Files
Ikko Eltociear Ashimine 954c45864b docs: add Japanese translate documents (#1812)
* docs: add Japanese documents (`ja/docs`)

* docs: add Japanese documents (`ja/codes`)

* docs: add Japanese documents

* Remove pythontutor blocks in ja/

* Add an empty at the end of each markdown file.

* Add the missing figures (use the English version temporarily).

* Add index.md for Japanese version.

* Add index.html for Japanese version.

* Add missing index.assets

* Fix backtracking_algorithm.md for Japanese version.

* Add avatar_eltociear.jpg. Fix image links on the Japanese landing page.

* Add the Japanese banner.

---------

Co-authored-by: krahets <krahets@163.com>
2025-10-17 05:04:43 +08:00

91 lines
2.0 KiB
Python

"""
File: space_complexity.py
Created Time: 2022-11-25
Author: krahets (krahets@163.com)
"""
import sys
from pathlib import Path
sys.path.append(str(Path(__file__).parent.parent))
from modules import ListNode, TreeNode, print_tree
def function() -> int:
"""関数"""
# 何らかの操作を実行
return 0
def constant(n: int):
"""定数複雑度"""
# 定数、変数、オブジェクトは O(1) のスペースを占有
a = 0
nums = [0] * 10000
node = ListNode(0)
# ループ内の変数は O(1) のスペースを占有
for _ in range(n):
c = 0
# ループ内の関数は O(1) のスペースを占有
for _ in range(n):
function()
def linear(n: int):
"""線形複雑度"""
# 長さ n のリストは O(n) のスペースを占有
nums = [0] * n
# 長さ n のハッシュマップは O(n) のスペースを占有
hmap = dict[int, str]()
for i in range(n):
hmap[i] = str(i)
def linear_recur(n: int):
"""線形複雑度(再帰実装)"""
print("再帰 n =", n)
if n == 1:
return
linear_recur(n - 1)
def quadratic(n: int):
"""平方複雑度"""
# 二次元リストは O(n^2) のスペースを占有
num_matrix = [[0] * n for _ in range(n)]
def quadratic_recur(n: int) -> int:
"""平方複雑度(再帰実装)"""
if n <= 0:
return 0
nums = [0] * n
print(f"再帰 n = {n} の中で配列の長さ = {len(nums)}")
return quadratic_recur(n - 1)
def build_tree(n: int) -> TreeNode | None:
"""指数複雑度(完全二分木の構築)"""
if n == 0:
return None
root = TreeNode(0)
root.left = build_tree(n - 1)
root.right = build_tree(n - 1)
return root
"""Driver Code"""
if __name__ == "__main__":
n = 5
# 定数複雑度
constant(n)
# 線形複雑度
linear(n)
linear_recur(n)
# 平方複雑度
quadratic(n)
quadratic_recur(n)
# 指数複雑度
root = build_tree(n)
print_tree(root)