mirror of
https://github.com/trekhleb/javascript-algorithms.git
synced 2025-12-19 08:59:05 +08:00
Add maximum subarray.
This commit is contained in:
62
src/algorithms/sets/maximum-subarray/dpMaximumSubarray.js
Normal file
62
src/algorithms/sets/maximum-subarray/dpMaximumSubarray.js
Normal file
@@ -0,0 +1,62 @@
|
||||
/**
|
||||
* Dynamic Programming solution.
|
||||
* Complexity: O(n)
|
||||
*
|
||||
* @param {Number[]} inputArray
|
||||
* @return {Number[]}
|
||||
*/
|
||||
export default function dpMaximumSubarray(inputArray) {
|
||||
// Check if all elements of inputArray are negative ones and return the highest
|
||||
// one in this case.
|
||||
let allNegative = true;
|
||||
let highestElementValue = null;
|
||||
for (let i = 0; i < inputArray.length; i += 1) {
|
||||
if (inputArray[i] >= 0) {
|
||||
allNegative = false;
|
||||
}
|
||||
|
||||
if (highestElementValue === null || highestElementValue < inputArray[i]) {
|
||||
highestElementValue = inputArray[i];
|
||||
}
|
||||
}
|
||||
|
||||
if (allNegative && highestElementValue !== null) {
|
||||
return [highestElementValue];
|
||||
}
|
||||
|
||||
// Let's assume that there is at list one positive integer exists in array.
|
||||
// And thus the maximum sum will for sure be grater then 0. Thus we're able
|
||||
// to always reset max sum to zero.
|
||||
let maxSum = 0;
|
||||
|
||||
// This array will keep a combination that gave the highest sum.
|
||||
let maxSubArray = [];
|
||||
|
||||
// Current sum and subarray that will memoize all previous computations.
|
||||
let currentSum = 0;
|
||||
let currentSubArray = [];
|
||||
|
||||
for (let i = 0; i < inputArray.length; i += 1) {
|
||||
// Let's add current element value to the current sum.
|
||||
currentSum += inputArray[i];
|
||||
|
||||
if (currentSum < 0) {
|
||||
// If the sum went below zero then reset it and don't add current element to max subarray.
|
||||
currentSum = 0;
|
||||
// Reset current subarray.
|
||||
currentSubArray = [];
|
||||
} else {
|
||||
// If current sum stays positive then add current element to current sub array.
|
||||
currentSubArray.push(inputArray[i]);
|
||||
|
||||
if (currentSum > maxSum) {
|
||||
// If current sum became greater then max registered sum then update
|
||||
// max sum and max subarray.
|
||||
maxSum = currentSum;
|
||||
maxSubArray = currentSubArray.slice();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return maxSubArray;
|
||||
}
|
||||
Reference in New Issue
Block a user