mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-01 03:24:24 +08:00 
			
		
		
		
	 e720aa2d24
			
		
	
	e720aa2d24
	
	
	
		
			
			* Sync recent changes to the revised Word. * Revised the preface chapter * Revised the introduction chapter * Revised the computation complexity chapter * Revised the chapter data structure * Revised the chapter array and linked list * Revised the chapter stack and queue * Revised the chapter hashing * Revised the chapter tree * Revised the chapter heap * Revised the chapter graph * Revised the chapter searching * Reivised the sorting chapter * Revised the divide and conquer chapter * Revised the chapter backtacking * Revised the DP chapter * Revised the greedy chapter * Revised the appendix chapter * Revised the preface chapter doubly * Revised the figures
		
			
				
	
	
		
			119 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C#
		
	
	
	
	
	
			
		
		
	
	
			119 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C#
		
	
	
	
	
	
| /**
 | |
| * File: knapsack.cs
 | |
| * Created Time: 2023-07-07
 | |
| * Author: hpstory (hpstory1024@163.com)
 | |
| */
 | |
| 
 | |
| namespace hello_algo.chapter_dynamic_programming;
 | |
| 
 | |
| public class knapsack {
 | |
|     /* 0-1 背包:暴力搜索 */
 | |
|     int KnapsackDFS(int[] weight, int[] val, int i, int c) {
 | |
|         // 若已选完所有物品或背包无剩余容量,则返回价值 0
 | |
|         if (i == 0 || c == 0) {
 | |
|             return 0;
 | |
|         }
 | |
|         // 若超过背包容量,则只能选择不放入背包
 | |
|         if (weight[i - 1] > c) {
 | |
|             return KnapsackDFS(weight, val, i - 1, c);
 | |
|         }
 | |
|         // 计算不放入和放入物品 i 的最大价值
 | |
|         int no = KnapsackDFS(weight, val, i - 1, c);
 | |
|         int yes = KnapsackDFS(weight, val, i - 1, c - weight[i - 1]) + val[i - 1];
 | |
|         // 返回两种方案中价值更大的那一个
 | |
|         return Math.Max(no, yes);
 | |
|     }
 | |
| 
 | |
|     /* 0-1 背包:记忆化搜索 */
 | |
|     int KnapsackDFSMem(int[] weight, int[] val, int[][] mem, int i, int c) {
 | |
|         // 若已选完所有物品或背包无剩余容量,则返回价值 0
 | |
|         if (i == 0 || c == 0) {
 | |
|             return 0;
 | |
|         }
 | |
|         // 若已有记录,则直接返回
 | |
|         if (mem[i][c] != -1) {
 | |
|             return mem[i][c];
 | |
|         }
 | |
|         // 若超过背包容量,则只能选择不放入背包
 | |
|         if (weight[i - 1] > c) {
 | |
|             return KnapsackDFSMem(weight, val, mem, i - 1, c);
 | |
|         }
 | |
|         // 计算不放入和放入物品 i 的最大价值
 | |
|         int no = KnapsackDFSMem(weight, val, mem, i - 1, c);
 | |
|         int yes = KnapsackDFSMem(weight, val, mem, i - 1, c - weight[i - 1]) + val[i - 1];
 | |
|         // 记录并返回两种方案中价值更大的那一个
 | |
|         mem[i][c] = Math.Max(no, yes);
 | |
|         return mem[i][c];
 | |
|     }
 | |
| 
 | |
|     /* 0-1 背包:动态规划 */
 | |
|     int KnapsackDP(int[] weight, int[] val, int cap) {
 | |
|         int n = weight.Length;
 | |
|         // 初始化 dp 表
 | |
|         int[,] dp = new int[n + 1, cap + 1];
 | |
|         // 状态转移
 | |
|         for (int i = 1; i <= n; i++) {
 | |
|             for (int c = 1; c <= cap; c++) {
 | |
|                 if (weight[i - 1] > c) {
 | |
|                     // 若超过背包容量,则不选物品 i
 | |
|                     dp[i, c] = dp[i - 1, c];
 | |
|                 } else {
 | |
|                     // 不选和选物品 i 这两种方案的较大值
 | |
|                     dp[i, c] = Math.Max(dp[i - 1, c - weight[i - 1]] + val[i - 1], dp[i - 1, c]);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         return dp[n, cap];
 | |
|     }
 | |
| 
 | |
|     /* 0-1 背包:空间优化后的动态规划 */
 | |
|     int KnapsackDPComp(int[] weight, int[] val, int cap) {
 | |
|         int n = weight.Length;
 | |
|         // 初始化 dp 表
 | |
|         int[] dp = new int[cap + 1];
 | |
|         // 状态转移
 | |
|         for (int i = 1; i <= n; i++) {
 | |
|             // 倒序遍历
 | |
|             for (int c = cap; c > 0; c--) {
 | |
|                 if (weight[i - 1] > c) {
 | |
|                     // 若超过背包容量,则不选物品 i
 | |
|                     dp[c] = dp[c];
 | |
|                 } else {
 | |
|                     // 不选和选物品 i 这两种方案的较大值
 | |
|                     dp[c] = Math.Max(dp[c], dp[c - weight[i - 1]] + val[i - 1]);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         return dp[cap];
 | |
|     }
 | |
| 
 | |
|     [Test]
 | |
|     public void Test() {
 | |
|         int[] weight = [10, 20, 30, 40, 50];
 | |
|         int[] val = [50, 120, 150, 210, 240];
 | |
|         int cap = 50;
 | |
|         int n = weight.Length;
 | |
| 
 | |
|         // 暴力搜索
 | |
|         int res = KnapsackDFS(weight, val, n, cap);
 | |
|         Console.WriteLine("不超过背包容量的最大物品价值为 " + res);
 | |
| 
 | |
|         // 记忆化搜索
 | |
|         int[][] mem = new int[n + 1][];
 | |
|         for (int i = 0; i <= n; i++) {
 | |
|             mem[i] = new int[cap + 1];
 | |
|             Array.Fill(mem[i], -1);
 | |
|         }
 | |
|         res = KnapsackDFSMem(weight, val, mem, n, cap);
 | |
|         Console.WriteLine("不超过背包容量的最大物品价值为 " + res);
 | |
| 
 | |
|         // 动态规划
 | |
|         res = KnapsackDP(weight, val, cap);
 | |
|         Console.WriteLine("不超过背包容量的最大物品价值为 " + res);
 | |
| 
 | |
|         // 空间优化后的动态规划
 | |
|         res = KnapsackDPComp(weight, val, cap);
 | |
|         Console.WriteLine("不超过背包容量的最大物品价值为 " + res);
 | |
|     }
 | |
| }
 |