mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 14:18:20 +08:00 
			
		
		
		
	* Update avatar's link in the landing page * Bug fixes * Move assets folder from overrides to docs * Reduce figures' corner radius * Update copyright * Update header image * Krahets -> krahets * Update the landing page
		
			
				
	
	
		
			126 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Java
		
	
	
	
	
	
			
		
		
	
	
			126 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Java
		
	
	
	
	
	
/**
 | 
						|
 * File: min_path_sum.java
 | 
						|
 * Created Time: 2023-07-10
 | 
						|
 * Author: krahets (krahets@163.com)
 | 
						|
 */
 | 
						|
 | 
						|
package chapter_dynamic_programming;
 | 
						|
 | 
						|
import java.util.Arrays;
 | 
						|
 | 
						|
public class min_path_sum {
 | 
						|
    /* 最小路径和:暴力搜索 */
 | 
						|
    static int minPathSumDFS(int[][] grid, int i, int j) {
 | 
						|
        // 若为左上角单元格,则终止搜索
 | 
						|
        if (i == 0 && j == 0) {
 | 
						|
            return grid[0][0];
 | 
						|
        }
 | 
						|
        // 若行列索引越界,则返回 +∞ 代价
 | 
						|
        if (i < 0 || j < 0) {
 | 
						|
            return Integer.MAX_VALUE;
 | 
						|
        }
 | 
						|
        // 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
 | 
						|
        int up = minPathSumDFS(grid, i - 1, j);
 | 
						|
        int left = minPathSumDFS(grid, i, j - 1);
 | 
						|
        // 返回从左上角到 (i, j) 的最小路径代价
 | 
						|
        return Math.min(left, up) + grid[i][j];
 | 
						|
    }
 | 
						|
 | 
						|
    /* 最小路径和:记忆化搜索 */
 | 
						|
    static int minPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {
 | 
						|
        // 若为左上角单元格,则终止搜索
 | 
						|
        if (i == 0 && j == 0) {
 | 
						|
            return grid[0][0];
 | 
						|
        }
 | 
						|
        // 若行列索引越界,则返回 +∞ 代价
 | 
						|
        if (i < 0 || j < 0) {
 | 
						|
            return Integer.MAX_VALUE;
 | 
						|
        }
 | 
						|
        // 若已有记录,则直接返回
 | 
						|
        if (mem[i][j] != -1) {
 | 
						|
            return mem[i][j];
 | 
						|
        }
 | 
						|
        // 左边和上边单元格的最小路径代价
 | 
						|
        int up = minPathSumDFSMem(grid, mem, i - 1, j);
 | 
						|
        int left = minPathSumDFSMem(grid, mem, i, j - 1);
 | 
						|
        // 记录并返回左上角到 (i, j) 的最小路径代价
 | 
						|
        mem[i][j] = Math.min(left, up) + grid[i][j];
 | 
						|
        return mem[i][j];
 | 
						|
    }
 | 
						|
 | 
						|
    /* 最小路径和:动态规划 */
 | 
						|
    static int minPathSumDP(int[][] grid) {
 | 
						|
        int n = grid.length, m = grid[0].length;
 | 
						|
        // 初始化 dp 表
 | 
						|
        int[][] dp = new int[n][m];
 | 
						|
        dp[0][0] = grid[0][0];
 | 
						|
        // 状态转移:首行
 | 
						|
        for (int j = 1; j < m; j++) {
 | 
						|
            dp[0][j] = dp[0][j - 1] + grid[0][j];
 | 
						|
        }
 | 
						|
        // 状态转移:首列
 | 
						|
        for (int i = 1; i < n; i++) {
 | 
						|
            dp[i][0] = dp[i - 1][0] + grid[i][0];
 | 
						|
        }
 | 
						|
        // 状态转移:其余行和列
 | 
						|
        for (int i = 1; i < n; i++) {
 | 
						|
            for (int j = 1; j < m; j++) {
 | 
						|
                dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return dp[n - 1][m - 1];
 | 
						|
    }
 | 
						|
 | 
						|
    /* 最小路径和:空间优化后的动态规划 */
 | 
						|
    static int minPathSumDPComp(int[][] grid) {
 | 
						|
        int n = grid.length, m = grid[0].length;
 | 
						|
        // 初始化 dp 表
 | 
						|
        int[] dp = new int[m];
 | 
						|
        // 状态转移:首行
 | 
						|
        dp[0] = grid[0][0];
 | 
						|
        for (int j = 1; j < m; j++) {
 | 
						|
            dp[j] = dp[j - 1] + grid[0][j];
 | 
						|
        }
 | 
						|
        // 状态转移:其余行
 | 
						|
        for (int i = 1; i < n; i++) {
 | 
						|
            // 状态转移:首列
 | 
						|
            dp[0] = dp[0] + grid[i][0];
 | 
						|
            // 状态转移:其余列
 | 
						|
            for (int j = 1; j < m; j++) {
 | 
						|
                dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return dp[m - 1];
 | 
						|
    }
 | 
						|
 | 
						|
    public static void main(String[] args) {
 | 
						|
        int[][] grid = {
 | 
						|
                { 1, 3, 1, 5 },
 | 
						|
                { 2, 2, 4, 2 },
 | 
						|
                { 5, 3, 2, 1 },
 | 
						|
                { 4, 3, 5, 2 }
 | 
						|
        };
 | 
						|
        int n = grid.length, m = grid[0].length;
 | 
						|
 | 
						|
        // 暴力搜索
 | 
						|
        int res = minPathSumDFS(grid, n - 1, m - 1);
 | 
						|
        System.out.println("从左上角到右下角的最小路径和为 " + res);
 | 
						|
 | 
						|
        // 记忆化搜索
 | 
						|
        int[][] mem = new int[n][m];
 | 
						|
        for (int[] row : mem) {
 | 
						|
            Arrays.fill(row, -1);
 | 
						|
        }
 | 
						|
        res = minPathSumDFSMem(grid, mem, n - 1, m - 1);
 | 
						|
        System.out.println("从左上角到右下角的最小路径和为 " + res);
 | 
						|
 | 
						|
        // 动态规划
 | 
						|
        res = minPathSumDP(grid);
 | 
						|
        System.out.println("从左上角到右下角的最小路径和为 " + res);
 | 
						|
 | 
						|
        // 空间优化后的动态规划
 | 
						|
        res = minPathSumDPComp(grid);
 | 
						|
        System.out.println("从左上角到右下角的最小路径和为 " + res);
 | 
						|
    }
 | 
						|
}
 |