mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-01 03:24:24 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			166 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Ruby
		
	
	
	
	
	
			
		
		
	
	
			166 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Ruby
		
	
	
	
	
	
| =begin
 | |
| File: time_complexity.rb
 | |
| Created Time: 2024-03-30
 | |
| Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
 | |
| =end
 | |
| 
 | |
| ### 常数阶 ###
 | |
| def constant(n)
 | |
|   count = 0
 | |
|   size = 100000
 | |
| 
 | |
|   (0...size).each { count += 1 }
 | |
| 
 | |
|   count
 | |
| end
 | |
| 
 | |
| ### 线性阶 ###
 | |
| def linear(n)
 | |
|   count = 0
 | |
|   (0...n).each { count += 1 }
 | |
|   count
 | |
| end
 | |
| 
 | |
| ### 线性阶(遍历数组)###
 | |
| def array_traversal(nums)
 | |
|   count = 0
 | |
| 
 | |
|   # 循环次数与数组长度成正比
 | |
|   for num in nums
 | |
|     count += 1
 | |
|   end
 | |
| 
 | |
|   count
 | |
| end
 | |
| 
 | |
| ### 平方阶 ###
 | |
| def quadratic(n)
 | |
|   count = 0
 | |
| 
 | |
|   # 循环次数与数据大小 n 成平方关系
 | |
|   for i in 0...n
 | |
|     for j in 0...n
 | |
|       count += 1
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   count
 | |
| end
 | |
| 
 | |
| ### 平方阶(冒泡排序)###
 | |
| def bubble_sort(nums)
 | |
|   count = 0  # 计数器
 | |
| 
 | |
|   # 外循环:未排序区间为 [0, i]
 | |
|   for i in (nums.length - 1).downto(0)
 | |
|     # 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
 | |
|     for j in 0...i
 | |
|       if nums[j] > nums[j + 1]
 | |
|         # 交换 nums[j] 与 nums[j + 1]
 | |
|         tmp = nums[j]
 | |
|         nums[j] = nums[j + 1]
 | |
|         nums[j + 1] = tmp
 | |
|         count += 3 # 元素交换包含 3 个单元操作
 | |
|       end
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   count
 | |
| end
 | |
| 
 | |
| ### 指数阶(循环实现)###
 | |
| def exponential(n)
 | |
|   count, base = 0, 1
 | |
| 
 | |
|   # 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
 | |
|   (0...n).each do
 | |
|     (0...base).each { count += 1 }
 | |
|     base *= 2
 | |
|   end
 | |
| 
 | |
|   # count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
 | |
|   count
 | |
| end
 | |
| 
 | |
| ### 指数阶(递归实现)###
 | |
| def exp_recur(n)
 | |
|   return 1 if n == 1
 | |
|   exp_recur(n - 1) + exp_recur(n - 1) + 1
 | |
| end
 | |
| 
 | |
| ### 对数阶(循环实现)###
 | |
| def logarithmic(n)
 | |
|   count = 0
 | |
| 
 | |
|   while n > 1
 | |
|     n /= 2
 | |
|     count += 1
 | |
|   end
 | |
| 
 | |
|   count
 | |
| end
 | |
| 
 | |
| ### 对数阶(递归实现)###
 | |
| def log_recur(n)
 | |
|   return 0 unless n > 1
 | |
|   log_recur(n / 2) + 1
 | |
| end
 | |
| 
 | |
| ### 线性对数阶 ###
 | |
| def linear_log_recur(n)
 | |
|   return 1 unless n > 1
 | |
| 
 | |
|   count = linear_log_recur(n / 2) + linear_log_recur(n / 2)
 | |
|   (0...n).each { count += 1 }
 | |
| 
 | |
|   count
 | |
| end
 | |
| 
 | |
| ### 阶乘阶(递归实现)###
 | |
| def factorial_recur(n)
 | |
|   return 1 if n == 0
 | |
| 
 | |
|   count = 0
 | |
|   # 从 1 个分裂出 n 个
 | |
|   (0...n).each { count += factorial_recur(n - 1) }
 | |
| 
 | |
|   count
 | |
| end
 | |
| 
 | |
| ### Driver Code ###
 | |
| if __FILE__ == $0
 | |
|   # 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
 | |
|   n = 8
 | |
|   puts "输入数据大小 n = #{n}"
 | |
| 
 | |
|   count = constant(n)
 | |
|   puts "常数阶的操作数量 = #{count}"
 | |
| 
 | |
|   count = linear(n)
 | |
|   puts "线性阶的操作数量 = #{count}"
 | |
|   count = array_traversal(Array.new(n, 0))
 | |
|   puts "线性阶(遍历数组)的操作数量 = #{count}"
 | |
| 
 | |
|   count = quadratic(n)
 | |
|   puts "平方阶的操作数量 = #{count}"
 | |
|   nums = Array.new(n) { |i| n - i } # [n, n-1, ..., 2, 1]
 | |
|   count = bubble_sort(nums)
 | |
|   puts "平方阶(冒泡排序)的操作数量 = #{count}"
 | |
| 
 | |
|   count = exponential(n)
 | |
|   puts "指数阶(循环实现)的操作数量 = #{count}"
 | |
|   count = exp_recur(n)
 | |
|   puts "指数阶(递归实现)的操作数量 = #{count}"
 | |
| 
 | |
|   count = logarithmic(n)
 | |
|   puts "对数阶(循环实现)的操作数量 = #{count}"
 | |
|   count = log_recur(n)
 | |
|   puts "对数阶(递归实现)的操作数量 = #{count}"
 | |
| 
 | |
|   count = linear_log_recur(n)
 | |
|   puts "线性对数阶(递归实现)的操作数量 = #{count}"
 | |
| 
 | |
|   count = factorial_recur(n)
 | |
|   puts "阶乘阶(递归实现)的操作数量 = #{count}"
 | |
| end
 | 
