mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-10-31 18:37:48 +08:00 
			
		
		
		
	 7ffef7e1d6
			
		
	
	7ffef7e1d6
	
	
	
		
			
			* update author information * Update index.md --------- Co-authored-by: Yudong Jin <krahets@163.com>
		
			
				
	
	
		
			249 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Zig
		
	
	
	
	
	
			
		
		
	
	
			249 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Zig
		
	
	
	
	
	
| // File: avl_tree.zig
 | ||
| // Created Time: 2023-01-15
 | ||
| // Author: codingonion (coderonion@gmail.com)
 | ||
| 
 | ||
| const std = @import("std");
 | ||
| const inc = @import("include");
 | ||
| 
 | ||
| // AVL 树
 | ||
| pub fn AVLTree(comptime T: type) type {
 | ||
|     return struct {
 | ||
|         const Self = @This();
 | ||
| 
 | ||
|         root: ?*inc.TreeNode(T) = null,                 // 根节点
 | ||
|         mem_arena: ?std.heap.ArenaAllocator = null,
 | ||
|         mem_allocator: std.mem.Allocator = undefined,   // 内存分配器
 | ||
| 
 | ||
|         // 构造方法
 | ||
|         pub fn init(self: *Self, allocator: std.mem.Allocator) void {
 | ||
|             if (self.mem_arena == null) {
 | ||
|                 self.mem_arena = std.heap.ArenaAllocator.init(allocator);
 | ||
|                 self.mem_allocator = self.mem_arena.?.allocator();
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         // 析构方法
 | ||
|         pub fn deinit(self: *Self) void {
 | ||
|             if (self.mem_arena == null) return;
 | ||
|             self.mem_arena.?.deinit();
 | ||
|         }
 | ||
| 
 | ||
|         // 获取节点高度
 | ||
|         fn height(self: *Self, node: ?*inc.TreeNode(T)) i32 {
 | ||
|             _ = self;
 | ||
|             // 空节点高度为 -1 ,叶节点高度为 0
 | ||
|             return if (node == null) -1 else node.?.height;
 | ||
|         }
 | ||
| 
 | ||
|         // 更新节点高度
 | ||
|         fn updateHeight(self: *Self, node: ?*inc.TreeNode(T)) void {
 | ||
|             // 节点高度等于最高子树高度 + 1
 | ||
|             node.?.height = @max(self.height(node.?.left), self.height(node.?.right)) + 1;
 | ||
|         }
 | ||
| 
 | ||
|         // 获取平衡因子
 | ||
|         fn balanceFactor(self: *Self, node: ?*inc.TreeNode(T)) i32 {
 | ||
|             // 空节点平衡因子为 0
 | ||
|             if (node == null) return 0;
 | ||
|             // 节点平衡因子 = 左子树高度 - 右子树高度
 | ||
|             return self.height(node.?.left) - self.height(node.?.right);
 | ||
|         }
 | ||
| 
 | ||
|         // 右旋操作
 | ||
|         fn rightRotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {
 | ||
|             var child = node.?.left;
 | ||
|             var grandChild = child.?.right;
 | ||
|             // 以 child 为原点,将 node 向右旋转
 | ||
|             child.?.right = node;
 | ||
|             node.?.left = grandChild;
 | ||
|             // 更新节点高度
 | ||
|             self.updateHeight(node);
 | ||
|             self.updateHeight(child);
 | ||
|             // 返回旋转后子树的根节点
 | ||
|             return child;
 | ||
|         }
 | ||
| 
 | ||
|         // 左旋操作
 | ||
|         fn leftRotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {
 | ||
|             var child = node.?.right;
 | ||
|             var grandChild = child.?.left;
 | ||
|             // 以 child 为原点,将 node 向左旋转
 | ||
|             child.?.left = node;
 | ||
|             node.?.right = grandChild;
 | ||
|             // 更新节点高度
 | ||
|             self.updateHeight(node);
 | ||
|             self.updateHeight(child);
 | ||
|             // 返回旋转后子树的根节点
 | ||
|             return child;
 | ||
|         }
 | ||
| 
 | ||
