mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 06:07:20 +08:00 
			
		
		
		
	* .net 8.0 migration * update docs * revert change * revert change and update appendix docs * remove static * Update binary_search_insertion.cs * Update binary_search_insertion.cs * Update binary_search_edge.cs * Update binary_search_insertion.cs * Update binary_search_edge.cs --------- Co-authored-by: Yudong Jin <krahets@163.com>
		
			
				
	
	
		
			65 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			C#
		
	
	
	
	
	
			
		
		
	
	
			65 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			C#
		
	
	
	
	
	
/**
 | 
						|
* File: unbounded_knapsack.cs
 | 
						|
* Created Time: 2023-07-12
 | 
						|
* Author: hpstory (hpstory1024@163.com)
 | 
						|
*/
 | 
						|
 | 
						|
namespace hello_algo.chapter_dynamic_programming;
 | 
						|
 | 
						|
public class unbounded_knapsack {
 | 
						|
    /* 完全背包:动态规划 */
 | 
						|
    int UnboundedKnapsackDP(int[] wgt, int[] val, int cap) {
 | 
						|
        int n = wgt.Length;
 | 
						|
        // 初始化 dp 表
 | 
						|
        int[,] dp = new int[n + 1, cap + 1];
 | 
						|
        // 状态转移
 | 
						|
        for (int i = 1; i <= n; i++) {
 | 
						|
            for (int c = 1; c <= cap; c++) {
 | 
						|
                if (wgt[i - 1] > c) {
 | 
						|
                    // 若超过背包容量,则不选物品 i
 | 
						|
                    dp[i, c] = dp[i - 1, c];
 | 
						|
                } else {
 | 
						|
                    // 不选和选物品 i 这两种方案的较大值
 | 
						|
                    dp[i, c] = Math.Max(dp[i - 1, c], dp[i, c - wgt[i - 1]] + val[i - 1]);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return dp[n, cap];
 | 
						|
    }
 | 
						|
 | 
						|
    /* 完全背包:空间优化后的动态规划 */
 | 
						|
    int UnboundedKnapsackDPComp(int[] wgt, int[] val, int cap) {
 | 
						|
        int n = wgt.Length;
 | 
						|
        // 初始化 dp 表
 | 
						|
        int[] dp = new int[cap + 1];
 | 
						|
        // 状态转移
 | 
						|
        for (int i = 1; i <= n; i++) {
 | 
						|
            for (int c = 1; c <= cap; c++) {
 | 
						|
                if (wgt[i - 1] > c) {
 | 
						|
                    // 若超过背包容量,则不选物品 i
 | 
						|
                    dp[c] = dp[c];
 | 
						|
                } else {
 | 
						|
                    // 不选和选物品 i 这两种方案的较大值
 | 
						|
                    dp[c] = Math.Max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return dp[cap];
 | 
						|
    }
 | 
						|
 | 
						|
    [Test]
 | 
						|
    public void Test() {
 | 
						|
        int[] wgt = [1, 2, 3];
 | 
						|
        int[] val = [5, 11, 15];
 | 
						|
        int cap = 4;
 | 
						|
 | 
						|
        // 动态规划
 | 
						|
        int res = UnboundedKnapsackDP(wgt, val, cap);
 | 
						|
        Console.WriteLine("不超过背包容量的最大物品价值为 " + res);
 | 
						|
 | 
						|
        // 空间优化后的动态规划
 | 
						|
        res = UnboundedKnapsackDPComp(wgt, val, cap);
 | 
						|
        Console.WriteLine("不超过背包容量的最大物品价值为 " + res);
 | 
						|
    }
 | 
						|
}
 |