Fix bug with converting complex number into polar form.

This commit is contained in:
Oleksii Trekhleb
2018-08-15 12:55:35 +03:00
parent 4bdac18ae0
commit 53a0b6168d
2 changed files with 97 additions and 14 deletions

View File

@ -14,51 +14,63 @@ export default class ComplexNumber {
} }
/** /**
* @param {ComplexNumber} addend * @param {ComplexNumber|number} addend
* @return {ComplexNumber} * @return {ComplexNumber}
*/ */
add(addend) { add(addend) {
// Make sure we're dealing with complex number.
const complexAddend = this.toComplexNumber(addend);
return new ComplexNumber({ return new ComplexNumber({
re: this.re + addend.re, re: this.re + complexAddend.re,
im: this.im + addend.im, im: this.im + complexAddend.im,
}); });
} }
/** /**
* @param {ComplexNumber} subtrahend * @param {ComplexNumber|number} subtrahend
* @return {ComplexNumber} * @return {ComplexNumber}
*/ */
subtract(subtrahend) { subtract(subtrahend) {
// Make sure we're dealing with complex number.
const complexSubtrahend = this.toComplexNumber(subtrahend);
return new ComplexNumber({ return new ComplexNumber({
re: this.re - subtrahend.re, re: this.re - complexSubtrahend.re,
im: this.im - subtrahend.im, im: this.im - complexSubtrahend.im,
}); });
} }
/** /**
* @param {ComplexNumber} multiplicand * @param {ComplexNumber|number} multiplicand
* @return {ComplexNumber} * @return {ComplexNumber}
*/ */
multiply(multiplicand) { multiply(multiplicand) {
// Make sure we're dealing with complex number.
const complexMultiplicand = this.toComplexNumber(multiplicand);
return new ComplexNumber({ return new ComplexNumber({
re: this.re * multiplicand.re - this.im * multiplicand.im, re: this.re * complexMultiplicand.re - this.im * complexMultiplicand.im,
im: this.re * multiplicand.im + this.im * multiplicand.re, im: this.re * complexMultiplicand.im + this.im * complexMultiplicand.re,
}); });
} }
/** /**
* @param {ComplexNumber} divider * @param {ComplexNumber|number} divider
* @return {ComplexNumber} * @return {ComplexNumber}
*/ */
divide(divider) { divide(divider) {
// Make sure we're dealing with complex number.
const complexDivider = this.toComplexNumber(divider);
// Get divider conjugate. // Get divider conjugate.
const dividerConjugate = this.conjugate(divider); const dividerConjugate = this.conjugate(complexDivider);
// Multiply dividend by divider's conjugate. // Multiply dividend by divider's conjugate.
const finalDivident = this.multiply(dividerConjugate); const finalDivident = this.multiply(dividerConjugate);
// Calculating final divider using formula (a + bi)(a bi) = a^2 + b^2 // Calculating final divider using formula (a + bi)(a bi) = a^2 + b^2
const finalDivider = (divider.re ** 2) + (divider.im ** 2); const finalDivider = (complexDivider.re ** 2) + (complexDivider.im ** 2);
return new ComplexNumber({ return new ComplexNumber({
re: finalDivident.re / finalDivider, re: finalDivident.re / finalDivider,
@ -67,9 +79,12 @@ export default class ComplexNumber {
} }
/** /**
* @param {ComplexNumber} complexNumber * @param {ComplexNumber|number} number
*/ */
conjugate(complexNumber) { conjugate(number) {
// Make sure we're dealing with complex number.
const complexNumber = this.toComplexNumber(number);
return new ComplexNumber({ return new ComplexNumber({
re: complexNumber.re, re: complexNumber.re,
im: -1 * complexNumber.im, im: -1 * complexNumber.im,
@ -96,6 +111,18 @@ export default class ComplexNumber {
phase = -(Math.PI - phase); phase = -(Math.PI - phase);
} else if (this.re > 0 && this.im < 0) { } else if (this.re > 0 && this.im < 0) {
phase = -phase; phase = -phase;
} else if (this.re === 0 && this.im > 0) {
phase = Math.PI / 2;
} else if (this.re === 0 && this.im < 0) {
phase = -Math.PI / 2;
} else if (this.re < 0 && this.im === 0) {
phase = Math.PI;
} else if (this.re > 0 && this.im === 0) {
phase = 0;
} else if (this.re === 0 && this.im === 0) {
// More correctly would be to set 'indeterminate'.
// But just for simplicity reasons let's set zero.
phase = 0;
} }
if (!inRadians) { if (!inRadians) {
@ -115,4 +142,19 @@ export default class ComplexNumber {
phase: this.getPhase(inRadians), phase: this.getPhase(inRadians),
}; };
} }
/**
* Convert real numbers to complex number.
* In case if complex number is provided then lefts it as is.
*
* @param {ComplexNumber|number} number
* @return {ComplexNumber}
*/
toComplexNumber(number) {
if (number instanceof ComplexNumber) {
return number;
}
return new ComplexNumber({ re: number });
}
} }

