mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 14:18:20 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			173 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Swift
		
	
	
	
	
	
			
		
		
	
	
			173 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Swift
		
	
	
	
	
	
/**
 | 
						||
 * File: time_complexity.swift
 | 
						||
 * Created Time: 2022-12-26
 | 
						||
 * Author: nuomi1 (nuomi1@qq.com)
 | 
						||
 */
 | 
						||
 | 
						||
/* 常数阶 */
 | 
						||
func constant(n: Int) -> Int {
 | 
						||
    var count = 0
 | 
						||
    let size = 100_000
 | 
						||
    for _ in 0 ..< size {
 | 
						||
        count += 1
 | 
						||
    }
 | 
						||
    return count
 | 
						||
}
 | 
						||
 | 
						||
/* 线性阶 */
 | 
						||
func linear(n: Int) -> Int {
 | 
						||
    var count = 0
 | 
						||
    for _ in 0 ..< n {
 | 
						||
        count += 1
 | 
						||
    }
 | 
						||
    return count
 | 
						||
}
 | 
						||
 | 
						||
/* 线性阶(遍历数组) */
 | 
						||
func arrayTraversal(nums: [Int]) -> Int {
 | 
						||
    var count = 0
 | 
						||
    // 循环次数与数组长度成正比
 | 
						||
    for _ in nums {
 | 
						||
        count += 1
 | 
						||
    }
 | 
						||
    return count
 | 
						||
}
 | 
						||
 | 
						||
/* 平方阶 */
 | 
						||
func quadratic(n: Int) -> Int {
 | 
						||
    var count = 0
 | 
						||
    // 循环次数与数组长度成平方关系
 | 
						||
    for _ in 0 ..< n {
 | 
						||
        for _ in 0 ..< n {
 | 
						||
            count += 1
 | 
						||
        }
 | 
						||
    }
 | 
						||
    return count
 | 
						||
}
 | 
						||
 | 
						||
/* 平方阶(冒泡排序) */
 | 
						||
func bubbleSort(nums: inout [Int]) -> Int {
 | 
						||
    var count = 0 // 计数器
 | 
						||
    // 外循环:待排序元素数量为 n-1, n-2, ..., 1
 | 
						||
    for i in stride(from: nums.count - 1, to: 0, by: -1) {
 | 
						||
        // 内循环:冒泡操作
 | 
						||
        for j in 0 ..< i {
 | 
						||
            if nums[j] > nums[j + 1] {
 | 
						||
                // 交换 nums[j] 与 nums[j + 1]
 | 
						||
                let tmp = nums[j]
 | 
						||
                nums[j] = nums[j + 1]
 | 
						||
                nums[j + 1] = tmp
 | 
						||
                count += 3 // 元素交换包含 3 个单元操作
 | 
						||
            }
 | 
						||
        }
 | 
						||
    }
 | 
						||
    return count
 | 
						||
}
 | 
						||
 | 
						||
/* 指数阶(循环实现) */
 | 
						||
func exponential(n: Int) -> Int {
 | 
						||
    var count = 0
 | 
						||
    var base = 1
 | 
						||
    // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
 | 
						||
    for _ in 0 ..< n {
 | 
						||
        for _ in 0 ..< base {
 | 
						||
            count += 1
 | 
						||
        }
 | 
						||
        base *= 2
 | 
						||
    }
 | 
						||
    // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
 | 
						||
    return count
 | 
						||
}
 | 
						||
 | 
						||
/* 指数阶(递归实现) */
 | 
						||
func expRecur(n: Int) -> Int {
 | 
						||
    if n == 1 {
 | 
						||
        return 1
 | 
						||
    }
 | 
						||
    return expRecur(n: n - 1) + expRecur(n: n - 1) + 1
 | 
						||
}
 | 
						||
 | 
						||
/* 对数阶(循环实现) */
 | 
						||
func logarithmic(n: Double) -> Int {
 | 
						||
    var count = 0
 | 
						||
    var n = n
 | 
						||
    while n > 1 {
 | 
						||
        n = n / 2
 | 
						||
        count += 1
 | 
						||
    }
 | 
						||
    return count
 | 
						||
}
 | 
						||
 | 
						||
/* 对数阶(递归实现) */
 | 
						||
func logRecur(n: Double) -> Int {
 | 
						||
    if n <= 1 {
 | 
						||
        return 0
 | 
						||
    }
 | 
						||
    return logRecur(n: n / 2) + 1
 | 
						||
}
 | 
						||
 | 
						||
/* 线性对数阶 */
 | 
						||
func linearLogRecur(n: Double) -> Int {
 | 
						||
    if n <= 1 {
 | 
						||
        return 1
 | 
						||
    }
 | 
						||
    var count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2)
 | 
						||
    for _ in stride(from: 0, to: n, by: 1) {
 | 
						||
        count += 1
 | 
						||
    }
 | 
						||
    return count
 | 
						||
}
 | 
						||
 | 
						||
/* 阶乘阶(递归实现) */
 | 
						||
func factorialRecur(n: Int) -> Int {
 | 
						||
    if n == 0 {
 | 
						||
        return 1
 | 
						||
    }
 | 
						||
    var count = 0
 | 
						||
    // 从 1 个分裂出 n 个
 | 
						||
    for _ in 0 ..< n {
 | 
						||
        count += factorialRecur(n: n - 1)
 | 
						||
    }
 | 
						||
    return count
 | 
						||
}
 | 
						||
 | 
						||
@main
 | 
						||
enum TimeComplexity {
 | 
						||
    /* Driver Code */
 | 
						||
    static func main() {
 | 
						||
        // 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
 | 
						||
        let n = 8
 | 
						||
        print("输入数据大小 n = \(n)")
 | 
						||
 | 
						||
        var count = constant(n: n)
 | 
						||
        print("常数阶的计算操作数量 = \(count)")
 | 
						||
 | 
						||
        count = linear(n: n)
 | 
						||
        print("线性阶的计算操作数量 = \(count)")
 | 
						||
        count = arrayTraversal(nums: Array(repeating: 0, count: n))
 | 
						||
        print("线性阶(遍历数组)的计算操作数量 = \(count)")
 | 
						||
 | 
						||
        count = quadratic(n: n)
 | 
						||
        print("平方阶的计算操作数量 = \(count)")
 | 
						||
        var nums = Array(stride(from: n, to: 0, by: -1)) // [n,n-1,...,2,1]
 | 
						||
        count = bubbleSort(nums: &nums)
 | 
						||
        print("平方阶(冒泡排序)的计算操作数量 = \(count)")
 | 
						||
 | 
						||
        count = exponential(n: n)
 | 
						||
        print("指数阶(循环实现)的计算操作数量 = \(count)")
 | 
						||
        count = expRecur(n: n)
 | 
						||
        print("指数阶(递归实现)的计算操作数量 = \(count)")
 | 
						||
 | 
						||
        count = logarithmic(n: Double(n))
 | 
						||
        print("对数阶(循环实现)的计算操作数量 = \(count)")
 | 
						||
        count = logRecur(n: Double(n))
 | 
						||
        print("对数阶(递归实现)的计算操作数量 = \(count)")
 | 
						||
 | 
						||
        count = linearLogRecur(n: Double(n))
 | 
						||
        print("线性对数阶(递归实现)的计算操作数量 = \(count)")
 | 
						||
 | 
						||
        count = factorialRecur(n: n)
 | 
						||
        print("阶乘阶(递归实现)的计算操作数量 = \(count)")
 | 
						||
    }
 | 
						||
}
 |