mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 22:28:40 +08:00 
			
		
		
		
	* add dart chapter_array_and_linkedlist * update my_list.dart * update chapter_array_and_linkedlist * Update my_list.dart * Update array.dart * Update file name * Add chapter_computational_complexity * Add chapter_computational_complexity * add space_complexity class and format code * remove class --------- Co-authored-by: huangjianqing <huangjianqing@52tt.com> Co-authored-by: Yudong Jin <krahets@163.com>
		
			
				
	
	
		
			164 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Dart
		
	
	
	
	
	
			
		
		
	
	
			164 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Dart
		
	
	
	
	
	
/**
 | 
						|
 * File: time_complexity
 | 
						|
 * Created Time: 2023-02-12
 | 
						|
 * Author: Jefferson (JeffersonHuang77@gmail.com)
 | 
						|
 */
 | 
						|
 | 
						|
/* 常数阶 */
 | 
						|
int constant(int n) {
 | 
						|
  int count = 0;
 | 
						|
  int size = 100000;
 | 
						|
  for (var i = 0; i < size; i++) {
 | 
						|
    count++;
 | 
						|
  }
 | 
						|
  return count;
 | 
						|
}
 | 
						|
 | 
						|
/* 线性阶 */
 | 
						|
int linear(int n) {
 | 
						|
  int count = 0;
 | 
						|
  for (var i = 0; i < n; i++) {
 | 
						|
    count++;
 | 
						|
  }
 | 
						|
  return count;
 | 
						|
}
 | 
						|
 | 
						|
/* 线性阶(遍历数组) */
 | 
						|
int arrayTraversal(List<int> nums) {
 | 
						|
  int count = 0;
 | 
						|
  // 循环次数与数组长度成正比
 | 
						|
  for (var num in nums) {
 | 
						|
    count++;
 | 
						|
  }
 | 
						|
  return count;
 | 
						|
}
 | 
						|
 | 
						|
/* 平方阶 */
 | 
						|
int quadratic(int n) {
 | 
						|
  int count = 0;
 | 
						|
  // 循环次数与数组长度成平方关系
 | 
						|
  for (int i = 0; i < n; i++) {
 | 
						|
    for (int j = 0; j < n; j++) {
 | 
						|
      count++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return count;
 | 
						|
}
 | 
						|
 | 
						|
/* 平方阶(冒泡排序) */
 | 
						|
int bubbleSort(List<int> nums) {
 | 
						|
  int count = 0; // 计数器
 | 
						|
  // 外循环:待排序元素数量为 n-1, n-2, ..., 1
 | 
						|
  for (var i = nums.length - 1; i > 0; i--) {
 | 
						|
    // 内循环:冒泡操作
 | 
						|
    for (var j = 0; j < i; j++) {
 | 
						|
      if (nums[j] > nums[j + 1]) {
 | 
						|
        // 交换 nums[j] 与 nums[j + 1]
 | 
						|
        int tmp = nums[j];
 | 
						|
        nums[j] = nums[j + 1];
 | 
						|
        nums[j + 1] = tmp;
 | 
						|
        count += 3; // 元素交换包含 3 个单元操作
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return count;
 | 
						|
}
 | 
						|
 | 
						|
/* 指数阶(循环实现) */
 | 
						|
int exponential(int n) {
 | 
						|
  int count = 0, base = 1;
 | 
						|
  // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
 | 
						|
  for (var i = 0; i < n; i++) {
 | 
						|
    for (var j = 0; j < base; j++) {
 | 
						|
      count++;
 | 
						|
    }
 | 
						|
    base *= 2;
 | 
						|
  }
 | 
						|
  // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
 | 
						|
  return count;
 | 
						|
}
 | 
						|
 | 
						|
/* 指数阶(递归实现) */
 | 
						|
int expRecur(int n) {
 | 
						|
  if (n == 1) return 1;
 | 
						|
  return expRecur(n - 1) + expRecur(n - 1) + 1;
 | 
						|
}
 | 
						|
 | 
						|
/* 对数阶(循环实现) */
 | 
						|
int logarithmic(num n) {
 | 
						|
  int count = 0;
 | 
						|
  while (n > 1) {
 | 
						|
    n = n / 2;
 | 
						|
    count++;
 | 
						|
  }
 | 
						|
  return count;
 | 
						|
}
 | 
						|
 | 
						|
/* 对数阶(递归实现) */
 | 
						|
int logRecur(num n) {
 | 
						|
  if (n <= 1) return 0;
 | 
						|
  return logRecur(n / 2) + 1;
 | 
						|
}
 | 
						|
 | 
						|
/* 线性对数阶 */
 | 
						|
int linearLogRecur(num n) {
 | 
						|
  if (n <= 1) return 1;
 | 
						|
  int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
 | 
						|
  for (var i = 0; i < n; i++) {
 | 
						|
    count++;
 | 
						|
  }
 | 
						|
  return count;
 | 
						|
}
 | 
						|
 | 
						|
/* 阶乘阶(递归实现) */
 | 
						|
int factorialRecur(int n) {
 | 
						|
  if (n == 0) return 1;
 | 
						|
  int count = 0;
 | 
						|
  // 从 1 个分裂出 n 个
 | 
						|
  for (var i = 0; i < n; i++) {
 | 
						|
    count += factorialRecur(n - 1);
 | 
						|
  }
 | 
						|
  return count;
 | 
						|
}
 | 
						|
 | 
						|
int main() {
 | 
						|
  // 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
 | 
						|
  int n = 8;
 | 
						|
  print('输入数据大小 n = $n');
 | 
						|
 | 
						|
  int count = constant(n);
 | 
						|
  print('常数阶的计算操作数量 = $count');
 | 
						|
 | 
						|
  count = linear(n);
 | 
						|
  print('线性阶的计算操作数量 = $count');
 | 
						|
 | 
						|
  count = arrayTraversal(List.filled(n, 0));
 | 
						|
  print('线性阶(遍历数组)的计算操作数量 = $count');
 | 
						|
 | 
						|
  count = quadratic(n);
 | 
						|
  print('平方阶的计算操作数量 = $count');
 | 
						|
  final nums = List.filled(n, 0);
 | 
						|
  for (int i = 0; i < n; i++) {
 | 
						|
    nums[i] = n - i; // [n,n-1,...,2,1]
 | 
						|
  }
 | 
						|
  count = bubbleSort(nums);
 | 
						|
  print('平方阶(冒泡排序)的计算操作数量 = $count');
 | 
						|
 | 
						|
  count = exponential(n);
 | 
						|
  print('指数阶(循环实现)的计算操作数量 = $count');
 | 
						|
  count = expRecur(n);
 | 
						|
  print('指数阶(递归实现)的计算操作数量 = $count');
 | 
						|
 | 
						|
  count = logarithmic(n);
 | 
						|
  print('对数阶(循环实现)的计算操作数量 = $count');
 | 
						|
  count = logRecur(n);
 | 
						|
  print('对数阶(递归实现)的计算操作数量 = $count');
 | 
						|
 | 
						|
  count = linearLogRecur(n);
 | 
						|
  print('线性对数阶(递归实现)的计算操作数量 = $count');
 | 
						|
 | 
						|
  count = factorialRecur(n);
 | 
						|
  print('阶乘阶(递归实现)的计算操作数量 = $count');
 | 
						|
  return 0;
 | 
						|
}
 |