mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 14:18:20 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			138 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Kotlin
		
	
	
	
	
	
			
		
		
	
	
			138 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Kotlin
		
	
	
	
	
	
/**
 | 
						|
 * File: min_path_sum.kt
 | 
						|
 * Created Time: 2024-01-25
 | 
						|
 * Author: curtishd (1023632660@qq.com)
 | 
						|
 */
 | 
						|
 | 
						|
package chapter_dynamic_programming
 | 
						|
 | 
						|
import java.util.*
 | 
						|
import kotlin.math.min
 | 
						|
 | 
						|
/* 最小路径和:暴力搜索 */
 | 
						|
fun minPathSumDFS(
 | 
						|
    grid: Array<Array<Int>>,
 | 
						|
    i: Int,
 | 
						|
    j: Int
 | 
						|
): Int {
 | 
						|
    // 若为左上角单元格,则终止搜索
 | 
						|
    if (i == 0 && j == 0) {
 | 
						|
        return grid[0][0]
 | 
						|
    }
 | 
						|
    // 若行列索引越界,则返回 +∞ 代价
 | 
						|
    if (i < 0 || j < 0) {
 | 
						|
        return Int.MAX_VALUE
 | 
						|
    }
 | 
						|
    // 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
 | 
						|
    val up = minPathSumDFS(grid, i - 1, j)
 | 
						|
    val left = minPathSumDFS(grid, i, j - 1)
 | 
						|
    // 返回从左上角到 (i, j) 的最小路径代价
 | 
						|
    return (min(left.toDouble(), up.toDouble()) + grid[i][j]).toInt()
 | 
						|
}
 | 
						|
 | 
						|
/* 最小路径和:记忆化搜索 */
 | 
						|
fun minPathSumDFSMem(
 | 
						|
    grid: Array<Array<Int>>,
 | 
						|
    mem: Array<Array<Int>>,
 | 
						|
    i: Int,
 | 
						|
    j: Int
 | 
						|
): Int {
 | 
						|
    // 若为左上角单元格,则终止搜索
 | 
						|
    if (i == 0 && j == 0) {
 | 
						|
        return grid[0][0]
 | 
						|
    }
 | 
						|
    // 若行列索引越界,则返回 +∞ 代价
 | 
						|
    if (i < 0 || j < 0) {
 | 
						|
        return Int.MAX_VALUE
 | 
						|
    }
 | 
						|
    // 若已有记录,则直接返回
 | 
						|
    if (mem[i][j] != -1) {
 | 
						|
        return mem[i][j]
 | 
						|
    }
 | 
						|
    // 左边和上边单元格的最小路径代价
 | 
						|
    val up = minPathSumDFSMem(grid, mem, i - 1, j)
 | 
						|
    val left = minPathSumDFSMem(grid, mem, i, j - 1)
 | 
						|
    // 记录并返回左上角到 (i, j) 的最小路径代价
 | 
						|
    mem[i][j] = (min(left.toDouble(), up.toDouble()) + grid[i][j]).toInt()
 | 
						|
    return mem[i][j]
 | 
						|
}
 | 
						|
 | 
						|
/* 最小路径和:动态规划 */
 | 
						|
fun minPathSumDP(grid: Array<Array<Int>>): Int {
 | 
						|
    val n = grid.size
 | 
						|
    val m = grid[0].size
 | 
						|
    // 初始化 dp 表
 | 
						|
    val dp = Array(n) { IntArray(m) }
 | 
						|
    dp[0][0] = grid[0][0]
 | 
						|
    // 状态转移:首行
 | 
						|
    for (j in 1..<m) {
 | 
						|
        dp[0][j] = dp[0][j - 1] + grid[0][j]
 | 
						|
    }
 | 
						|
    // 状态转移:首列
 | 
						|
    for (i in 1..<n) {
 | 
						|
        dp[i][0] = dp[i - 1][0] + grid[i][0]
 | 
						|
    }
 | 
						|
    // 状态转移:其余行和列
 | 
						|
    for (i in 1..<n) {
 | 
						|
        for (j in 1..<m) {
 | 
						|
            dp[i][j] =
 | 
						|
                (min(dp[i][j - 1].toDouble(), dp[i - 1][j].toDouble()) + grid[i][j]).toInt()
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return dp[n - 1][m - 1]
 | 
						|
}
 | 
						|
 | 
						|
/* 最小路径和:空间优化后的动态规划 */
 | 
						|
fun minPathSumDPComp(grid: Array<Array<Int>>): Int {
 | 
						|
    val n = grid.size
 | 
						|
    val m = grid[0].size
 | 
						|
    // 初始化 dp 表
 | 
						|
    val dp = IntArray(m)
 | 
						|
    // 状态转移:首行
 | 
						|
    dp[0] = grid[0][0]
 | 
						|
    for (j in 1..<m) {
 | 
						|
        dp[j] = dp[j - 1] + grid[0][j]
 | 
						|
    }
 | 
						|
    // 状态转移:其余行
 | 
						|
    for (i in 1..<n) {
 | 
						|
        // 状态转移:首列
 | 
						|
        dp[0] = dp[0] + grid[i][0]
 | 
						|
        // 状态转移:其余列
 | 
						|
        for (j in 1..<m) {
 | 
						|
            dp[j] = (min(dp[j - 1].toDouble(), dp[j].toDouble()) + grid[i][j]).toInt()
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return dp[m - 1]
 | 
						|
}
 | 
						|
 | 
						|
/* Driver Code */
 | 
						|
fun main() {
 | 
						|
    val grid = arrayOf(
 | 
						|
        arrayOf(1, 3, 1, 5),
 | 
						|
        arrayOf(2, 2, 4, 2),
 | 
						|
        arrayOf(5, 3, 2, 1),
 | 
						|
        arrayOf(4, 3, 5, 2)
 | 
						|
    )
 | 
						|
    val n = grid.size
 | 
						|
    val m = grid[0].size
 | 
						|
 | 
						|
    // 暴力搜索
 | 
						|
    var res = minPathSumDFS(grid, n - 1, m - 1)
 | 
						|
    println("从左上角到右下角的最小路径和为 $res")
 | 
						|
 | 
						|
    // 记忆化搜索
 | 
						|
    val mem = Array(n) { Array(m) { 0 } }
 | 
						|
    for (row in mem) {
 | 
						|
        Arrays.fill(row, -1)
 | 
						|
    }
 | 
						|
    res = minPathSumDFSMem(grid, mem, n - 1, m - 1)
 | 
						|
    println("从左上角到右下角的最小路径和为 $res")
 | 
						|
 | 
						|
    // 动态规划
 | 
						|
    res = minPathSumDP(grid)
 | 
						|
    println("从左上角到右下角的最小路径和为 $res")
 | 
						|
 | 
						|
    // 空间优化后的动态规划
 | 
						|
    res = minPathSumDPComp(grid)
 | 
						|
    println("从左上角到右下角的最小路径和为 $res")
 | 
						|
} |