mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-01 03:24:24 +08:00 
			
		
		
		
	 954c45864b
			
		
	
	954c45864b
	
	
	
		
			
			* docs: add Japanese documents (`ja/docs`) * docs: add Japanese documents (`ja/codes`) * docs: add Japanese documents * Remove pythontutor blocks in ja/ * Add an empty at the end of each markdown file. * Add the missing figures (use the English version temporarily). * Add index.md for Japanese version. * Add index.html for Japanese version. * Add missing index.assets * Fix backtracking_algorithm.md for Japanese version. * Add avatar_eltociear.jpg. Fix image links on the Japanese landing page. * Add the Japanese banner. --------- Co-authored-by: krahets <krahets@163.com>
		
			
				
	
	
		
			167 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Java
		
	
	
	
	
	
			
		
		
	
	
			167 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Java
		
	
	
	
	
	
| /**
 | |
|  * File: time_complexity.java
 | |
|  * Created Time: 2022-11-25
 | |
|  * Author: krahets (krahets@163.com)
 | |
|  */
 | |
| 
 | |
| package chapter_computational_complexity;
 | |
| 
 | |
| public class time_complexity {
 | |
|     /* 定数計算量 */
 | |
|     static int constant(int n) {
 | |
|         int count = 0;
 | |
|         int size = 100000;
 | |
|         for (int i = 0; i < size; i++)
 | |
|             count++;
 | |
|         return count;
 | |
|     }
 | |
| 
 | |
|     /* 線形計算量 */
 | |
|     static int linear(int n) {
 | |
|         int count = 0;
 | |
|         for (int i = 0; i < n; i++)
 | |
|             count++;
 | |
|         return count;
 | |
|     }
 | |
| 
 | |
|     /* 線形計算量(配列の走査) */
 | |
|     static int arrayTraversal(int[] nums) {
 | |
|         int count = 0;
 | |
|         // ループ回数は配列の長さに比例
 | |
|         for (int num : nums) {
 | |
|             count++;
 | |
|         }
 | |
|         return count;
 | |
|     }
 | |
| 
 | |
|     /* 二次計算量 */
 | |
|     static int quadratic(int n) {
 | |
|         int count = 0;
 | |
|         // ループ回数はデータサイズ n の二乗に比例
 | |
|         for (int i = 0; i < n; i++) {
 | |
|             for (int j = 0; j < n; j++) {
 | |
|                 count++;
 | |
|             }
 | |
|         }
 | |
|         return count;
 | |
|     }
 | |
| 
 | |
|     /* 二次計算量(バブルソート) */
 | |
|     static int bubbleSort(int[] nums) {
 | |
|         int count = 0; // カウンター
 | |
|         // 外側ループ:未ソート範囲は [0, i]
 | |
|         for (int i = nums.length - 1; i > 0; i--) {
 | |
|             // 内側ループ:未ソート範囲 [0, i] の最大要素を範囲の右端にスワップ
 | |
|             for (int j = 0; j < i; j++) {
 | |
|                 if (nums[j] > nums[j + 1]) {
 | |
|                     // nums[j] と nums[j + 1] をスワップ
 | |
|                     int tmp = nums[j];
 | |
|                     nums[j] = nums[j + 1];
 | |
|                     nums[j + 1] = tmp;
 | |
|                     count += 3; // 要素のスワップには3つの個別操作が含まれる
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         return count;
 | |
|     }
 | |
| 
 | |
|     /* 指数計算量(ループ実装) */
 | |
|     static int exponential(int n) {
 | |
|         int count = 0, base = 1;
 | |
|         // セルは毎ラウンド2つに分裂し、数列 1, 2, 4, 8, ..., 2^(n-1) を形成
 | |
|         for (int i = 0; i < n; i++) {
 | |
|             for (int j = 0; j < base; j++) {
 | |
|                 count++;
 | |
|             }
 | |
|             base *= 2;
 | |
|         }
 | |
|         // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
 | |
|         return count;
 | |
|     }
 | |
| 
 | |
|     /* 指数計算量(再帰実装) */
 | |
|     static int expRecur(int n) {
 | |
|         if (n == 1)
 | |
|             return 1;
 | |
|         return expRecur(n - 1) + expRecur(n - 1) + 1;
 | |
|     }
 | |
| 
 | |
|     /* 対数計算量(ループ実装) */
 | |
|     static int logarithmic(int n) {
 | |
|         int count = 0;
 | |
|         while (n > 1) {
 | |
|             n = n / 2;
 | |
|             count++;
 | |
|         }
 | |
|         return count;
 | |
|     }
 | |
| 
 | |
|     /* 対数計算量(再帰実装) */
 | |
|     static int logRecur(int n) {
 | |
|         if (n <= 1)
 | |
|             return 0;
 | |
|         return logRecur(n / 2) + 1;
 | |
|     }
 | |
| 
 | |
|     /* 線形対数計算量 */
 | |
|     static int linearLogRecur(int n) {
 | |
|         if (n <= 1)
 | |
|             return 1;
 | |
|         int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
 | |
|         for (int i = 0; i < n; i++) {
 | |
|             count++;
 | |
|         }
 | |
|         return count;
 | |
|     }
 | |
| 
 | |
|     /* 階乗計算量(再帰実装) */
 | |
|     static int factorialRecur(int n) {
 | |
|         if (n == 0)
 | |
|             return 1;
 | |
|         int count = 0;
 | |
|         // 1から n に分裂
 | |
|         for (int i = 0; i < n; i++) {
 | |
|             count += factorialRecur(n - 1);
 | |
|         }
 | |
|         return count;
 | |
|     }
 | |
| 
 | |
|     /* ドライバーコード */
 | |
|     public static void main(String[] args) {
 | |
|         // n を変更して、さまざまな計算量での操作回数の変化傾向を体験可能
 | |
|         int n = 8;
 | |
|         System.out.println("入力データサイズ n = " + n);
 | |
| 
 | |
|         int count = constant(n);
 | |
|         System.out.println("定数計算量の操作回数 = " + count);
 | |
| 
 | |
|         count = linear(n);
 | |
|         System.out.println("線形計算量の操作回数 = " + count);
 | |
|         count = arrayTraversal(new int[n]);
 | |
|         System.out.println("線形計算量の操作回数(配列走査) = " + count);
 | |
| 
 | |
|         count = quadratic(n);
 | |
|         System.out.println("二次計算量の操作回数 = " + count);
 | |
|         int[] nums = new int[n];
 | |
|         for (int i = 0; i < n; i++)
 | |
|             nums[i] = n - i; // [n,n-1,...,2,1]
 | |
|         count = bubbleSort(nums);
 | |
|         System.out.println("二次計算量の操作回数(バブルソート) = " + count);
 | |
| 
 | |
|         count = exponential(n);
 | |
|         System.out.println("指数計算量の操作回数(ループ実装) = " + count);
 | |
|         count = expRecur(n);
 | |
|         System.out.println("指数計算量の操作回数(再帰実装) = " + count);
 | |
| 
 | |
|         count = logarithmic(n);
 | |
|         System.out.println("対数計算量の操作回数(ループ実装) = " + count);
 | |
|         count = logRecur(n);
 | |
|         System.out.println("対数計算量の操作回数(再帰実装) = " + count);
 | |
| 
 | |
|         count = linearLogRecur(n);
 | |
|         System.out.println("線形対数計算量の操作回数(再帰実装) = " + count);
 | |
| 
 | |
|         count = factorialRecur(n);
 | |
|         System.out.println("階乗計算量の操作回数(再帰実装) = " + count);
 | |
|     }
 | |
| } |