mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 06:07:20 +08:00 
			
		
		
		
	* Update avatar's link in the landing page * Bug fixes * Move assets folder from overrides to docs * Reduce figures' corner radius * Update copyright * Update header image * Krahets -> krahets * Update the landing page
		
			
				
	
	
		
			72 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			72 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""
 | 
						||
File: heap.py
 | 
						||
Created Time: 2023-02-23
 | 
						||
Author: krahets (krahets@163.com)
 | 
						||
"""
 | 
						||
 | 
						||
import sys
 | 
						||
from pathlib import Path
 | 
						||
 | 
						||
sys.path.append(str(Path(__file__).parent.parent))
 | 
						||
from modules import print_heap
 | 
						||
 | 
						||
import heapq
 | 
						||
 | 
						||
 | 
						||
def test_push(heap: list, val: int, flag: int = 1):
 | 
						||
    heapq.heappush(heap, flag * val)  # 元素入堆
 | 
						||
    print(f"\n元素 {val} 入堆后")
 | 
						||
    print_heap([flag * val for val in heap])
 | 
						||
 | 
						||
 | 
						||
def test_pop(heap: list, flag: int = 1):
 | 
						||
    val = flag * heapq.heappop(heap)  # 堆顶元素出堆
 | 
						||
    print(f"\n堆顶元素 {val} 出堆后")
 | 
						||
    print_heap([flag * val for val in heap])
 | 
						||
 | 
						||
 | 
						||
"""Driver Code"""
 | 
						||
if __name__ == "__main__":
 | 
						||
    # 初始化小顶堆
 | 
						||
    min_heap, flag = [], 1
 | 
						||
    # 初始化大顶堆
 | 
						||
    max_heap, flag = [], -1
 | 
						||
 | 
						||
    print("\n以下测试样例为大顶堆")
 | 
						||
    # Python 的 heapq 模块默认实现小顶堆
 | 
						||
    # 考虑将“元素取负”后再入堆,这样就可以将大小关系颠倒,从而实现大顶堆
 | 
						||
    # 在本示例中,flag = 1 时对应小顶堆,flag = -1 时对应大顶堆
 | 
						||
 | 
						||
    # 元素入堆
 | 
						||
    test_push(max_heap, 1, flag)
 | 
						||
    test_push(max_heap, 3, flag)
 | 
						||
    test_push(max_heap, 2, flag)
 | 
						||
    test_push(max_heap, 5, flag)
 | 
						||
    test_push(max_heap, 4, flag)
 | 
						||
 | 
						||
    # 获取堆顶元素
 | 
						||
    peek: int = flag * max_heap[0]
 | 
						||
    print(f"\n堆顶元素为 {peek}")
 | 
						||
 | 
						||
    # 堆顶元素出堆
 | 
						||
    test_pop(max_heap, flag)
 | 
						||
    test_pop(max_heap, flag)
 | 
						||
    test_pop(max_heap, flag)
 | 
						||
    test_pop(max_heap, flag)
 | 
						||
    test_pop(max_heap, flag)
 | 
						||
 | 
						||
    # 获取堆大小
 | 
						||
    size: int = len(max_heap)
 | 
						||
    print(f"\n堆元素数量为 {size}")
 | 
						||
 | 
						||
    # 判断堆是否为空
 | 
						||
    is_empty: bool = not max_heap
 | 
						||
    print(f"\n堆是否为空 {is_empty}")
 | 
						||
 | 
						||
    # 输入列表并建堆
 | 
						||
    # 时间复杂度为 O(n) ,而非 O(nlogn)
 | 
						||
    min_heap = [1, 3, 2, 5, 4]
 | 
						||
    heapq.heapify(min_heap)
 | 
						||
    print("\n输入列表并建立小顶堆后")
 | 
						||
    print_heap(min_heap)
 |