mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 14:18:20 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			117 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Java
		
	
	
	
	
	
			
		
		
	
	
			117 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Java
		
	
	
	
	
	
/**
 | 
						|
 * File: knapsack.java
 | 
						|
 * Created Time: 2023-07-10
 | 
						|
 * Author: Krahets (krahets@163.com)
 | 
						|
 */
 | 
						|
 | 
						|
package chapter_dynamic_programming;
 | 
						|
 | 
						|
import java.util.Arrays;
 | 
						|
 | 
						|
public class knapsack {
 | 
						|
 | 
						|
    /* 0-1 背包:暴力搜索 */
 | 
						|
    static int knapsackDFS(int[] wgt, int[] val, int i, int c) {
 | 
						|
        // 若已选完所有物品或背包无容量,则返回价值 0
 | 
						|
        if (i == 0 || c == 0) {
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
        // 若超过背包容量,则只能不放入背包
 | 
						|
        if (wgt[i - 1] > c) {
 | 
						|
            return knapsackDFS(wgt, val, i - 1, c);
 | 
						|
        }
 | 
						|
        // 计算不放入和放入物品 i 的最大价值
 | 
						|
        int no = knapsackDFS(wgt, val, i - 1, c);
 | 
						|
        int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];
 | 
						|
        // 返回两种方案中价值更大的那一个
 | 
						|
        return Math.max(no, yes);
 | 
						|
    }
 | 
						|
 | 
						|
    /* 0-1 背包:记忆化搜索 */
 | 
						|
    static int knapsackDFSMem(int[] wgt, int[] val, int[][] mem, int i, int c) {
 | 
						|
        // 若已选完所有物品或背包无容量,则返回价值 0
 | 
						|
        if (i == 0 || c == 0) {
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
        // 若已有记录,则直接返回
 | 
						|
        if (mem[i][c] != -1) {
 | 
						|
            return mem[i][c];
 | 
						|
        }
 | 
						|
        // 若超过背包容量,则只能不放入背包
 | 
						|
        if (wgt[i - 1] > c) {
 | 
						|
            return knapsackDFSMem(wgt, val, mem, i - 1, c);
 | 
						|
        }
 | 
						|
        // 计算不放入和放入物品 i 的最大价值
 | 
						|
        int no = knapsackDFSMem(wgt, val, mem, i - 1, c);
 | 
						|
        int yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];
 | 
						|
        // 记录并返回两种方案中价值更大的那一个
 | 
						|
        mem[i][c] = Math.max(no, yes);
 | 
						|
        return mem[i][c];
 | 
						|
    }
 | 
						|
 | 
						|
    /* 0-1 背包:动态规划 */
 | 
						|
    static int knapsackDP(int[] wgt, int[] val, int cap) {
 | 
						|
        int n = wgt.length;
 | 
						|
        // 初始化 dp 表
 | 
						|
        int[][] dp = new int[n + 1][cap + 1];
 | 
						|
        // 状态转移
 | 
						|
        for (int i = 1; i <= n; i++) {
 | 
						|
            for (int c = 1; c <= cap; c++) {
 | 
						|
                if (wgt[i - 1] > c) {
 | 
						|
                    // 若超过背包容量,则不选物品 i
 | 
						|
                    dp[i][c] = dp[i - 1][c];
 | 
						|
                } else {
 | 
						|
                    // 不选和选物品 i 这两种方案的较大值
 | 
						|
                    dp[i][c] = Math.max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return dp[n][cap];
 | 
						|
    }
 | 
						|
 | 
						|
    /* 0-1 背包:空间优化后的动态规划 */
 | 
						|
    static int knapsackDPComp(int[] wgt, int[] val, int cap) {
 | 
						|
        int n = wgt.length;
 | 
						|
        // 初始化 dp 表
 | 
						|
        int[] dp = new int[cap + 1];
 | 
						|
        // 状态转移
 | 
						|
        for (int i = 1; i <= n; i++) {
 | 
						|
            // 倒序遍历
 | 
						|
            for (int c = cap; c >= 1; c--) {
 | 
						|
                if (wgt[i - 1] <= c) {
 | 
						|
                    // 不选和选物品 i 这两种方案的较大值
 | 
						|
                    dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return dp[cap];
 | 
						|
    }
 | 
						|
 | 
						|
    public static void main(String[] args) {
 | 
						|
        int[] wgt = { 10, 20, 30, 40, 50 };
 | 
						|
        int[] val = { 50, 120, 150, 210, 240 };
 | 
						|
        int cap = 50;
 | 
						|
        int n = wgt.length;
 | 
						|
 | 
						|
        // 暴力搜索
 | 
						|
        int res = knapsackDFS(wgt, val, n, cap);
 | 
						|
        System.out.println("不超过背包容量的最大物品价值为 " + res);
 | 
						|
 | 
						|
        // 记忆化搜索
 | 
						|
        int[][] mem = new int[n + 1][cap + 1];
 | 
						|
        for (int[] row : mem) {
 | 
						|
            Arrays.fill(row, -1);
 | 
						|
        }
 | 
						|
        res = knapsackDFSMem(wgt, val, mem, n, cap);
 | 
						|
        System.out.println("不超过背包容量的最大物品价值为 " + res);
 | 
						|
 | 
						|
        // 动态规划
 | 
						|
        res = knapsackDP(wgt, val, cap);
 | 
						|
        System.out.println("不超过背包容量的最大物品价值为 " + res);
 | 
						|
 | 
						|
        // 空间优化后的动态规划
 | 
						|
        res = knapsackDPComp(wgt, val, cap);
 | 
						|
        System.out.println("不超过背包容量的最大物品价值为 " + res);
 | 
						|
    }
 | 
						|
}
 |