mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 14:18:20 +08:00 
			
		
		
		
	* Add the intial translation of code of all the languages * test * revert * Remove * Add Python and Java code for EN version
		
			
				
	
	
		
			64 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Java
		
	
	
	
	
	
			
		
		
	
	
			64 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Java
		
	
	
	
	
	
/**
 | 
						|
 * File: unbounded_knapsack.java
 | 
						|
 * Created Time: 2023-07-11
 | 
						|
 * Author: krahets (krahets@163.com)
 | 
						|
 */
 | 
						|
 | 
						|
package chapter_dynamic_programming;
 | 
						|
 | 
						|
public class unbounded_knapsack {
 | 
						|
    /* Complete knapsack: Dynamic programming */
 | 
						|
    static int unboundedKnapsackDP(int[] wgt, int[] val, int cap) {
 | 
						|
        int n = wgt.length;
 | 
						|
        // Initialize dp table
 | 
						|
        int[][] dp = new int[n + 1][cap + 1];
 | 
						|
        // State transition
 | 
						|
        for (int i = 1; i <= n; i++) {
 | 
						|
            for (int c = 1; c <= cap; c++) {
 | 
						|
                if (wgt[i - 1] > c) {
 | 
						|
                    // If exceeding the knapsack capacity, do not choose item i
 | 
						|
                    dp[i][c] = dp[i - 1][c];
 | 
						|
                } else {
 | 
						|
                    // The greater value between not choosing and choosing item i
 | 
						|
                    dp[i][c] = Math.max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return dp[n][cap];
 | 
						|
    }
 | 
						|
 | 
						|
    /* Complete knapsack: Space-optimized dynamic programming */
 | 
						|
    static int unboundedKnapsackDPComp(int[] wgt, int[] val, int cap) {
 | 
						|
        int n = wgt.length;
 | 
						|
        // Initialize dp table
 | 
						|
        int[] dp = new int[cap + 1];
 | 
						|
        // State transition
 | 
						|
        for (int i = 1; i <= n; i++) {
 | 
						|
            for (int c = 1; c <= cap; c++) {
 | 
						|
                if (wgt[i - 1] > c) {
 | 
						|
                    // If exceeding the knapsack capacity, do not choose item i
 | 
						|
                    dp[c] = dp[c];
 | 
						|
                } else {
 | 
						|
                    // The greater value between not choosing and choosing item i
 | 
						|
                    dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return dp[cap];
 | 
						|
    }
 | 
						|
 | 
						|
    public static void main(String[] args) {
 | 
						|
        int[] wgt = { 1, 2, 3 };
 | 
						|
        int[] val = { 5, 11, 15 };
 | 
						|
        int cap = 4;
 | 
						|
 | 
						|
        // Dynamic programming
 | 
						|
        int res = unboundedKnapsackDP(wgt, val, cap);
 | 
						|
        System.out.println("The maximum value within the bag capacity is " + res);
 | 
						|
 | 
						|
        // Space-optimized dynamic programming
 | 
						|
        res = unboundedKnapsackDPComp(wgt, val, cap);
 | 
						|
        System.out.println("The maximum value within the bag capacity is " + res);
 | 
						|
    }
 | 
						|
}
 |