|         // 执行旋转操作,使该子树重新恢复平衡
 | ||
|         fn rotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {
 | ||
|             // 获取节点 node 的平衡因子
 | ||
|             var balance_factor = self.balanceFactor(node);
 | ||
|             // 左偏树
 | ||
|             if (balance_factor > 1) {
 | ||
|                 if (self.balanceFactor(node.?.left) >= 0) {
 | ||
|                     // 右旋
 | ||
|                     return self.rightRotate(node);
 | ||
|                 } else {
 | ||
|                     // 先左旋后右旋
 | ||
|                     node.?.left = self.leftRotate(node.?.left);
 | ||
|                     return self.rightRotate(node);
 | ||
|                 }
 | ||
|             }
 | ||
|             // 右偏树
 | ||
|             if (balance_factor < -1) {
 | ||
|                 if (self.balanceFactor(node.?.right) <= 0) {
 | ||
|                     // 左旋
 | ||
|                     return self.leftRotate(node);
 | ||
|                 } else {
 | ||
|                     // 先右旋后左旋
 | ||
|                     node.?.right = self.rightRotate(node.?.right);
 | ||
|                     return self.leftRotate(node);
 | ||
|                 }
 | ||
|             }
 | ||
|             // 平衡树,无须旋转,直接返回
 | ||
|             return node;
 | ||
|         }
 | ||
| 
 | ||
|         // 插入节点
 | ||
|         fn insert(self: *Self, val: T) !void {
 | ||
|             self.root = (try self.insertHelper(self.root, val)).?;
 | ||
|         }
 | ||
| 
 | ||
|         // 递归插入节点(辅助方法)
 | ||
|         fn insertHelper(self: *Self, node_: ?*inc.TreeNode(T), val: T) !?*inc.TreeNode(T) {
 | ||
|             var node = node_;
 | ||
|             if (node == null) {
 | ||
|                 var tmp_node = try self.mem_allocator.create(inc.TreeNode(T));
 | ||
|                 tmp_node.init(val);
 | ||
|                 return tmp_node;
 | ||
|             }
 | ||
|             // 1. 查找插入位置并插入节点
 | ||
|             if (val < node.?.val) {
 | ||
|                 node.?.left = try self.insertHelper(node.?.left, val);
 | ||
|             } else if (val > node.?.val) {
 | ||
|                 node.?.right = try self.insertHelper(node.?.right, val);
 | ||
|             } else {
 | ||
|                 return node;            // 重复节点不插入,直接返回
 | ||
|             }
 | ||
|             self.updateHeight(node);    // 更新节点高度
 | ||
|             // 2. 执行旋转操作,使该子树重新恢复平衡
 | ||
|             node = self.rotate(node);
 | ||
|             // 返回子树的根节点
 | ||
|             return node;
 | ||
|         }
 | ||
| 
 | ||
|         // 删除节点
 | ||
|         fn remove(self: *Self, val: T) void {
 | ||
|            self.root = self.removeHelper(self.root, val).?;
 | ||
|         }
 | ||
| 
 | ||
|         // 递归删除节点(辅助方法)
 | ||
|         fn removeHelper(self: *Self, node_: ?*inc.TreeNode(T), val: T) ?*inc.TreeNode(T) {
 | ||
|             var node = node_;
 | ||
|             if (node == null) return null;
 | ||
|             // 1. 查找节点并删除
 | ||
|             if (val < node.?.val) {
 | ||
|                 node.?.left = self.removeHelper(node.?.left, val);
 | ||
|             } else if (val > node.?.val) {
 | ||
|                 node.?.right = self.removeHelper(node.?.right, val);
 | ||
|             } else {
 | ||
|                 if (node.?.left == null or node.?.right == null) {
 | ||
|                     var child = if (node.?.left != null) node.?.left else node.?.right;
 | ||
|                     // 子节点数量 = 0 ,直接删除 node 并返回
 | ||
|                     if (child == null) {
 | ||
|                         return null;
