mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-01 03:24:24 +08:00 
			
		
		
		
	 3ea91bda99
			
		
	
	3ea91bda99
	
	
	
		
			
			* Use int instead of float for the example code of log time complexity * Bug fixes * Bug fixes
		
			
				
	
	
		
			173 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Swift
		
	
	
	
	
	
			
		
		
	
	
			173 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Swift
		
	
	
	
	
	
| /**
 | ||
|  * File: time_complexity.swift
 | ||
|  * Created Time: 2022-12-26
 | ||
|  * Author: nuomi1 (nuomi1@qq.com)
 | ||
|  */
 | ||
| 
 | ||
| /* 常数阶 */
 | ||
| func constant(n: Int) -> Int {
 | ||
|     var count = 0
 | ||
|     let size = 100_000
 | ||
|     for _ in 0 ..< size {
 | ||
|         count += 1
 | ||
|     }
 | ||
|     return count
 | ||
| }
 | ||
| 
 | ||
| /* 线性阶 */
 | ||
| func linear(n: Int) -> Int {
 | ||
|     var count = 0
 | ||
|     for _ in 0 ..< n {
 | ||
|         count += 1
 | ||
|     }
 | ||
|     return count
 | ||
| }
 | ||
| 
 | ||
| /* 线性阶(遍历数组) */
 | ||
| func arrayTraversal(nums: [Int]) -> Int {
 | ||
|     var count = 0
 | ||
|     // 循环次数与数组长度成正比
 | ||
|     for _ in nums {
 | ||
|         count += 1
 | ||
|     }
 | ||
|     return count
 | ||
| }
 | ||
| 
 | ||
| /* 平方阶 */
 | ||
| func quadratic(n: Int) -> Int {
 | ||
|     var count = 0
 | ||
|     // 循环次数与数据大小 n 成平方关系
 | ||
|     for _ in 0 ..< n {
 | ||
|         for _ in 0 ..< n {
 | ||
|             count += 1
 | ||
|         }
 | ||
|     }
 | ||
|     return count
 | ||
| }
 | ||
| 
 | ||
| /* 平方阶(冒泡排序) */
 | ||
| func bubbleSort(nums: inout [Int]) -> Int {
 | ||
|     var count = 0 // 计数器
 | ||
|     // 外循环:未排序区间为 [0, i]
 | ||
|     for i in nums.indices.dropFirst().reversed() {
 | ||
|         // 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
 | ||
|         for j in 0 ..< i {
 | ||
|             if nums[j] > nums[j + 1] {
 | ||
|                 // 交换 nums[j] 与 nums[j + 1]
 | ||
|                 let tmp = nums[j]
 | ||
|                 nums[j] = nums[j + 1]
 | ||
|                 nums[j + 1] = tmp
 | ||
|                 count += 3 // 元素交换包含 3 个单元操作
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
|     return count
 | ||
| }
 | ||
| 
 | ||
| /* 指数阶(循环实现) */
 | ||
| func exponential(n: Int) -> Int {
 | ||
|     var count = 0
 | ||
|     var base = 1
 | ||
|     // 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
 | ||
|     for _ in 0 ..< n {
 | ||
|         for _ in 0 ..< base {
 | ||
|             count += 1
 | ||
|         }
 | ||
|         base *= 2
 | ||
|     }
 | ||
|     // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
 | ||
|     return count
 | ||
| }
 | ||
| 
 | ||
| /* 指数阶(递归实现) */
 | ||
| func expRecur(n: Int) -> Int {
 | ||
|     if n == 1 {
 | ||
|         return 1
 | ||
|     }
 | ||
|     return expRecur(n: n - 1) + expRecur(n: n - 1) + 1
 | ||
| }
 | ||
| 
 | ||
| /* 对数阶(循环实现) */
 | ||
| func logarithmic(n: Int) -> Int {
 | ||
|     var count = 0
 | ||
|     var n = n
 | ||
|     while n > 1 {
 | ||
|         n = n / 2
 | ||
|         count += 1
 | ||
|     }
 | ||
|     return count
 | ||
| }
 | ||
| 
 | ||
| /* 对数阶(递归实现) */
 | ||
| func logRecur(n: Int) -> Int {
 | ||
|     if n <= 1 {
 | ||
|         return 0
 | ||
|     }
 | ||
|     return logRecur(n: n / 2) + 1
 | ||
| }
 | ||
| 
 | ||
| /* 线性对数阶 */
 | ||
| func linearLogRecur(n: Int) -> Int {
 | ||
|     if n <= 1 {
 | ||
|         return 1
 | ||
|     }
 | ||
|     var count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2)
 | ||
|     for _ in stride(from: 0, to: n, by: 1) {
 | ||
|         count += 1
 | ||
|     }
 | ||
|     return count
 | ||
| }
 | ||
| 
 | ||
| /* 阶乘阶(递归实现) */
 | ||
| func factorialRecur(n: Int) -> Int {
 | ||
|     if n == 0 {
 | ||
|         return 1
 | ||
|     }
 | ||
|     var count = 0
 | ||
|     // 从 1 个分裂出 n 个
 | ||
|     for _ in 0 ..< n {
 | ||
|         count += factorialRecur(n: n - 1)
 | ||
|     }
 | ||
|     return count
 | ||
| }
 | ||
| 
 | ||
| @main
 | ||
| enum TimeComplexity {
 | ||
|     /* Driver Code */
 | ||
|     static func main() {
 | ||
|         // 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
 | ||
|         let n = 8
 | ||
|         print("输入数据大小 n = \(n)")
 | ||
| 
 | ||
|         var count = constant(n: n)
 | ||
|         print("常数阶的操作数量 = \(count)")
 | ||
| 
 | ||
|         count = linear(n: n)
 | ||
|         print("线性阶的操作数量 = \(count)")
 | ||
|         count = arrayTraversal(nums: Array(repeating: 0, count: n))
 | ||
|         print("线性阶(遍历数组)的操作数量 = \(count)")
 | ||
| 
 | ||
|         count = quadratic(n: n)
 | ||
|         print("平方阶的操作数量 = \(count)")
 | ||
|         var nums = Array(stride(from: n, to: 0, by: -1)) // [n,n-1,...,2,1]
 | ||
|         count = bubbleSort(nums: &nums)
 | ||
|         print("平方阶(冒泡排序)的操作数量 = \(count)")
 | ||
| 
 | ||
|         count = exponential(n: n)
 | ||
|         print("指数阶(循环实现)的操作数量 = \(count)")
 | ||
|         count = expRecur(n: n)
 | ||
|         print("指数阶(递归实现)的操作数量 = \(count)")
 | ||
| 
 | ||
|         count = logarithmic(n: n)
 | ||
|         print("对数阶(循环实现)的操作数量 = \(count)")
 | ||
|         count = logRecur(n: n)
 | ||
|         print("对数阶(递归实现)的操作数量 = \(count)")
 | ||
| 
 | ||
|         count = linearLogRecur(n: n)
 | ||
|         print("线性对数阶(递归实现)的操作数量 = \(count)")
 | ||
| 
 | ||
|         count = factorialRecur(n: n)
 | ||
|         print("阶乘阶(递归实现)的操作数量 = \(count)")
 | ||
|     }
 | ||
| }
 |