mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 06:07:20 +08:00 
			
		
		
		
	* Add Ruby and Kotlin icons Add the avatar of @curtishd * Update README * Synchronize zh-hant and zh versions. * Translate the pythontutor blocks to traditional Chinese * Fix en/mkdocs.yml * Update the landing page of the en version. * Fix the Dockerfile * Refine the en landingpage * Fix en landing page * Reset the README.md
		
			
				
	
	
		
			68 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Kotlin
		
	
	
	
	
	
			
		
		
	
	
			68 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Kotlin
		
	
	
	
	
	
/**
 | 
						|
 * File: unbounded_knapsack.kt
 | 
						|
 * Created Time: 2024-01-25
 | 
						|
 * Author: curtishd (1023632660@qq.com)
 | 
						|
 */
 | 
						|
 | 
						|
package chapter_dynamic_programming
 | 
						|
 | 
						|
import kotlin.math.max
 | 
						|
 | 
						|
/* 完全背包:動態規劃 */
 | 
						|
fun unboundedKnapsackDP(wgt: IntArray, _val: IntArray, cap: Int): Int {
 | 
						|
    val n = wgt.size
 | 
						|
    // 初始化 dp 表
 | 
						|
    val dp = Array(n + 1) { IntArray(cap + 1) }
 | 
						|
    // 狀態轉移
 | 
						|
    for (i in 1..n) {
 | 
						|
        for (c in 1..cap) {
 | 
						|
            if (wgt[i - 1] > c) {
 | 
						|
                // 若超過背包容量,則不選物品 i
 | 
						|
                dp[i][c] = dp[i - 1][c]
 | 
						|
            } else {
 | 
						|
                // 不選和選物品 i 這兩種方案的較大值
 | 
						|
                dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + _val[i - 1])
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return dp[n][cap]
 | 
						|
}
 | 
						|
 | 
						|
/* 完全背包:空間最佳化後的動態規劃 */
 | 
						|
fun unboundedKnapsackDPComp(
 | 
						|
    wgt: IntArray,
 | 
						|
    _val: IntArray,
 | 
						|
    cap: Int
 | 
						|
): Int {
 | 
						|
    val n = wgt.size
 | 
						|
    // 初始化 dp 表
 | 
						|
    val dp = IntArray(cap + 1)
 | 
						|
    // 狀態轉移
 | 
						|
    for (i in 1..n) {
 | 
						|
        for (c in 1..cap) {
 | 
						|
            if (wgt[i - 1] > c) {
 | 
						|
                // 若超過背包容量,則不選物品 i
 | 
						|
                dp[c] = dp[c]
 | 
						|
            } else {
 | 
						|
                // 不選和選物品 i 這兩種方案的較大值
 | 
						|
                dp[c] = max(dp[c], dp[c - wgt[i - 1]] + _val[i - 1])
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return dp[cap]
 | 
						|
}
 | 
						|
 | 
						|
/* Driver Code */
 | 
						|
fun main() {
 | 
						|
    val wgt = intArrayOf(1, 2, 3)
 | 
						|
    val _val = intArrayOf(5, 11, 15)
 | 
						|
    val cap = 4
 | 
						|
 | 
						|
    // 動態規劃
 | 
						|
    var res = unboundedKnapsackDP(wgt, _val, cap)
 | 
						|
    println("不超過背包容量的最大物品價值為 $res")
 | 
						|
 | 
						|
    // 空間最佳化後的動態規劃
 | 
						|
    res = unboundedKnapsackDPComp(wgt, _val, cap)
 | 
						|
    println("不超過背包容量的最大物品價值為 $res")
 | 
						|
} |