 | ||
|                     // 子节点数量 = 1 ,直接删除 node
 | ||
|                     } else {
 | ||
|                         node = child;
 | ||
|                     }
 | ||
|                 } else {
 | ||
|                     // 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点
 | ||
|                     var temp = node.?.right;
 | ||
|                     while (temp.?.left != null) {
 | ||
|                         temp = temp.?.left;
 | ||
|                     }
 | ||
|                     node.?.right = self.removeHelper(node.?.right, temp.?.val);
 | ||
|                     node.?.val = temp.?.val;
 | ||
|                 }
 | ||
|             }
 | ||
|             self.updateHeight(node); // 更新节点高度
 | ||
|             // 2. 执行旋转操作,使该子树重新恢复平衡
 | ||
|             node = self.rotate(node);
 | ||
|             // 返回子树的根节点
 | ||
|             return node;
 | ||
|         }
 | ||
| 
 | ||
|         // 查找节点
 | ||
|         fn search(self: *Self, val: T) ?*inc.TreeNode(T) {
 | ||
|             var cur = self.root;
 | ||
|             // 循环查找,越过叶节点后跳出
 | ||
|             while (cur != null) {
 | ||
|                 // 目标节点在 cur 的右子树中
 | ||
|                 if (cur.?.val < val) {
 | ||
|                     cur = cur.?.right;
 | ||
|                 // 目标节点在 cur 的左子树中
 | ||
|                 } else if (cur.?.val > val) {
 | ||
|                     cur = cur.?.left;
 | ||
|                 // 找到目标节点,跳出循环
 | ||
|                 } else {
 | ||
|                     break;
 | ||
|                 }
 | ||
|             }
 | ||
|             // 返回目标节点
 | ||
|             return cur;
 | ||
|         }
 | ||
|     };   
 | ||
| }
 | ||
| 
 | ||
| pub fn testInsert(comptime T: type, tree_: *AVLTree(T), val: T) !void {
 | ||
|     var tree = tree_;
 | ||
|     try tree.insert(val);
 | ||
|     std.debug.print("\n插入节点 {} 后,AVL 树为\n", .{val});
 | ||
|     try inc.PrintUtil.printTree(tree.root, null, false);
 | ||
| }
 | ||
| 
 | ||
| pub fn testRemove(comptime T: type, tree_: *AVLTree(T), val: T) void {
 | ||
|     var tree = tree_;
 | ||
|     tree.remove(val);
 | ||
|     std.debug.print("\n删除节点 {} 后,AVL 树为\n", .{val});
 | ||
|     try inc.PrintUtil.printTree(tree.root, null, false);
 | ||
| }
 | ||
| 
 | ||
| // Driver Code
 | ||
| pub fn main() !void {
 | ||
|     // 初始化空 AVL 树
 | ||
|     var avl_tree = AVLTree(i32){};
 | ||
|     avl_tree.init(std.heap.page_allocator);
 | ||
|     defer avl_tree.deinit();
 | ||
| 
 | ||
|     // 插入节点
 | ||
|     // 请关注插入节点后,AVL 树是如何保持平衡的
 | ||
|     try testInsert(i32, &avl_tree, 1);
 | ||
|     try testInsert(i32, &avl_tree, 2);
 | ||
|     try testInsert(i32, &avl_tree, 3);
 | ||
|     try testInsert(i32, &avl_tree, 4);
 | ||
|     try testInsert(i32, &avl_tree, 5);
 | ||
|     try testInsert(i32, &avl_tree, 8);
 | ||
|     try testInsert(i32, &avl_tree, 7);
 | ||
|     try testInsert(i32, &avl_tree, 9);
 | ||
|     try testInsert(i32, &avl_tree, 10);
 | ||
|     try testInsert(i32, &avl_tree, 6);
 | ||
| 
 | ||
|     // 插入重复节点
 | ||
|     try testInsert(i32, &avl_tree, 7);
 | ||
| 
 | ||
|     // 删除节点
 | ||
|     // 请关注删除节点后,AVL 树是如何保持平衡的
 | ||
|     testRemove(i32, &avl_tree, 8); // 删除度为 0 的节点
 | ||
|     testRemove(i32, &avl_tree, 5); // 删除度为 1 的节点
 | ||
|     testRemove(i32, &avl_tree, 4); // 删除度为 2 的节点    
 | ||
| 
 | ||
|     // 查找节点
 | ||
|     var node = avl_tree.search(7).?;
 | ||
|     std.debug.print("\n查找到的节点对象为 {any},节点值 = {}\n", .{node, node.val});
 | ||
| 
 | ||
|     _ = try std.io.getStdIn().reader().readByte();
 | ||
| } |