const permutationPrefix = currentPermutation.slice(0, positionIndex);
const permutationSuffix = currentPermutation.slice(positionIndex);
permutations.push(permutationPrefix.concat(lastOption, permutationSuffix));
}
}
return permutations;
}

View File

@ -1,12 +0,0 @@
# Power Set
Power set of a set A is the set of all of the subsets of A.
Eg. for `{x, y, z}`, the subsets are : `{{}, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}`
![Power Set](https://www.mathsisfun.com/sets/images/power-set.svg)
## References
* [Wikipedia](https://en.wikipedia.org/wiki/Power_set)
* [Math is Fun](https://www.mathsisfun.com/sets/power-set.html)

View File

@ -1,24 +0,0 @@
import powerSet from '../powerSet';
describe('powerSet', () => {
it('should calculate power set of given set', () => {
const powerSets1 = powerSet([1]);
const powerSets2 = powerSet([1, 2, 3]);
expect(powerSets1).toEqual([
[],
[1],
]);
expect(powerSets2).toEqual([
[],
[1],
[2],
[1, 2],
[3],
[1, 3],
[2, 3],
[1, 2, 3],
]);
});
});

View File

@ -1,28 +0,0 @@
export default function powerSet(originalSet) {
const subSets = [];
// We will have 2^n possible combinations (where n is a length of original set).
// It is because for every element of original set we will decide whether to include
// it or not (2 options for each set element).
const numberOfCombinations = 2 ** originalSet.length;
// Each number in binary representation in a range from 0 to 2^n does exactly what we need:
// it shoes by its bits (0 or 1) whether to include related element from the set or not.
// For example, for the set {1, 2, 3} the binary number of 010 would mean that we need to
// include only "2" to the current set.
for (let combinationIndex = 0; combinationIndex < numberOfCombinations; combinationIndex += 1) {
const subSet = [];
for (let setElementIndex = 0; setElementIndex < originalSet.length; setElementIndex += 1) {
// Decide whether we need to include current element into the subset or not.
if (combinationIndex & (1 << setElementIndex)) {
subSet.push(originalSet[setElementIndex]);
}
}
// Add current subset to the list of all subsets.
subSets.push(subSet);
}
return subSets;
}