View File

@ -33,12 +33,16 @@ describe('ComplexNumber', () => {
const complexNumber3 = complexNumber.add(realNumber); const complexNumber3 = complexNumber.add(realNumber);
const complexNumber4 = realNumber.add(complexNumber); const complexNumber4 = realNumber.add(complexNumber);
const complexNumber5 = complexNumber.add(3);
expect(complexNumber3.re).toBe(1 + 3); expect(complexNumber3.re).toBe(1 + 3);
expect(complexNumber3.im).toBe(2); expect(complexNumber3.im).toBe(2);
expect(complexNumber4.re).toBe(1 + 3); expect(complexNumber4.re).toBe(1 + 3);
expect(complexNumber4.im).toBe(2); expect(complexNumber4.im).toBe(2);
expect(complexNumber5.re).toBe(1 + 3);
expect(complexNumber5.im).toBe(2);
}); });
it('should subtract complex numbers', () => { it('should subtract complex numbers', () => {
@ -61,12 +65,16 @@ describe('ComplexNumber', () => {
const complexNumber3 = complexNumber.subtract(realNumber); const complexNumber3 = complexNumber.subtract(realNumber);
const complexNumber4 = realNumber.subtract(complexNumber); const complexNumber4 = realNumber.subtract(complexNumber);
const complexNumber5 = complexNumber.subtract(3);
expect(complexNumber3.re).toBe(1 - 3); expect(complexNumber3.re).toBe(1 - 3);
expect(complexNumber3.im).toBe(2); expect(complexNumber3.im).toBe(2);
expect(complexNumber4.re).toBe(3 - 1); expect(complexNumber4.re).toBe(3 - 1);
expect(complexNumber4.im).toBe(-2); expect(complexNumber4.im).toBe(-2);
expect(complexNumber5.re).toBe(1 - 3);
expect(complexNumber5.im).toBe(2);
}); });
it('should multiply complex numbers', () => { it('should multiply complex numbers', () => {
@ -75,12 +83,16 @@ describe('ComplexNumber', () => {
const complexNumber3 = complexNumber1.multiply(complexNumber2); const complexNumber3 = complexNumber1.multiply(complexNumber2);
const complexNumber4 = complexNumber2.multiply(complexNumber1); const complexNumber4 = complexNumber2.multiply(complexNumber1);
const complexNumber5 = complexNumber1.multiply(5);
expect(complexNumber3.re).toBe(-11); expect(complexNumber3.re).toBe(-11);
expect(complexNumber3.im).toBe(23); expect(complexNumber3.im).toBe(23);
expect(complexNumber4.re).toBe(-11); expect(complexNumber4.re).toBe(-11);
expect(complexNumber4.im).toBe(23); expect(complexNumber4.im).toBe(23);
expect(complexNumber5.re).toBe(15);
expect(complexNumber5.im).toBe(10);
}); });
it('should multiply complex numbers by themselves', () => { it('should multiply complex numbers by themselves', () => {
@ -106,9 +118,13 @@ describe('ComplexNumber', () => {
const complexNumber2 = new ComplexNumber({ re: 4, im: -5 }); const complexNumber2 = new ComplexNumber({ re: 4, im: -5 });
const complexNumber3 = complexNumber1.divide(complexNumber2); const complexNumber3 = complexNumber1.divide(complexNumber2);
const complexNumber4 = complexNumber1.divide(2);
expect(complexNumber3.re).toBe(-7 / 41); expect(complexNumber3.re).toBe(-7 / 41);
expect(complexNumber3.im).toBe(22 / 41); expect(complexNumber3.im).toBe(22 / 41);
expect(complexNumber4.re).toBe(1);
expect(complexNumber4.im).toBe(1.5);
}); });
it('should return complex number in polar form', () => { it('should return complex number in polar form', () => {
@ -136,5 +152,30 @@ describe('ComplexNumber', () => {
expect(complexNumber5.getPolarForm().radius).toBeCloseTo(8.60); expect(complexNumber5.getPolarForm().radius).toBeCloseTo(8.60);
expect(complexNumber5.getPolarForm().phase).toBeCloseTo(0.95); expect(complexNumber5.getPolarForm().phase).toBeCloseTo(0.95);
expect(complexNumber5.getPolarForm(false).phase).toBeCloseTo(54.46); expect(complexNumber5.getPolarForm(false).phase).toBeCloseTo(54.46);
const complexNumber6 = new ComplexNumber({ re: 0, im: 0.25 });
expect(complexNumber6.getPolarForm().radius).toBeCloseTo(0.25);
expect(complexNumber6.getPolarForm().phase).toBeCloseTo(1.57);
expect(complexNumber6.getPolarForm(false).phase).toBeCloseTo(90);
const complexNumber7 = new ComplexNumber({ re: 0, im: -0.25 });
expect(complexNumber7.getPolarForm().radius).toBeCloseTo(0.25);
expect(complexNumber7.getPolarForm().phase).toBeCloseTo(-1.57);
expect(complexNumber7.getPolarForm(false).phase).toBeCloseTo(-90);
const complexNumber8 = new ComplexNumber();
expect(complexNumber8.getPolarForm().radius).toBeCloseTo(0);
expect(complexNumber8.getPolarForm().phase).toBeCloseTo(0);
expect(complexNumber8.getPolarForm(false).phase).toBeCloseTo(0);
const complexNumber9 = new ComplexNumber({ re: -0.25, im: 0 });
expect(complexNumber9.getPolarForm().radius).toBeCloseTo(0.25);
expect(complexNumber9.getPolarForm().phase).toBeCloseTo(Math.PI);
expect(complexNumber9.getPolarForm(false).phase).toBeCloseTo(180);
const complexNumber10 = new ComplexNumber({ re: 0.25, im: 0 });
expect(complexNumber10.getPolarForm().radius).toBeCloseTo(0.25);
expect(complexNumber10.getPolarForm().phase).toBeCloseTo(0);
expect(complexNumber10.getPolarForm(false).phase).toBeCloseTo(0);
}); });
}); });