mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 14:18:20 +08:00 
			
		
		
		
	* fix: Correcting typos * Add JavaScript and TypeScript code of dynamic programming. * fix: Code Style * Change ==/!= to ===/!== * Create const by default, change to let if necessary. * style fix: Delete unnecessary defined type
		
			
				
	
	
		
			64 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			64 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
/**
 | 
						|
 * File: unbounded_knapsack.js
 | 
						|
 * Created Time: 2023-08-23
 | 
						|
 * Author: Gaofer Chou (gaofer-chou@qq.com)
 | 
						|
 */
 | 
						|
 | 
						|
/* 完全背包:动态规划 */
 | 
						|
function unboundedKnapsackDP(wgt, val, cap) {
 | 
						|
    const n = wgt.length;
 | 
						|
    // 初始化 dp 表
 | 
						|
    const dp = Array.from({ length: n + 1 }, () =>
 | 
						|
        Array.from({ length: cap + 1 }, () => 0)
 | 
						|
    );
 | 
						|
    // 状态转移
 | 
						|
    for (let i = 1; i <= n; i++) {
 | 
						|
        for (let c = 1; c <= cap; c++) {
 | 
						|
            if (wgt[i - 1] > c) {
 | 
						|
                // 若超过背包容量,则不选物品 i
 | 
						|
                dp[i][c] = dp[i - 1][c];
 | 
						|
            } else {
 | 
						|
                // 不选和选物品 i 这两种方案的较大值
 | 
						|
                dp[i][c] = Math.max(
 | 
						|
                    dp[i - 1][c],
 | 
						|
                    dp[i][c - wgt[i - 1]] + val[i - 1]
 | 
						|
                );
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return dp[n][cap];
 | 
						|
}
 | 
						|
 | 
						|
/* 完全背包:状态压缩后的动态规划 */
 | 
						|
function unboundedKnapsackDPComp(wgt, val, cap) {
 | 
						|
    const n = wgt.length;
 | 
						|
    // 初始化 dp 表
 | 
						|
    const dp = Array.from({ length: cap + 1 }, () => 0);
 | 
						|
    // 状态转移
 | 
						|
    for (let i = 1; i <= n; i++) {
 | 
						|
        for (let c = 1; c <= cap; c++) {
 | 
						|
            if (wgt[i - 1] > c) {
 | 
						|
                // 若超过背包容量,则不选物品 i
 | 
						|
                dp[c] = dp[c];
 | 
						|
            } else {
 | 
						|
                // 不选和选物品 i 这两种方案的较大值
 | 
						|
                dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return dp[cap];
 | 
						|
}
 | 
						|
 | 
						|
/* Driver Code */
 | 
						|
const wgt = [1, 2, 3];
 | 
						|
const val = [5, 11, 15];
 | 
						|
const cap = 4;
 | 
						|
 | 
						|
// 动态规划
 | 
						|
let res = unboundedKnapsackDP(wgt, val, cap);
 | 
						|
console.log(`不超过背包容量的最大物品价值为 ${res}`);
 | 
						|
 | 
						|
// 状态压缩后的动态规划
 | 
						|
res = unboundedKnapsackDPComp(wgt, val, cap);
 | 
						|
console.log(`不超过背包容量的最大物品价值为 ${res}`);
 |