mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-01 03:24:24 +08:00 
			
		
		
		
	 954c45864b
			
		
	
	954c45864b
	
	
	
		
			
			* docs: add Japanese documents (`ja/docs`) * docs: add Japanese documents (`ja/codes`) * docs: add Japanese documents * Remove pythontutor blocks in ja/ * Add an empty at the end of each markdown file. * Add the missing figures (use the English version temporarily). * Add index.md for Japanese version. * Add index.html for Japanese version. * Add missing index.assets * Fix backtracking_algorithm.md for Japanese version. * Add avatar_eltociear.jpg. Fix image links on the Japanese landing page. * Add the Japanese banner. --------- Co-authored-by: krahets <krahets@163.com>
		
			
				
	
	
		
			151 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			151 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| File: time_complexity.py
 | |
| Created Time: 2022-11-25
 | |
| Author: krahets (krahets@163.com)
 | |
| """
 | |
| 
 | |
| 
 | |
| def constant(n: int) -> int:
 | |
|     """定数複雑度"""
 | |
|     count = 0
 | |
|     size = 100000
 | |
|     for _ in range(size):
 | |
|         count += 1
 | |
|     return count
 | |
| 
 | |
| 
 | |
| def linear(n: int) -> int:
 | |
|     """線形複雑度"""
 | |
|     count = 0
 | |
|     for _ in range(n):
 | |
|         count += 1
 | |
|     return count
 | |
| 
 | |
| 
 | |
| def array_traversal(nums: list[int]) -> int:
 | |
|     """線形複雑度(配列の走査)"""
 | |
|     count = 0
 | |
|     # ループ回数は配列の長さに比例する
 | |
|     for num in nums:
 | |
|         count += 1
 | |
|     return count
 | |
| 
 | |
| 
 | |
| def quadratic(n: int) -> int:
 | |
|     """二次複雑度"""
 | |
|     count = 0
 | |
|     # ループ回数はデータサイズnの二乗に比例する
 | |
|     for i in range(n):
 | |
|         for j in range(n):
 | |
|             count += 1
 | |
|     return count
 | |
| 
 | |
| 
 | |
| def bubble_sort(nums: list[int]) -> int:
 | |
|     """二次複雑度(バブルソート)"""
 | |
|     count = 0  # カウンタ
 | |
|     # 外側のループ: 未ソート範囲は [0, i]
 | |
|     for i in range(len(nums) - 1, 0, -1):
 | |
|         # 内側のループ: 未ソート範囲 [0, i] の最大要素を右端にスワップ
 | |
|         for j in range(i):
 | |
|             if nums[j] > nums[j + 1]:
 | |
|                 # nums[j] と nums[j + 1] をスワップ
 | |
|                 tmp: int = nums[j]
 | |
|                 nums[j] = nums[j + 1]
 | |
|                 nums[j + 1] = tmp
 | |
|                 count += 3  # 要素のスワップは3つの個別操作を含む
 | |
|     return count
 | |
| 
 | |
| 
 | |
| def exponential(n: int) -> int:
 | |
|     """指数複雑度(ループ実装)"""
 | |
|     count = 0
 | |
|     base = 1
 | |
|     # セルは毎回2つに分裂し、1, 2, 4, 8, ..., 2^(n-1) の数列を形成する
 | |
|     for _ in range(n):
 | |
|         for _ in range(base):
 | |
|             count += 1
 | |
|         base *= 2
 | |
|     # count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
 | |
|     return count
 | |
| 
 | |
| 
 | |
| def exp_recur(n: int) -> int:
 | |
|     """指数複雑度(再帰実装)"""
 | |
|     if n == 1:
 | |
|         return 1
 | |
|     return exp_recur(n - 1) + exp_recur(n - 1) + 1
 | |
| 
 | |
| 
 | |
| def logarithmic(n: int) -> int:
 | |
|     """対数複雑度(ループ実装)"""
 | |
|     count = 0
 | |
|     while n > 1:
 | |
|         n = n / 2
 | |
|         count += 1
 | |
|     return count
 | |
| 
 | |
| 
 | |
| def log_recur(n: int) -> int:
 | |
|     """対数複雑度(再帰実装)"""
 | |
|     if n <= 1:
 | |
|         return 0
 | |
|     return log_recur(n / 2) + 1
 | |
| 
 | |
| 
 | |
| def linear_log_recur(n: int) -> int:
 | |
|     """線形対数複雑度"""
 | |
|     if n <= 1:
 | |
|         return 1
 | |
|     count: int = linear_log_recur(n // 2) + linear_log_recur(n // 2)
 | |
|     for _ in range(n):
 | |
|         count += 1
 | |
|     return count
 | |
| 
 | |
| 
 | |
| def factorial_recur(n: int) -> int:
 | |
|     """階乗複雑度(再帰実装)"""
 | |
|     if n == 0:
 | |
|         return 1
 | |
|     count = 0
 | |
|     # 1つからnに分岐
 | |
|     for _ in range(n):
 | |
|         count += factorial_recur(n - 1)
 | |
|     return count
 | |
| 
 | |
| 
 | |
| """ドライバコード"""
 | |
| if __name__ == "__main__":
 | |
|     # nを変更して、様々な複雑度での操作回数の変化傾向を体験できる
 | |
|     n = 8
 | |
|     print("入力データサイズ n =", n)
 | |
| 
 | |
|     count: int = constant(n)
 | |
|     print("定数複雑度の操作回数 =", count)
 | |
| 
 | |
|     count: int = linear(n)
 | |
|     print("線形複雑度の操作回数 =", count)
 | |
|     count: int = array_traversal([0] * n)
 | |
|     print("線形複雑度(配列の走査)の操作回数 =", count)
 | |
| 
 | |
|     count: int = quadratic(n)
 | |
|     print("二次複雑度の操作回数 =", count)
 | |
|     nums = [i for i in range(n, 0, -1)]  # [n, n-1, ..., 2, 1]
 | |
|     count: int = bubble_sort(nums)
 | |
|     print("二次複雑度(バブルソート)の操作回数 =", count)
 | |
| 
 | |
|     count: int = exponential(n)
 | |
|     print("指数複雑度(ループ実装)の操作回数 =", count)
 | |
|     count: int = exp_recur(n)
 | |
|     print("指数複雑度(再帰実装)の操作回数 =", count)
 | |
| 
 | |
|     count: int = logarithmic(n)
 | |
|     print("対数複雑度(ループ実装)の操作回数 =", count)
 | |
|     count: int = log_recur(n)
 | |
|     print("対数複雑度(再帰実装)の操作回数 =", count)
 | |
| 
 | |
|     count: int = linear_log_recur(n)
 | |
|     print("線形対数複雑度(再帰実装)の操作回数 =", count)
 | |
| 
 | |
|     count: int = factorial_recur(n)
 | |
|     print("階乗複雑度(再帰実装)の操作回数 =", count) |