Add N queens problem bitwise solution (#15)

* Add N queens problem bitwise solution

* Update code to corespond with eslint
This commit is contained in:
Matej Jellus
2018-08-20 14:57:01 +02:00
committed by Oleksii Trekhleb
parent 5a57c5f018
commit 18ba3a4db3
3 changed files with 68 additions and 0 deletions

View File

@ -0,0 +1,9 @@
# N-Queens Problem with Bitwise Solution
Write a function that will find all possible solutions to the N queens problem for a given N.
## References
- [Wikipedia](https://en.wikipedia.org/wiki/Eight_queens_puzzle)
- [GREG TROWBRIDGE](http://gregtrowbridge.com/a-bitwise-solution-to-the-n-queens-problem-in-javascript/)
- [Backtracking Algorithms in MCPL using Bit Patterns and Recursion](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.7113&rep=rep1&type=pdf)

View File

@ -0,0 +1,26 @@
import nQueensBitwise from '../nQueensBitwise';
describe('nQueensBitwise', () => {
it('should have solutions for 4 to N queens', () => {
const solutionFor4 = nQueensBitwise(4);
expect(solutionFor4).toBe(2);
const solutionFor5 = nQueensBitwise(5);
expect(solutionFor5).toBe(10);
const solutionFor6 = nQueensBitwise(6);
expect(solutionFor6).toBe(4);
const solutionFor7 = nQueensBitwise(7);
expect(solutionFor7).toBe(40);
const solutionFor8 = nQueensBitwise(8);
expect(solutionFor8).toBe(92);
const solutionFor9 = nQueensBitwise(9);
expect(solutionFor9).toBe(352);
const solutionFor10 = nQueensBitwise(10);
expect(solutionFor10).toBe(724);
});
});

View File

@ -0,0 +1,33 @@
export default function (n) {
// Keeps track of the # of valid solutions
let count = 0;
// Helps identify valid solutions
const done = (2 ** n) - 1;
// Checks all possible board configurations
const innerRecurse = (ld, col, rd) => {
// All columns are occupied,
// so the solution must be complete
if (col === done) {
count += 1;
return;
}
// Gets a bit sequence with "1"s
// whereever there is an open "slot"
let poss = ~(ld | rd | col);
// Loops as long as there is a valid
// place to put another queen.
while (poss & done) {
const bit = poss & -poss;
poss -= bit;
innerRecurse((ld | bit) >> 1, col | bit, (rd | bit) << 1);
}
};
innerRecurse(0, 0, 0);
return count;
}