Files
Ikko Eltociear Ashimine 954c45864b docs: add Japanese translate documents (#1812)
* docs: add Japanese documents (`ja/docs`)

* docs: add Japanese documents (`ja/codes`)

* docs: add Japanese documents

* Remove pythontutor blocks in ja/

* Add an empty at the end of each markdown file.

* Add the missing figures (use the English version temporarily).

* Add index.md for Japanese version.

* Add index.html for Japanese version.

* Add missing index.assets

* Fix backtracking_algorithm.md for Japanese version.

* Add avatar_eltociear.jpg. Fix image links on the Japanese landing page.

* Add the Japanese banner.

---------

Co-authored-by: krahets <krahets@163.com>
2025-10-17 05:04:43 +08:00

151 lines
4.0 KiB
Python

"""
File: time_complexity.py
Created Time: 2022-11-25
Author: krahets (krahets@163.com)
"""
def constant(n: int) -> int:
"""定数複雑度"""
count = 0
size = 100000
for _ in range(size):
count += 1
return count
def linear(n: int) -> int:
"""線形複雑度"""
count = 0
for _ in range(n):
count += 1
return count
def array_traversal(nums: list[int]) -> int:
"""線形複雑度(配列の走査)"""
count = 0
# ループ回数は配列の長さに比例する
for num in nums:
count += 1
return count
def quadratic(n: int) -> int:
"""二次複雑度"""
count = 0
# ループ回数はデータサイズnの二乗に比例する
for i in range(n):
for j in range(n):
count += 1
return count
def bubble_sort(nums: list[int]) -> int:
"""二次複雑度(バブルソート)"""
count = 0 # カウンタ
# 外側のループ: 未ソート範囲は [0, i]
for i in range(len(nums) - 1, 0, -1):
# 内側のループ: 未ソート範囲 [0, i] の最大要素を右端にスワップ
for j in range(i):
if nums[j] > nums[j + 1]:
# nums[j] と nums[j + 1] をスワップ
tmp: int = nums[j]
nums[j] = nums[j + 1]
nums[j + 1] = tmp
count += 3 # 要素のスワップは3つの個別操作を含む
return count
def exponential(n: int) -> int:
"""指数複雑度(ループ実装)"""
count = 0
base = 1
# セルは毎回2つに分裂し、1, 2, 4, 8, ..., 2^(n-1) の数列を形成する
for _ in range(n):
for _ in range(base):
count += 1
base *= 2
# count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count
def exp_recur(n: int) -> int:
"""指数複雑度(再帰実装)"""
if n == 1:
return 1
return exp_recur(n - 1) + exp_recur(n - 1) + 1
def logarithmic(n: int) -> int:
"""対数複雑度(ループ実装)"""
count = 0
while n > 1:
n = n / 2
count += 1
return count
def log_recur(n: int) -> int:
"""対数複雑度(再帰実装)"""
if n <= 1:
return 0
return log_recur(n / 2) + 1
def linear_log_recur(n: int) -> int:
"""線形対数複雑度"""
if n <= 1:
return 1
count: int = linear_log_recur(n // 2) + linear_log_recur(n // 2)
for _ in range(n):
count += 1
return count
def factorial_recur(n: int) -> int:
"""階乗複雑度(再帰実装)"""
if n == 0:
return 1
count = 0
# 1つからnに分岐
for _ in range(n):
count += factorial_recur(n - 1)
return count
"""ドライバコード"""
if __name__ == "__main__":
# nを変更して、様々な複雑度での操作回数の変化傾向を体験できる
n = 8
print("入力データサイズ n =", n)
count: int = constant(n)
print("定数複雑度の操作回数 =", count)
count: int = linear(n)
print("線形複雑度の操作回数 =", count)
count: int = array_traversal([0] * n)
print("線形複雑度(配列の走査)の操作回数 =", count)
count: int = quadratic(n)
print("二次複雑度の操作回数 =", count)
nums = [i for i in range(n, 0, -1)] # [n, n-1, ..., 2, 1]
count: int = bubble_sort(nums)
print("二次複雑度(バブルソート)の操作回数 =", count)
count: int = exponential(n)
print("指数複雑度(ループ実装)の操作回数 =", count)
count: int = exp_recur(n)
print("指数複雑度(再帰実装)の操作回数 =", count)
count: int = logarithmic(n)
print("対数複雑度(ループ実装)の操作回数 =", count)
count: int = log_recur(n)
print("対数複雑度(再帰実装)の操作回数 =", count)
count: int = linear_log_recur(n)
print("線形対数複雑度(再帰実装)の操作回数 =", count)
count: int = factorial_recur(n)
print("階乗複雑度(再帰実装)の操作回数 =", count)